1. Mao, H. K. et al. Solids, liquids, and gases under high pressure. Rev. Mod. Phys. 90, 015007 (2018).
2. Flores-Livas, J. A., et al. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials. Phys. Rep., 856, 1-78 (2020).
3. Drozdov, A. P. et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature, 525, 73–76 (2015).
4. Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528 – 531 (2019).
5. Jayaraman, A. Diamond anvil cell and high-pressure physical investigations. Rev. Mod. Phys. 55, 65 (1983).
6. Doherty, M. W. et al. Electronic properties and metrology applications of the diamond NV- center under pressure. Phys. Rev. Lett. 112, 047601 (2014).
7. Yip, K. Y. et al. Measuring magnetic field texture in correlated electron systems under extreme conditions, Science 366, 1355 (2019).
8. Lesik, M. et al. Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers. Science 366, 1359 (2019).
9. Hsieh, S. et al. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science 366, 1349 (2019).
10. Shang, Y. X. et al. Magnetic Sensing inside a Diamond Anvil Cell via Nitrogen-Vacancy Center Spins. Chin. Phys. Lett. 36, 086201 (2019).
11. Ho, K. O. et al. Probing local pressure environment in anvil cells with nitrogen-vacancy (N-V-) centers in diamond, Phys. Rev. Appl. 13, 024041 (2020).
12. Schirhagl, R. et al. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).
13. Chen, X. D. et al. Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond. Appl. Phys. Lett. 99, 161903 (2011).
14. Toyli, D. et al. Measurement and control of single nitrogen-vacancy center spins above 600 K. Phys. Rev. X 2, 031001 (2012).
15. Koehl, W. F. et al. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).
16. Christle, D. J. et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 14, 160–163 (2015).
17. Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 14, 164–168 (2015).
18. Nagy, R. et al. High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide. Nat. Commun. 10, 1954 (2019).
19. Wang, J. F. et al. Bright room temperature single photon source at telecom range in cubic silicon carbide. Nat. Commun. 9, 4106 (2018).
20. Lohrmann, A., Johnson, B. C., McCallum, J. C. & Castelletto, S. A review on single photon sources in silicon carbide. Rep. Prog. Phys. 80, 034502 (2017).
21. Lukin, D. M. et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photonics 14, 330 – 334 (2020).
24. Zargaleh, S. A. et al. Nitrogen vacancy center in cubic silicon carbide: a promising qubit in the 1.5 μm spectral range for photonic quantum networks. Phys. Rev. B 98, 165203 (2018).
25. Wang, J. F. et al. Coherent control of nitrogen-vacancy center spins in silicon carbide at room temperature. Phys. Rev. Lett. 124, 223601 (2020).
26. Mu, Z. et al. Coherent manipulation with resonant excitation and single emitter creation of nitrogen vacancy centers in 4H silicon carbide. Nano Lett. 20, 6142–6147 (2020).
27. Simin, D. et al. All-optical dc nanotesla magnetometry using silicon vacancy fine structure in isotopically purified silicon carbide. Phys. Rev. X 6, 031014 (2016).
28. Anisimov, A. N. et al. Optical thermometry based on level anticrossing in silicon carbide. Sci. Rep. 6, 33301 (2016).
29. Wang, J. F. Robust coherent control of solid-state spin qubits using anti-Stokes excitation. Nat. Commun. 12, 3223 (2021).
30. Wang, J. F. et al. On-demand generation of single silicon vacancy defects in silicon carbide. ACS Photon. 6, 1736–1743 (2019).
31. Steele, L. G. et al. Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils. Appl. Phys. Lett. 111, 221903 (2017).
32. Ivády, V. et al. Pressure and temperature dependence of the zero-field splitting in the ground state of NV centers in diamond: A first-principles study. Phys. Rev. B 90, 235205 (2014).
33. Nagy, R. et al. Quantum properties of dichroic silicon vacancies in silicon carbide. Phys. Rev. Appl. 9, 034022 (2018).
34. Kamarád, J., Arnold, Z. and Schneider, J. Effect of pressure on the curie and spin reorientation temperatures of polycrystalline Nd2Fe14B compound. J. Magn. Magn. Mater. 67, 29 (1987).
35. Sadewasser, S., Schilling, J. S., Paulikas, A. P. and Veal B. W. Pressure dependence of Tc to 17 GPa with and without relaxation effects in superconducting YBa2Cu3Ox. Phys. Rev. B. 61, 741 (2000).
36. Chen, X. J., Lin, H. Q. and Gong. C. D. Pressure Dependence of Tc in Y-Ba-Cu-O Superconductors. Phys. Rev. Lett. 85, 2180 (2000).
37. Waxman, A. et al. Diamond magnetometry of superconducting thin films. Phys. Rev. B. 89, 054509 (2014).
38. Joshi, K.R. et al. Measuring the lower critical field of superconductors using nitrogen-vacancy centers in diamond optical magnetometry. Phys. Rev. Appl. 11, 014035 (2019).
39. Nusran, N. M. et al. Spatially-resolved study of the Meissner effect in superconductors using NV-centers-in-diamond optical magnetometry. New J. Phys. 20, 043010 (2018).
40. Abraham, J. B. S. et al. Nanotesla magnetometry with the silicon vacancy in silicon carbide. Phys. Rev. Applied 15, 064022 (2021).
41. Castelletto, S. et al. Fluorescent color centers in laser ablated 4H-SiC nanoparticles. Opt. Lett. 42, 1297 (2017).
42. Falk, A. L. et al. Polytype control of spin qubits in silicon carbide. Nat. Commun. 4, 1819 (2013).
43. Wolfowicz, G. et al. Vanadium spin qubits as telecom quantum emitters in silicon carbide. Sci. Adv. 6, eaaz1192 (2020).
44. Niethammer, M. et al. Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions. Nat. Commun. 10, 5569 (2019).
45. Ho, K. O. et al. Recent developments of quantum sensing under pressurized environment using the nitrogen vacancy (NV) center in diamond. J. Appl. Phys. 129, 241101 (2021).
46. Liu, X. D. et al. Counterintuitive effects of isotopic doping on the phase diagram of H2–HD–D2 molecular alloy. Proceedings of the National Academy of Sciences, 117, 8736-8742 (2020).