1 Lin, T. C., Krishnaswamy, G. & Chi, D. S. Incense smoke: clinical, structural and molecular effects on airway disease. Clin Mol Allergy6, 3, doi:10.1186/1476-7961-6-3 (2008).
2 Mannix, R. C., Nguyen, K. P., Tan, E. W., Ho, E. E. & Phalen, R. F. Physical characterization of incense aerosols. Sci Total Environ193, 149-158, doi:10.1016/s0048-9697(96)05343-0 (1996).
3 Zhou, R. et al. Higher cytotoxicity and genotoxicity of burning incense than cigarette. Environmental Chemistry Letters13, 465-471, doi:10.1007/s10311-015-0521-7 (2015).
4 Al-Rawas, O. A., Al-Maniri, A. A. & Al-Riyami, B. M. Home exposure to Arabian incense (bakhour) and asthma symptoms in children: a community survey in two regions in Oman. BMC Pulm Med9, 23, doi:10.1186/1471-2466-9-23 (2009).
5 Wang, I. J., Tsai, C. H., Chen, C. H., Tung, K. Y. & Lee, Y. L. Glutathione S-transferase, incense burning and asthma in children. Eur Respir J37, 1371-1377, doi:10.1183/09031936.00137210 (2011).
6 Norback, D. et al. Sources of indoor particulate matter (PM) and outdoor air pollution in China in relation to asthma, wheeze, rhinitis and eczema among pre-school children: Synergistic effects between antibiotics use and PM10 and second hand smoke. Environ Int125, 252-260, doi:10.1016/j.envint.2019.01.036 (2019).
7 Chen, Y. C., Ho, W. C. & Yu, Y. H. Adolescent lung function associated with incense burning and other environmental exposures at home. Indoor Air27, 746-752, doi:10.1111/ina.12355 (2017).
8 Tsukita, S., Tanaka, H. & Tamura, A. The Claudins: From Tight Junctions to Biological Systems. Trends Biochem Sci44, 141-152, doi:10.1016/j.tibs.2018.09.008 (2019).
9 Rezaee, F. & Georas, S. N. Breaking barriers. New insights into airway epithelial barrier function in health and disease. Am J Respir Cell Mol Biol50, 857-869, doi:10.1165/rcmb.2013-0541RT (2014).
10 Georas, S. N. & Rezaee, F. Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation. J Allergy Clin Immunol134, 509-520, doi:10.1016/j.jaci.2014.05.049 (2014).
11 Tatsuta, M. et al. Effects of cigarette smoke on barrier function and tight junction proteins in the bronchial epithelium: protective role of cathelicidin LL-37. Respir Res20, 251, doi:10.1186/s12931-019-1226-4 (2019).
12 Kibe, A. et al. Differential regulation by glucocorticoid of interleukin-13-induced eosinophilia, hyperresponsiveness, and goblet cell hyperplasia in mouse airways. Am J Respir Crit Care Med167, 50-56, doi:10.1164/rccm.2110084 (2003).
13 Fukuyama, S. et al. A zinc chelator TPEN attenuates airway hyperresponsiveness and airway inflammation in mice in vivo. Allergol Int60, 259-266, doi:10.2332/allergolint.09-OA-0167 (2011).
14 Barth, K. et al. P2X7R-dependent regulation of glycogen synthase kinase 3beta and claudin-18 in alveolar epithelial type I cells of mice lung. Histochem Cell Biol146, 757-768, doi:10.1007/s00418-016-1499-3 (2016).
15 Kelly, M. M. et al. Corticosteroid-induced gene expression in allergen-challenged asthmatic subjects taking inhaled budesonide. Br J Pharmacol165, 1737-1747, doi:10.1111/j.1476-5381.2011.01620.x (2012).
16 Sekiyama, A. et al. Glucocorticoids enhance airway epithelial barrier integrity. Int Immunopharmacol12, 350-357, doi:10.1016/j.intimp.2011.12.006 (2012).
17 Adam, L., Bouvier, M. & Jones, T. L. Nitric oxide modulates beta(2)-adrenergic receptor palmitoylation and signaling. J Biol Chem274, 26337-26343, doi:10.1074/jbc.274.37.26337 (1999).
18 Owen, S., Pearson, D., Suarez-Mendez, V., O'Driscoll, R. & Woodcock, A. Evidence of free-radical activity in asthma. N Engl J Med325, 586-587, doi:10.1056/nejm199108223250816 (1991).
19 Hulsmann, A. R. et al. Oxidative epithelial damage produces hyperresponsiveness of human peripheral airways. Am J Respir Crit Care Med149, 519-525, doi:10.1164/ajrccm.149.2.8306055 (1994).
20 Petecchia, L. et al. Bronchial airway epithelial cell damage following exposure to cigarette smoke includes disassembly of tight junction components mediated by the extracellular signal-regulated kinase 1/2 pathway. Chest135, 1502-1512, doi:10.1378/chest.08-1780 (2009).
21 Khan, E. M., Lanir, R., Danielson, A. R. & Goldkorn, T. Epidermal growth factor receptor exposed to cigarette smoke is aberrantly activated and undergoes perinuclear trafficking. FASEB J22, 910-917, doi:10.1096/fj.06-7729com (2008).
22 Heijink, I. H. et al. Budesonide and fluticasone propionate differentially affect the airway epithelial barrier. Respir Res17, 2, doi:10.1186/s12931-015-0318-z (2016).
23 Xiao, C. et al. Defective epithelial barrier function in asthma. J Allergy Clin Immunol128, 549-556 e541-512, doi:10.1016/j.jaci.2011.05.038 (2011).
24 Wawrzyniak, P. et al. Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients. J Allergy Clin Immunol139, 93-103, doi:10.1016/j.jaci.2016.03.050 (2017).
25 Zou, J. et al. Idiopathic pulmonary fibrosis is associated with tight junction protein alterations. Biochim Biophys Acta Biomembr1862, 183205, doi:10.1016/j.bbamem.2020.183205 (2020).