1. Lutman, P.J.W., Moss, S.R., Cook, S., Welham, SJ A review of the effects of crop agronomy on the management of Alopecurus myosuroides. Weed Res. 53, 299–313. https://doi.org/10.1111/wre.12024 (2013).
2. Maréchal, P.Y., Henriet, F., Vancutsem, F., Bodson B. Ecological review of black-grass (Alopecurus myosuroides Huds.) propagation abilities in relationship with herbicide Resistance. Biotechnol. Agron. Soc. 16, 103–113 (2012).
3. Bitarafan, Z., Andreasen, C. Seed production and retention at maturity of blackgrass (Alopecurus myosuroides) and silky windgrass (Apera spica-venti) at wheat harvest. Weed Sc. 68, 151–156. doi:10.1017/wsc.2020.7(2020)
4. Murdoch A., Flint C., Pilgrim, R. Eyeweed: automating mapping of black-grass (Alopecurus myosuroides) for more precise applications of pre- and post-emergence herbicides and detecting potential herbicide resistance. Asp. Appl. Biol. 127, Crop Production in Southern Britain: Precision Decisions for Profitable Cropping, 151–158. Association of Applied Biologists. Wellesbourne, UK (2014).
5. Meiners, I. Management of black-grass (Alopecurus myosuroides Huds.) in winter wheat and taking into account the soil activity of post-emergence herbicides. VVB Laufersweiler Verlag. 1–202 (2015).
6. Metcalfe, H. et al. Defining the habitat niche of Alopecurus myosuroides at the field scale. Weed Res. 58, 165–176. https://doi.org/10.1111/wre.12300 (2018).
7. Vila-Aiub, M.M. Fitness of Herbicide-Resistant Weeds: Current Knowledge and Implications for Management. Plants 8, 11, 469. https://doi.org/10.3390/plants8110469. (2019).
8. Zeller, A.K., Zeller, Y.I., Gerhards, R. A long-term study of crop rotations, herbicide strategies and tillage practices: Effects on Alopecurus myosuroides Huds. Abundance and contribution margins of the cropping systems. Crop Prot. 145, 105613. https://doi.org/10.1016/j.cropro.2021.105613 (2021).
9. Rubio de Casas, R., Donohue, K., Venable, D.L., Cheptou, P.O. Gene- flow through space and time: Dispersal, dormancy and adaptation to changing environments. Evol. Ecol. 29, 813–831. https://doi.org/10.1007/s10682-015-9791-6 (2015).
10. Menegat, A., Milberg, P., Nilsson, A.T.S., Andersson, L., Vico, G. Soil water potential and temperature sum during reproductive growth control seed dormancy in Alopecurus myosuroides Huds. Ecol. Evol. 8, 7186–7194. https://doi.org/10.1002/ece3.4249 (2018).
11. Chauvel, B., Guillemin, J. P., Colbach, N., Gasquez, J. Evaluation of cropping systems for management of herbicide-resistant populations of blackgrass (Alopecurus myosuroides Huds.). Crop Prot. 20, 127–137. (2001).
12. Moss, S.R. The survival of Alopecurus myosuroides Huds. seeds in soil. Weed Res. 25, 201–211. (1985).
13. Heap, I. The International Herbicide-Resistant Weed Database. Online. Sunday, December 5, (2021). Available www.weedscience.org
14. Franco-Ortega, S. et al. Non-target Site Herbicide Resistance Is Conferred by Two Distinct Mechanisms in Black-Grass (Alopecurus myosuroides). Front. Plant Sci. 12, 636–652. https://doi.org/10.1007/10.3389/fpls.2021.636652. (2021).
15. Hall, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acid S. 41, 95–98 (1999).
16. Moss, R.S., Cocker, K.M., Brown, A.C., Hall, L., Field, LM Characterisation of target-site resistance to ACCase-inhibiting herbicides in the weed Alopecurus myosuroides (black-grass). Pest Manag. Sci. 59, 190–201. (2003).
17. Marshall, R., Hanley, S. J., Hull, R., Moss, S. R. The presence of two different target‐site resistance mechanisms in individual plants of Alopecurus myosuroides Huds., identified using a quick molecular test for the characterisation of six ALS and seven ACCase SNPs. Pest Manag. Sci. 69, 727–737. (2013).
18. Délye, C., Gardin, J.A.C., Boucansaud, K., Chauvel, B., Petit, C. Non-target-site-based resistance should be the centre of attention for herbicide resistance research: Alopecurus myosuroides as an illustration. Weed Res. 51, 433–437. https://doi.org/10.1111/J.1365-3180.2011.00864.X (2011).
19. Burgos, N. et al. Review: Confirmation of Resistance to Herbicides and Evaluation of Resistance Levels. Weed Sci. 61, 4–20. https://doi.org/doi:10.1614/WS-D-12-00032.1 (2013).
20. Délye, C., Duhoux A., Pernin F., Riggins C., Tranel P. Molecular Mechanisms of Herbicide Resistance. Weed Sci. 63, 91–115. https://doi.org/10.1614/WS-D-13-00096.1 (2015).
21. Keshtkar, E., Mathiassen, S.K., Moss, S.R., Kudsk, P. Resistance profile of herbicide-resistant Alopecurus myosuroides (black-grass) populations in Denmark. Crop Prot. 69, 83–89. https://doi.org/10.1016/j.cropro.2014.12.016 (2015).
22. Davies, L.R., Neve, P. Interpopulation variability and adaptive potential for reduced glyphosate sensitivity in Alopecurus myosuroides. Weed Res. 57, 323–332. https://doi.org/10.1111/Wre.12264 (2017).
23. Dixon, A., Comont, D., Slavov, G.T., Neve, P. Population genomics of selectively neutral genetic structure and herbicide resistance in UK populations of Alopecurus myosuroides. Pest Manag. Sci. 77, 1520–1529. https://doi.org/10.1002/ps.6174 (2021).
24. Adamczewski, K., Matysiak, K., Kierzek, R., Kaczmarek S. Significant increase of weed resistance to herbicides in Poland. J. Plant Protect. Res., 59, 139–150. https://doi.org/10.24425/jppr.2019.129293 (2019).
25. Stankiewicz-Kosyl, M., Wrochna, M., Tołłoczko, M. Increase in resistance to sulfonylurea herbicides in Alopecurus myosuroides populations in north-eastern Poland. Zemdirbyste 107, 249-254. https://doi.org/10.13080/z-a.2020.107.032. (2020).
26. Wrochna, M., Stankiewicz-Kosyl, M., Winska-Krysiak, M. Differential reaction of Alopecurus myosuroides biotypes to ACCase inhibitors. 01 May 2021 by MDPI in 1st International Electronic Conference on Agronomy session Weed Invasion, Biology and Management in Agricultural Settings. https://doi.org/10.3390/IECAG2021-09742 (2021).
27. Blair, A., Cussans, J.W., Lutman, P.J.W. Biological framework for developing a weed management support system for weed control in winter wheat: weed competition and time of weed control. Brighton Conference Weeds, BCPC. pp. 753–760. (1999).
28. Menegat, A., Nilsson, A.T.S. Interaction of Preventive, Cultural, and Direct Methods for Integrated Weed Management in Winter Wheat. Agron. 9, 564. https://doi.org/10.3390/agronomy9090564 (2019).
29. Walker, S. R., Medd, R. W., Robinson, G. R., Cullis, B. R. Improved management of Avena ludoviciana and Phalaris paradoxa with more densely sown wheat and less herbicide. Weed Res. 42, 257–270. (2002).
30. van der Meulen, A., Chauhan, B.S. A review of weed management in wheat using crop competition. Crop Prot. 95, 38–44. https://doi.org/10.1016/j.cropro.2016.08.004 (2017).
31. Bajwa, A.A., Walsh, M., Chauhan B.S. Weed management using crop competition in Australia. Crop Prot. 95, 8–13. https://doi.org/10.1016/j.cropro.2016.08.021 (2017).
32. Thompson, C. R., Thill, D. C., Shafii, B. Growth and Competitiveness of Sulfonyhirea-Resistant and-Susceptible Kochia (Kochia scoparia). Weed Sci. 42, 172–179. (1994).
33. Mobli, A., Yadav, R., Chauhan, B. S. Enhanced weed‐crop competition effects on growth and seed production of herbicide‐resistant and herbicide‐susceptible annual sowthistle (Sonchus oleraceus). Weed Biol. Manag. 20, 38–46. (2020).
34. Travlos, I. S. Competition between ACCase-inhibitor resistant and susceptible sterile wild oat (Avena sterilis) biotypes. Weed Sci. 61, 26–31. (2013).
35. Shrestha, A., Hanson, B. D., Fidelibus, M. W., Alcorta, M. Growth, phenology, and intraspecific competition between glyphosate-resistant and glyphosate-susceptible horseweeds (Conyza canadensis) in the San Joaquin Valley of California. Weed Sci. 58, 147–153. (2010).
36. Costa L.O., Rizzardi M.A. Competitive ability of wheat in association with biotypes of Raphanus raphanistrum L. resistant and susceptible to als-inhibitor herbicides. Cienc. Agrotec. 39, 121–130. https://dx.doi.org/10.1590/S1413-70542015000200003 (2015).
37. Storkey, J., Cussans, J. W., Lutman, P. J. W., Blair, A. M. The combination of a simulation and an empirical model of crop/weed competition to estimate yield loss from Alopecurus myosuroides in winter wheat. Field Crop Res. 84, 291–301. (2003).
38. Munier‐Jolain, N. M., Chavvel, B., Gasquez, J. Long‐term modelling of weed control strategies: analysis of threshold‐based options for weed species with contrasted competitive abilities. Weed Res. 42, 107–122. (2002).
39. Park, S.E., Laurence, B.R., Watkinson, A.R. The Theory and Application of Plant Competition Models: an Agronomic. Persp. Ann. Bot. 92, 741–748. (2003).
40. Jolliffe, P.A. The replacement series. J. Ecol. 88, 371–385. (2000).
41. de Wit, C.T. On competition. Verslagen Landbouwkundige Onderzoekingen, 66, ¬1–182. (1960).
42. Synowiec, A. et al. Environmental Factors Effects on Winter Wheat Competition with Herbicide-Resistant or Susceptible Silky Bentgrass (Apera spica-venti L.) in Poland. Agron. 11, 871. https://doi.org/10.3390/agronomy11050871. (2021).
43. Marshall, R., Moss, S.R. Characterisation and molecular basis of ALS inhibitor resistance in the grass weed Alopecurus myosuroides. Weed Res. 48, 439–447. (2007).
44. Huang, Z. et al. The target-site based resistance mechanism of Alopecurus myosuroides Huds. to pyroxsulam. Crop Prot. 147, 105707. (2021).
45. Yu, Q., Han, H., Powles, S. B. Mutations of the ALS gene endowing resistance to ALS‐inhibiting herbicides in Lolium rigidum populations. Pest Manag. Sci. 64, 1229–1236. (2008).
46. Zheng, D. et al. Cross‐resistance of horseweed (Conyza canadensis) populations with three different ALS mutations. Pest Manag. Sci. 67, 1486–1492. (2011).
47. Xu, H. et al. Mutations at codon position 1999 of acetyl‐CoA carboxylase confer resistance to ACCase‐inhibiting herbicides in Japanese foxtail (Alopecurus japonicus). Pest Manag. Sci. 70, 1894–1901. (2014).
48. Colbach, N., Kurstjens, D.A.G., Munier-Jolain, N.M., Dalbiès, A, Doré T. Assessing non-chemical weeding strategies through mechanistic modelling of blackgrass (Alopecurus myosuroides Huds.) dynamics. Europ. J. Agron. 32, 205–218. doi: 10.1016/j.eja.2009.11.005 AGR: IND44326562. (2010).
49. Ghazali, Z., Keshtkar, E., Agha Alikhani, M., Kudsk, P. Germinability and seed biochemical properties of susceptible and non–target site herbicide-resistant blackgrass (Alopecurus myosuroides) subpopulations exposed to abiotic stresses. Weed Sci. 68, 157–167. doi:10.1017/wsc.2020.9. (2020).
50. Comont, D. et al. Alterations in Life-History Associated with Non-target-site Herbicide Resistance in Alopecurus myosuroides. Plant Sci. 10, 837. https://doi.org/10.3389/fpls.2019.00837. (2019).
51. Keshtkar, E. et al. Assessing Fitness Costs from a Herbicide-Resistance Management Perspective: A Review and Insight. Weed Sci. 67, 137–148. (2019).
52. Vila-Aiub, M.M., Neve, P., Powles, S.B. Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytol. 184, 751–767. (2009).
53. Vila-Aiub, M.M., Neve, P., Roux, F. A unified approach to the estimation and interpretation of resistance costs in plants. Heredity 107, 386–394. (2011).
54. Bönecke, E. et al. Decoupling of impact factors reveals the response of German winter wheat yields to climatic changes. Global Change Biol. 26, 3601–3626. (2020).
55. Bertholdsson, N.O., Weedon, O., Brumlop, S., Finckh, M.R. Evolutionary changes of weed competitive traits in winter wheat composite cross populations in organic and conventional farming systems. Europ. J. Agron. 79, 23–30. http://dx.doi.org/10.1016/j.eja.2016.05.004. (2016).
56. Sardana, V., Mahajan, G., Jabran, K., Chauhan, B.S. Role of competition in managing weeds: An introduction to the special issue. Crop Prot. 95, 1–7. https://doi.org/10.1016/j.cropro.2016.09.011. (2017).
57. Lazzaro, M. et al. Unraveling diversity in wheat competitive ability traits can improve integrated weed management. Agron. Sust. Devel. 39, 6. https://doi.org/10.1007/s13593-018-0551-1. (2019).
58. Andrew, I.K.S., Storkey, J. Using simulation models to investigate the cumulative effects of sowing rate, sowing date and cultivar choice on weed competition. Crop Prot. 95, 109–115. doi: 10.1016/j.cropro.2016.05.002. (2017).
59. Kropff, M. J., Weaver, S. E., Smits, M. A. Use of ecophysiological models for crop-weed interference: relations amongst weed density, relative time of weed emergence, relative leaf area, and yield loss. Weed Sci. 40, 296–301. (1992).
60. Fahad, S. et al. Weed growth and crop yield loss in wheat as influenced by row spacing and weed emergence times. Crop Prot. 71, 101–108. (2015).
61. Kaur, S., Kaur, R., Chauhan, B. S. Understanding crop-weed-fertilizer-water interactions and their implications for weed management in agricultural systems. Crop Prot. 103, 65–72. (2018).
62. Hall, L.M., Moss, S.R., Powles, B. Mechanisms of resistance to Aryloxyphenoxypropionate herbicides in two resistant biotypes of Alopecurus myosuroides (blackgrass): Herbicide metabolism as a cross-resistance mechanism. Pestic. Biochem. Physiol. 57, 87–98. (1997).
63. Cousens, R. Aspects of the design and interpretation of competition (interference) experiments. Weed Technol. 5, 664–472. (1991).
64. Ziernicka-Wojtaszek A. Pluviothermal Regionalization of Poland in Light of Present-Day Climate Change. Pol. J. Environ. Stud. 479, 29(1), 989–996. https://doi.org/10.15244/pjoes/99976. (2020).
65. Hoffman, M., Buhler, D. Utilizing Sorghum as a functional model of crop–weed competition. I. Establishing a competitive hierarchy. Weed Sci. 50, 466–472. https://doi.org/doi:10.1614/0043-1745(2002)050[0466:USAAFM]2.0.CO;2. (2002).
66. Radosevich, S. Methods to Study Interactions Among Crops and Weeds. Weed Technol. 1, 190–198. https://doi.org/doi:10.1017/S0890037X00029523. (1987).
67. Throne, J. E., Weaver, D.K., Baker, JE Probit analysis: Assessing goodness-of-fit based on back transformation and residuals. J. Econ. Entomol. 88, 1513–1516. (1995).