[1] Scheltens P, Blennow K, Breteler M M, et al. Alzheimer's disease[J]. Lancet, 2016, 388(10043): 505-17.
[2] Ballard C, Gauthier S, Corbett A, et al. Alzheimer's disease[J]. Lancet, 2011, 377(9770): 1019-31.
[3] Mondragón-Rodríguez S, Basurto-Islas G, Lee H G, et al. Causes versus effects: the increasing complexities of Alzheimer's disease pathogenesis[J]. Expert Rev Neurother, 2010, 10(5): 683-91.
[4] Sun X, Chen W D, Wang Y D. β-Amyloid: the key peptide in the pathogenesis of Alzheimer's disease[J]. Front Pharmacol, 2015, 6: 221.
[5] Hanger D P, Lau D H, Phillips E C, et al. Intracellular and extracellular roles for tau in neurodegenerative disease[J]. J Alzheimers Dis, 2014, 40 Suppl 1: S37-45.
[6] Chen Y, Fang L, Chen S, et al. Gut Microbiome Alterations Precede Cerebral Amyloidosis and Microglial Pathology in a Mouse Model of Alzheimer's Disease[J]. Biomed Res Int, 2020, 2020: 8456596.
[7] Martinez F O, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective[J]. Annu Rev Immunol, 2009, 27: 451-83.
[8] Agostini A, Yuchun D, Li B, et al. Sex-specific hippocampal metabolic signatures at the onset of systemic inflammation with lipopolysaccharide in the APPswe/PS1dE9 mouse model of Alzheimer's disease[J]. Brain Behav Immun, 2020, 83: 87-111.
[9] Bergsbaken T, Fink S L, Cookson B T. Pyroptosis: host cell death and inflammation[J]. Nat Rev Microbiol, 2009, 7(2): 99-109.
[10] Shi J, Zhao Y, Wang Y, et al. Inflammatory caspases are innate immune receptors for intracellular LPS[J]. Nature, 2014, 514(7521): 187-92.
[11] Voet S, Srinivasan S, Lamkanfi M, et al. Inflammasomes in neuroinflammatory and neurodegenerative diseases[J]. EMBO Mol Med, 2019, 11(6):
[12] De Calignon A, Fox L M, Pitstick R, et al. Caspase activation precedes and leads to tangles[J]. Nature, 2010, 464(7292): 1201-4.
[13] Angel A, Volkman R, Royal T G, et al. Caspase-6 Knockout in the 5xFAD Model of Alzheimer's Disease Reveals Favorable Outcome on Memory and Neurological Hallmarks[J]. Int J Mol Sci, 2020, 21(3):
[14] Ritchie M E, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47.
[15] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis[J]. BMC Bioinformatics, 2008, 9: 559.
[16] Yu G, Wang L G, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. Omics, 2012, 16(5): 284-7.
[17] Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life[J]. Nucleic Acids Res, 2015, 43(Database issue): D447-52.
[18] Tubeleviciute-Aydin A, Beautrait A, Lynham J, et al. Identification of Allosteric Inhibitors against Active Caspase-6[J]. Sci Rep, 2019, 9(1): 5504.
[19] Rangaraju S, Dammer E B, Raza S A, et al. Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer's disease[J]. Mol Neurodegener, 2018, 13(1): 24.
[20] Zou D, Li R, Huang X, et al. Identification of molecular correlations of RBM8A with autophagy in Alzheimer's disease[J]. Aging (Albany NY), 2019, 11(23): 11673-11685.
[21] Zheng M, Kanneganti T D. The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis)[J]. Immunol Rev, 2020, 297(1): 26-38.
[22] Zheng M, Kanneganti T D. Newly Identified Function of Caspase-6 in ZBP1-mediated Innate Immune Responses, NLRP3 Inflammasome Activation, PANoptosis, and Host Defense[J]. J Cell Immunol, 2020, 2(6): 341-347.
[23] Zheng M, Karki R, Vogel P, et al. Caspase-6 Is a Key Regulator of Innate Immunity, Inflammasome Activation, and Host Defense[J]. Cell, 2020, 181(3): 674-687.e13.
[24] Halawani D, Tessier S, Anzellotti D, et al. Identification of Caspase-6-mediated processing of the valosin containing protein (p97) in Alzheimer's disease: a novel link to dysfunction in ubiquitin proteasome system-mediated protein degradation[J]. J Neurosci, 2010, 30(17): 6132-42.
[25] Klaiman G, Petzke T L, Hammond J, et al. Targets of caspase-6 activity in human neurons and Alzheimer disease[J]. Mol Cell Proteomics, 2008, 7(8): 1541-55.
[26] Yang Y R, Choi J H, Chang J S, et al. Diverse cellular and physiological roles of phospholipase C-γ1[J]. Adv Biol Regul, 2012, 52(1): 138-51.
[27] Giralt A, Rodrigo T, Martín E D, et al. Brain-derived neurotrophic factor modulates the severity of cognitive alterations induced by mutant huntingtin: involvement of phospholipaseCgamma activity and glutamate receptor expression[J]. Neuroscience, 2009, 158(4): 1234-50.
[28] He X P, Pan E, Sciarretta C, et al. Disruption of TrkB-mediated phospholipase Cgamma signaling inhibits limbic epileptogenesis[J]. J Neurosci, 2010, 30(18): 6188-96.
[29] Kim D, Jun K S, Lee S B, et al. Phospholipase C isozymes selectively couple to specific neurotransmitter receptors[J]. Nature, 1997, 389(6648): 290-3.
[30] Jang H J, Yang Y R, Kim J K, et al. Phospholipase C-γ1 involved in brain disorders[J]. Adv Biol Regul, 2013, 53(1): 51-62.
[31] Yang Y R, Jung J H, Kim S J, et al. Forebrain-specific ablation of phospholipase Cγ1 causes manic-like behavior[J]. Mol Psychiatry, 2017, 22(10): 1473-1482.
[32] Shimohama S, Matsushima H, Fujimoto S, et al. Differential involvement of phospholipase C isozymes in Alzheimer's disease[J]. Gerontology, 1995, 41 Suppl 1: 13-9.
[33] Yang Y R, Kang D S, Lee C, et al. Primary phospholipase C and brain disorders[J]. Adv Biol Regul, 2016, 61: 80-5.
[34] Querfurth H W, Laferla F M. Alzheimer's disease[J]. N Engl J Med, 2010, 362(4): 329-44.
[35] Aleong R, Aumont N, Dea D, et al. Non-steroidal anti-inflammatory drugs mediate increased in vitro glial expression of apolipoprotein E protein[J]. Eur J Neurosci, 2003, 18(6): 1428-38.
[36] Jenkins S M, Johnson G V. Tau complexes with phospholipase C-gamma in situ[J]. Neuroreport, 1998, 9(1): 67-71.
[37] Reynolds C H, Garwood C J, Wray S, et al. Phosphorylation regulates tau interactions with Src homology 3 domains of phosphatidylinositol 3-kinase, phospholipase Cgamma1, Grb2, and Src family kinases[J]. J Biol Chem, 2008, 283(26): 18177-86.
[38] Kim S H, Yang S, Lim K H, et al. Prediction of Alzheimer's disease-specific phospholipase c gamma-1 SNV by deep learning-based approach for high-throughput screening[J]. Proc Natl Acad Sci U S A, 2021, 118(3):
[39] Gao B, Wang Y, Xu W, et al. A 5' extended IFN-stimulating response element is crucial for IFN-gamma-induced tripartite motif 22 expression via interaction with IFN regulatory factor-1[J]. J Immunol, 2010, 185(4): 2314-23.
[40] Rauch I, Rosebrock F, Hainzl E, et al. Noncanonical Effects of IRF9 in Intestinal Inflammation: More than Type I and Type III Interferons[J]. Mol Cell Biol, 2015, 35(13): 2332-43.
[41] Ahmed S, Paramasivam P, Kamath M, et al. Genetic Exchange of Lung-Derived Exosome to Brain Causing Neuronal Changes on COVID-19 Infection[J]. Mol Neurobiol, 2021, 58(10): 5356-5368.
[42] Benaoudia S, Martin A, Puig Gamez M, et al. A genome-wide screen identifies IRF2 as a key regulator of caspase-4 in human cells[J]. EMBO Rep, 2019, 20(9): e48235.
[43] Kayagaki N, Lee B L, Stowe I B, et al. IRF2 transcriptionally induces GSDMD expression for pyroptosis[J]. Sci Signal, 2019, 12(582):
[44] Lamkanfi M, Kanneganti T D, Van Damme P, et al. Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes[J]. Mol Cell Proteomics, 2008, 7(12): 2350-63.
[45] Malireddi R K, Ippagunta S, Lamkanfi M, et al. Cutting edge: proteolytic inactivation of poly(ADP-ribose) polymerase 1 by the Nlrp3 and Nlrc4 inflammasomes[J]. J Immunol, 2010, 185(6): 3127-30.