[1] Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians. 71 (3)(2021):209-249.http://doi.org./10.3322/caac.21660. doi:10.3322/caac.21660.
[2] Brahmer JR, Govindan R, Anders RA, Antonia SJ, Sagorsky S, Davies MJ, Dubinett SM, Ferris A, Gandhi L, Garon EB, Hellmann MD, Hirsch FR, Malik S, Neal JW, Papadimitrakopoulou VA, Rimm DL, Schwartz LH, Sepesi B, Yeap BY, Rizvi NA, Herbst RS. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of non-small cell lung cancer (NSCLC). J Immunother Cancer. 6 (1)(2018):75.http://doi.org./10.1186/s40425-018-0382-2. doi:10.1186/s40425-018-0382-2.
[3] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA: a cancer journal for clinicians. 69 (1)(2019):7-34.http://doi.org./10.3322/caac.21551. doi:10.3322/caac.21551.
[4] Xu JY, Zhang C, Wang X, Zhai L, Ma Y, Mao Y, Qian K, Sun C, Liu Z, Jiang S, Wang M, Feng L, Zhao L, Liu P, Wang B, Zhao X, Xie H, Yang X, Zhao L, Chang Y, Jia J, Wang X, Zhang Y, Wang Y, Yang Y, Wu Z, Yang L, Liu B, Zhao T, Ren S, Sun A, Zhao Y, Ying W, Wang F, Wang G, Zhang Y, Cheng S, Qin J, Qian X, Wang Y, Li J, He F, Xiao T, Tan M. Integrative Proteomic Characterization of Human Lung Adenocarcinoma. Cell. 182 (1)(2020):245-261.e217.http://doi.org./10.1016/j.cell.2020.05.043. doi:10.1016/j.cell.2020.05.043.
[5] Jia R, Sui Z, Zhang H, Yu Z. Identification and Validation of Immune-Related Gene Signature for Predicting Lymph Node Metastasis and Prognosis in Lung Adenocarcinoma. Frontiers in molecular biosciences. 8 (2021):679031.http://doi.org./10.3389/fmolb.2021.679031. doi:10.3389/fmolb.2021.679031.
[6] Li C, Tian C, Liu Y, Liang J, Zeng Y, Yang Q, Liu Y, Wu D, Wu J, Wang J, Zhang K, Gu F, Hu Y, Liu L. Comprehensive Profiling Reveals Distinct Microenvironment and Metabolism Characterization of Lung Adenocarcinoma. Frontiers in genetics. 12 (2021):619821.http://doi.org./10.3389/fgene.2021.619821. doi:10.3389/fgene.2021.619821.
[7] Deng HY, Zeng M, Li G, Alai G, Luo J, Liu LX, Zhou Q, Lin YD. Lung Adenocarcinoma has a Higher Risk of Lymph Node Metastasis than Squamous Cell Carcinoma: A Propensity Score-Matched Analysis. World journal of surgery. 43 (3)(2019):955-962.http://doi.org./10.1007/s00268-018-4848-7. doi:10.1007/s00268-018-4848-7.
[8] Zhang D, Chen X, Zhu D, Qin C, Dong J, Qiu X, Fan M, Zhuo Q, Tang X. Intrapulmonary lymph node metastasis is common in clinically staged IA adenocarcinoma of the lung. Thorac Cancer. 10 (2)(2019):123-127.http://doi.org./10.1111/1759-7714.12908. doi:10.1111/1759-7714.12908.
[9] Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell. 171 (2)(2017):273-285.http://doi.org./10.1016/j.cell.2017.09.021. doi:10.1016/j.cell.2017.09.021.
[10] Gao M, Jiang X. To eat or not to eat-the metabolic flavor of ferroptosis. Current opinion in cell biology. 51 (2018):58-64.http://doi.org./10.1016/j.ceb.2017.11.001. doi:10.1016/j.ceb.2017.11.001.
[11] Bebber CM, Müller F, Prieto Clemente L, Weber J, von Karstedt S. Ferroptosis in Cancer Cell Biology. Cancers (Basel). 12 (1)(2020).http://doi.org./10.3390/cancers12010164. doi:10.3390/cancers12010164.
[12] Liang C, Zhang X, Yang M, Dong X. Recent Progress in Ferroptosis Inducers for Cancer Therapy. Advanced materials (Deerfield Beach, Fla). 31 (51)(2019):e1904197.http://doi.org./10.1002/adma.201904197. doi:10.1002/adma.201904197.
[13] Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting Ferroptosis to Iron Out Cancer. Cancer cell. 35 (6)(2019):830-849.http://doi.org./10.1016/j.ccell.2019.04.002. doi:10.1016/j.ccell.2019.04.002.
[14] Wang Z, Zhang X, Tian X, Yang Y, Ma L, Wang J, Yu Y. CREB stimulates GPX4 transcription to inhibit ferroptosis in lung adenocarcinoma. Oncology reports. 45 (6)(2021).http://doi.org./10.3892/or.2021.8039. doi:10.3892/or.2021.8039.
[15] Ma L, Zhang X, Yu K, Xu X, Chen T, Shi Y, Wang Y, Qiu S, Guo S, Cui J, Miao Y, Tian X, Du L, Yu Y, Xia J, Wang J. Targeting SLC3A2 subunit of system X(C)(-) is essential for m(6)A reader YTHDC2 to be an endogenous ferroptosis inducer in lung adenocarcinoma. Free radical biology & medicine. 168 (2021):25-43.http://doi.org./10.1016/j.freeradbiomed.2021.03.023. doi:10.1016/j.freeradbiomed.2021.03.023.
[16] Zhang Y, Li S, Li F, Lv C, Yang QK. High-fat diet impairs ferroptosis and promotes cancer invasiveness via downregulating tumor suppressor ACSL4 in lung adenocarcinoma. Biology direct. 16 (1)(2021):10.http://doi.org./10.1186/s13062-021-00294-7. doi:10.1186/s13062-021-00294-7.
[17] Klöditz K, Fadeel B. Three cell deaths and a funeral: macrophage clearance of cells undergoing distinct modes of cell death. Cell death discovery. 5 (2019):65.http://doi.org./10.1038/s41420-019-0146-x. doi:10.1038/s41420-019-0146-x.
[18] Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, Xia H, Zhou J, Li G, Li J, Li W, Wei S, Vatan L, Zhang H, Szeliga W, Gu W, Liu R, Lawrence TS, Lamb C, Tanno Y, Cieslik M, Stone E, Georgiou G, Chan TA, Chinnaiyan A, Zou W. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 569 (7755)(2019):270-274.http://doi.org./10.1038/s41586-019-1170-y. doi:10.1038/s41586-019-1170-y.
[19] Song X, Xie Y, Kang R, Hou W, Sun X, Epperly MW, Greenberger JS, Tang D. FANCD2 protects against bone marrow injury from ferroptosis. Biochemical and biophysical research communications. 480 (3)(2016):443-449.http://doi.org./10.1016/j.bbrc.2016.10.068. doi:10.1016/j.bbrc.2016.10.068.
[20] Yang SY, Hsiung CN, Li YJ, Chang GC, Tsai YH, Chen KY, Huang MS, Su WC, Chen YM, Hsiung CA, Yang PC, Chen CJ, Wu PE, Yu JC, Shen CY, Hsu HM. Fanconi anemia genes in lung adenocarcinoma- a pathway-wide study on cancer susceptibility. Journal of biomedical science. 23 (2016):23.http://doi.org./10.1186/s12929-016-0240-9. doi:10.1186/s12929-016-0240-9.
[21] Wang GZ, Liu YQ, Cheng X, Zhou GB. Celastrol induces proteasomal degradation of FANCD2 to sensitize lung cancer cells to DNA crosslinking agents. Cancer Sci. 106 (7)(2015):902-908.http://doi.org./10.1111/cas.12679. doi:10.1111/cas.12679.
[22] Li X, Liu J, Wang K, Zhou J, Zhang H, Zhang M, Shi Y. Polymorphisms and rare variants identified by next-generation sequencing confer risk for lung cancer in han Chinese population. Pathology, research and practice. 216 (4)(2020):152873.http://doi.org./10.1016/j.prp.2020.152873. doi:10.1016/j.prp.2020.152873.
[23] Li C, Zhang Y, Liu J, Kang R, Klionsky DJ, Tang D. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy. 17 (4)(2021):948-960.http://doi.org./10.1080/15548627.2020.1739447. doi:10.1080/15548627.2020.1739447.
[24] Salgado R, Loi S. Tumour infiltrating lymphocytes in breast cancer: increasing clinical relevance. The Lancet Oncology. 19 (1)(2018):3-5.http://doi.org./10.1016/s1470-2045(17)30905-1. doi:10.1016/s1470-2045(17)30905-1.
[25] Zhang X, Yu K, Ma L, Qian Z, Tian X, Miao Y, Niu Y, Xu X, Guo S, Yang Y, Wang Z, Xue X, Gu C, Fang W, Sun J, Yu Y, Wang J. Endogenous glutamate determines ferroptosis sensitivity via ADCY10-dependent YAP suppression in lung adenocarcinoma. Theranostics. 11 (12)(2021):5650-5674.http://doi.org./10.7150/thno.55482. doi:10.7150/thno.55482.
[26] Gao X, Tang M, Tian S, Li J, Liu W. A ferroptosis-related gene signature predicts overall survival in patients with lung adenocarcinoma. Future Oncol. 17 (12)(2021):1533-1544.http://doi.org./10.2217/fon-2020-1113. doi:10.2217/fon-2020-1113.
[27] Sertorio M, Amarachintha S, Wilson A, Pang Q. Fancd2 Deficiency Impairs Autophagy Via Deregulating The Ampk/Foxo3a/Akt Pathway %J Blood. 122 (21)(2013):3713-3713.
[28] Lei LC, Yu VZ, Ko JMY, Ning L, Lung ML. FANCD2 Confers a Malignant Phenotype in Esophageal Squamous Cell Carcinoma by Regulating Cell Cycle Progression. Cancers (Basel). 12 (9)(2020).http://doi.org./10.3390/cancers12092545. doi:10.3390/cancers12092545.
[29] Schalper KA, Carleton M, Zhou M, Chen T, Feng Y, Huang SP, Walsh AM, Baxi V, Pandya D, Baradet T, Locke D, Wu Q, Reilly TP, Phillips P, Nagineni V, Gianino N, Gu J, Zhao H, Perez-Gracia JL, Sanmamed MF, Melero I. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nature medicine. 26 (5)(2020):688-692.http://doi.org./10.1038/s41591-020-0856-x. doi:10.1038/s41591-020-0856-x.
[30] Zhang H, Li R, Cao Y, Gu Y, Lin C, Liu X, Lv K, He X, Fang H, Jin K, Fei Y, Chen Y, Wang J, Liu H, Li H, Zhang H, He H, Zhang W. Poor Clinical Outcomes and Immunoevasive Contexture in Intratumoral IL-10-Producing Macrophages Enriched Gastric Cancer Patients. Annals of surgery.(2020).http://doi.org./10.1097/sla.0000000000004037. doi:10.1097/sla.0000000000004037.
[31] Zhang Y, Chandra V, Riquelme Sanchez E, Dutta P, Quesada PR, Rakoski A, Zoltan M, Arora N, Baydogan S, Horne W, Burks J, Xu H, Hussain P, Wang H, Gupta S, Maitra A, Bailey JM, Moghaddam SJ, Banerjee S, Sahin I, Bhattacharya P, McAllister F. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. The Journal of experimental medicine. 217 (12)(2020).http://doi.org./10.1084/jem.20190354. doi:10.1084/jem.20190354.
[32] Li J, Wang S, Wang N, Zheng Y, Yang B, Wang X, Zhang J, Pan B, Wang Z. Aiduqing formula inhibits breast cancer metastasis by suppressing TAM/CXCL1-induced Treg differentiation and infiltration. Cell communication and signaling : CCS. 19 (1)(2021):89.http://doi.org./10.1186/s12964-021-00775-2. doi:10.1186/s12964-021-00775-2.
[33] Borghaei H, Gettinger S, Vokes EE, Chow LQM, Burgio MA, de Castro Carpeno J, Pluzanski A, Arrieta O, Frontera OA, Chiari R, Butts C, Wójcik-Tomaszewska J, Coudert B, Garassino MC, Ready N, Felip E, García MA, Waterhouse D, Domine M, Barlesi F, Antonia S, Wohlleber M, Gerber DE, Czyzewicz G, Spigel DR, Crino L, Eberhardt WEE, Li A, Marimuthu S, Brahmer J. Five-Year Outcomes From the Randomized, Phase III Trials CheckMate 017 and 057: Nivolumab Versus Docetaxel in Previously Treated Non-Small-Cell Lung Cancer. J Clin Oncol. 39 (7)(2021):723-733.http://doi.org./10.1200/jco.20.01605. doi:10.1200/jco.20.01605.
[34] Chalmers AW, Patel S, Boucher K, Cannon L, Esplin M, Luckart J, Graves N, Van Duren T, Akerley W. Phase I Trial of Targeted EGFR or ALK Therapy with Ipilimumab in Metastatic NSCLC with Long-Term Follow-Up. Target Oncol. 14 (4)(2019):417-421.http://doi.org./10.1007/s11523-019-00658-0. doi:10.1007/s11523-019-00658-0.
[35] Hong Y, Lin M, Ou D, Huang Z, Shen P. A novel ferroptosis-related 12-gene signature predicts clinical prognosis and reveals immune relevancy in clear cell renal cell carcinoma. BMC cancer. 21 (1)(2021):831.http://doi.org./10.1186/s12885-021-08559-0. doi:10.1186/s12885-021-08559-0.
[36] Yang L, Li C, Qin Y, Zhang G, Zhao B, Wang Z, Huang Y, Yang Y. A Novel Prognostic Model Based on Ferroptosis-Related Gene Signature for Bladder Cancer. Front Oncol. 11 (2021):686044.http://doi.org./10.3389/fonc.2021.686044. doi:10.3389/fonc.2021.686044.
[37] Farhood B, Najafi M, Mortezaee K. CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol. 234 (6)(2019):8509-8521.http://doi.org./10.1002/jcp.27782. doi:10.1002/jcp.27782.
[38] Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nature reviews Cancer. 16 (1)(2016):7-19.http://doi.org./10.1038/nrc.2015.5. doi:10.1038/nrc.2015.5.
[39] Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C, Remark R, Sweeney R, Becker CD, Levine JH, Meinhof K, Chow A, Kim-Shulze S, Wolf A, Medaglia C, Li H, Rytlewski JA, Emerson RO, Solovyov A, Greenbaum BD, Sanders C, Vignali M, Beasley MB, Flores R, Gnjatic S, Pe'er D, Rahman A, Amit I, Merad M. Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses. Cell. 169 (4)(2017):750-765.e717.http://doi.org./10.1016/j.cell.2017.04.014. doi:10.1016/j.cell.2017.04.014.
[40] Nizzoli G, Larghi P, Paroni M, Crosti MC, Moro M, Neddermann P, Caprioli F, Pagani M, De Francesco R, Abrignani S, Geginat J. IL-10 promotes homeostatic proliferation of human CD8(+) memory T cells and, when produced by CD1c(+) DCs, shapes naive CD8(+) T-cell priming. European journal of immunology. 46 (7)(2016):1622-1632.http://doi.org./10.1002/eji.201546136. doi:10.1002/eji.201546136.
[41] Yagi R, Zhu J, Paul WE. An updated view on transcription factor GATA3-mediated regulation of Th1 and Th2 cell differentiation. International immunology. 23 (7)(2011):415-420.http://doi.org./10.1093/intimm/dxr029. doi:10.1093/intimm/dxr029.
[42] Liu XS, Lin XK, Mei Y, Ahmad S, Yan CX, Jin HL, Yu H, Chen C, Lin CZ, Yu JR. Regulatory T Cells Promote Overexpression of Lgr5 on Gastric Cancer Cells via TGF-beta1 and Confer Poor Prognosis in Gastric Cancer. Frontiers in immunology. 10 (2019):1741.http://doi.org./10.3389/fimmu.2019.01741. doi:10.3389/fimmu.2019.01741.
[43] Hwang I, Kim JW, Ylaya K, Chung EJ, Kitano H, Perry C, Hanaoka J, Fukuoka J, Chung JY, Hewitt SM. Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients. Journal of translational medicine. 18 (1)(2020):443.http://doi.org./10.1186/s12967-020-02618-z. doi:10.1186/s12967-020-02618-z.
[44] Chikuma S. CTLA-4, an Essential Immune-Checkpoint for T-Cell Activation. Current topics in microbiology and immunology. 410 (2017):99-126.http://doi.org./10.1007/82_2017_61. doi:10.1007/82_2017_61.
[45] Pham K, Huynh D, Le L, Delitto D, Yang L, Huang J, Kang Y, Steinberg MB, Li J, Zhang L, Liu D, Tang MS, Liu C, Wang H. E-cigarette promotes breast carcinoma progression and lung metastasis: Macrophage-tumor cells crosstalk and the role of CCL5 and VCAM-1. Cancer Lett. 491 (2020):132-145.http://doi.org./10.1016/j.canlet.2020.08.010. doi:10.1016/j.canlet.2020.08.010.
[46] Litwin TR, Irvin SR, Chornock RL, Sahasrabuddhe VV, Stanley M, Wentzensen N. Infiltrating T-cell markers in cervical carcinogenesis: a systematic review and meta-analysis. Br J Cancer. 124 (4)(2021):831-841.http://doi.org./10.1038/s41416-020-01184-x. doi:10.1038/s41416-020-01184-x.
[47] Shimizu K, Nakata M, Hirami Y, Yukawa T, Maeda A, Tanemoto K. Tumor-infiltrating Foxp3+ regulatory T cells are correlated with cyclooxygenase-2 expression and are associated with recurrence in resected non-small cell lung cancer. J Thorac Oncol. 5 (5)(2010):585-590.http://doi.org./10.1097/JTO.0b013e3181d60fd7. doi:10.1097/JTO.0b013e3181d60fd7.
[48] Maj T, Wang W, Crespo J, Zhang H, Wang W, Wei S, Zhao L, Vatan L, Shao I, Szeliga W, Lyssiotis C, Liu JR, Kryczek I, Zou W. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nature immunology. 18 (12)(2017):1332-1341.http://doi.org./10.1038/ni.3868. doi:10.1038/ni.3868.
[49] Xu C, Sun S, Johnson T, Qi R, Zhang S, Zhang J, Yang K. The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity. Cell reports. 35 (11)(2021):109235.http://doi.org./10.1016/j.celrep.2021.109235. doi:10.1016/j.celrep.2021.109235.
[50] Lang X, Green MD, Wang W, Yu J, Choi JE, Jiang L, Liao P, Zhou J, Zhang Q, Dow A, Saripalli AL, Kryczek I, Wei S, Szeliga W, Vatan L, Stone EM, Georgiou G, Cieslik M, Wahl DR, Morgan MA, Chinnaiyan AM, Lawrence TS, Zou W. Radiotherapy and Immunotherapy Promote Tumoral Lipid Oxidation and Ferroptosis via Synergistic Repression of SLC7A11. Cancer discovery. 9 (12)(2019):1673-1685.http://doi.org./10.1158/2159-8290.Cd-19-0338. doi:10.1158/2159-8290.Cd-19-0338.
[51] Zhang X, Sui S, Wang L, Li H, Zhang L, Xu S, Zheng X. Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. J Cell Physiol. 235 (4)(2020):3425-3437.http://doi.org./10.1002/jcp.29232. doi:10.1002/jcp.29232.
[52] Lei G, Mao C, Yan Y, Zhuang L, Gan B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein & cell.(2021).http://doi.org./10.1007/s13238-021-00841-y. doi:10.1007/s13238-021-00841-y.
[53] Hu S, Sechi M, Singh PK, Dai L, McCann S, Sun D, Ljungman M, Neamati N. A Novel Redox Modulator Induces a GPX4-Mediated Cell Death That Is Dependent on Iron and Reactive Oxygen Species. Journal of medicinal chemistry. 63 (17)(2020):9838-9855.http://doi.org./10.1021/acs.jmedchem.0c01016. doi:10.1021/acs.jmedchem.0c01016.
[54] Hong T, Lei G, Chen X, Li H, Zhang X, Wu N, Zhao Y, Zhang Y, Wang J. PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox biology. 42 (2021):101928.http://doi.org./10.1016/j.redox.2021.101928. doi:10.1016/j.redox.2021.101928.
[55] Lei G, Zhang Y, Hong T, Zhang X, Liu X, Mao C, Yan Y, Koppula P, Cheng W, Sood AK, Liu J, Gan B. Ferroptosis as a mechanism to mediate p53 function in tumor radiosensitivity. Oncogene. 40 (20)(2021):3533-3547.http://doi.org./10.1038/s41388-021-01790-w. doi:10.1038/s41388-021-01790-w.