1. Dietschy JM, Turley SD. Cholesterol metabolism in the brain. Curr Opin Lipidol 12, 105-112 (2001).
2. Bjorkhem I, Meaney S. Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 24, 806-815 (2004).
3. Svennerholm L, Bostrom K, Jungbjer B, Olsson L. Membrane lipids of adult human brain: lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years. Journal of neurochemistry 63, 1802-1811 (1994).
4. Martin M, Dotti CG, Ledesma MD. Brain cholesterol in normal and pathological aging. Biochim Biophys Acta 1801, 934-944 (2010).
5. Pfrieger FW. Cholesterol homeostasis and function in neurons of the central nervous system. Cell Mol Life Sci 60, 1158-1171 (2003).
6. Cartocci V, Servadio M, Trezza V, Pallottini V. Can Cholesterol Metabolism Modulation Affect Brain Function and Behavior? J Cell Physiol 232, 281-286 (2017).
7. Martin MG, et al. Constitutive hippocampal cholesterol loss underlies poor cognition in old rodents. EMBO Mol Med 6, 902-917 (2014).
8. Linetti A, et al. Cholesterol reduction impairs exocytosis of synaptic vesicles. J Cell Sci 123, 595-605 (2010).
9. Liu Q, et al. Neuronal LRP1 knockout in adult mice leads to impaired brain lipid metabolism and progressive, age-dependent synapse loss and neurodegeneration. The Journal of neuroscience : the official journal of the Society for Neuroscience 30, 17068-17078 (2010).
10. Lange Y, Steck TL. Active membrane cholesterol as a physiological effector. Chem Phys Lipids 199, 74-93 (2016).
11. Murray DH, Tamm LK. Clustering of syntaxin-1A in model membranes is modulated by phosphatidylinositol 4,5-bisphosphate and cholesterol. Biochemistry 48, 4617-4625 (2009).
12. Sieber JJ, et al. Anatomy and dynamics of a supramolecular membrane protein cluster. Science 317, 1072-1076 (2007).
13. Zhang J, Xue R, Ong WY, Chen P. Roles of cholesterol in vesicle fusion and motion. Biophys J 97, 1371-1380 (2009).
14. Churchward MA, Rogasevskaia T, Hofgen J, Bau J, Coorssen JR. Cholesterol facilitates the native mechanism of Ca2+-triggered membrane fusion. J Cell Sci 118, 4833-4848 (2005).
15. Mailman T, Hariharan M, Karten B. Inhibition of neuronal cholesterol biosynthesis with lovastatin leads to impaired synaptic vesicle release even in the presence of lipoproteins or geranylgeraniol. Journal of neurochemistry 119, 1002-1015 (2011).
16. Teixeira G, Vieira LB, Gomez MV, Guatimosim C. Cholesterol as a key player in the balance of evoked and spontaneous glutamate release in rat brain cortical synaptosomes. Neurochemistry international 61, 1151-1159 (2012).
17. Mercer AJ, Szalewski RJ, Jackman SL, Van Hook MJ, Thoreson WB. Regulation of presynaptic strength by controlling Ca2+ channel mobility: effects of cholesterol depletion on release at the cone ribbon synapse. Journal of neurophysiology 107, 3468-3478 (2012).
18. Tarakanova OI, Petrov AM, Zefirov AL. The role of membrane cholesterol in neurotransmitter release from motor nerve terminals. Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections / translated from Russian 438, 138-140 (2011).
19. Jahn R, Scheller RH. SNAREs--engines for membrane fusion. Nat Rev Mol Cell Biol 7, 631-643 (2006).
20. Brunger AT, Choi UB, Lai Y, Leitz J, Zhou Q. Molecular Mechanisms of Fast Neurotransmitter Release. Annu Rev Biophys 47, 469-497 (2018).
21. Park Y, Ryu JK. Models of synaptotagmin-1 to trigger Ca(2+) -dependent vesicle fusion. FEBS Lett 592, 3480-3492 (2018).
22. Anderson RG. The caveolae membrane system. Annual review of biochemistry 67, 199-225 (1998).
23. Allender DW, Sodt AJ, Schick M. Cholesterol-Dependent Bending Energy Is Important in Cholesterol Distribution of the Plasma Membrane. Biophys J 116, 2356-2366 (2019).
24. Wang W, Yang L, Huang HW. Evidence of cholesterol accumulated in high curvature regions: implication to the curvature elastic energy for lipid mixtures. Biophys J 92, 2819-2830 (2007).
25. Yang ST, Kreutzberger AJB, Lee J, Kiessling V, Tamm LK. The role of cholesterol in membrane fusion. Chem Phys Lipids 199, 136-143 (2016).
26. Hubert M, Larsson E, Lundmark R. Keeping in touch with the membrane; protein- and lipid-mediated confinement of caveolae to the cell surface. Biochem Soc Trans 48, 155-163 (2020).
27. Moren B, et al. EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Mol Biol Cell 23, 1316-1329 (2012).
28. Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG. Caveolin, a protein component of caveolae membrane coats. Cell 68, 673-682 (1992).
29. Chamberlain LH, Burgoyne RD, Gould GW. SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis. Proceedings of the National Academy of Sciences of the United States of America 98, 5619-5624 (2001).
30. Lang T, et al. SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J 20, 2202-2213 (2001).
31. Park Y, et al. Controlling synaptotagmin activity by electrostatic screening. Nature structural & molecular biology 19, 991-997 (2012).
32. Park Y, et al. Synaptotagmin-1 binds to PIP(2)-containing membrane but not to SNAREs at physiological ionic strength. Nature structural & molecular biology 22, 815-823 (2015).
33. Birinci Y, Preobraschenski J, Ganzella M, Jahn R, Park Y. Isolation of large dense-core vesicles from bovine adrenal medulla for functional studies. Sci Rep 10, 7540 (2020).
34. Pobbati AV, Stein A, Fasshauer D. N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313, 673-676 (2006).
35. Herrick DZ, Sterbling S, Rasch KA, Hinderliter A, Cafiso DS. Position of synaptotagmin I at the membrane interface: cooperative interactions of tandem C2 domains. Biochemistry 45, 9668-9674 (2006).
36. Martens S, Kozlov MM, McMahon HT. How synaptotagmin promotes membrane fusion. Science 316, 1205-1208 (2007).
37. Hui E, Johnson CP, Yao J, Dunning FM, Chapman ER. Synaptotagmin-mediated bending of the target membrane is a critical step in Ca(2+)-regulated fusion. Cell 138, 709-721 (2009).
38. Kozlov MM, Chernomordik LV. The protein coat in membrane fusion: lessons from fission. Traffic 3, 256-267 (2002).
39. Ivankin A, Kuzmenko I, Gidalevitz D. Cholesterol mediates membrane curvature during fusion events. Phys Rev Lett 108, 238103 (2012).
40. Takamori S, et al. Molecular anatomy of a trafficking organelle. Cell 127, 831-846 (2006).
41. Chernomordik L, Kozlov MM, Zimmerberg J. Lipids in biological membrane fusion. J Membr Biol 146, 1-14 (1995).
42. Chen Z, Rand RP. The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophys J 73, 267-276 (1997).
43. Kreutzberger AJ, Kiessling V, Tamm LK. High cholesterol obviates a prolonged hemifusion intermediate in fast SNARE-mediated membrane fusion. Biophys J 109, 319-329 (2015).
44. Wu L, Courtney KC, Chapman ER. Cholesterol stabilizes recombinant exocytic fusion pores by altering membrane bending rigidity. Biophys J 120, 1367-1377 (2021).
45. Anantharam A, Axelrod D, Holz RW. Real-time imaging of plasma membrane deformations reveals pre-fusion membrane curvature changes and a role for dynamin in the regulation of fusion pore expansion. Journal of neurochemistry 122, 661-671 (2012).
46. Zhang Z, Jackson MB. Membrane bending energy and fusion pore kinetics in Ca(2+)-triggered exocytosis. Biophys J 98, 2524-2534 (2010).
47. Gruget C, et al. Synaptotagmin-1 membrane binding is driven by the C2B domain and assisted cooperatively by the C2A domain. Sci Rep 10, 18011 (2020).
48. Radecke J, et al. Morphofunctional changes at the active zone during synaptic vesicle exocytosis. bioRxiv, 2022.2003.2007.483217 (2022).
49. Prinz WA, Hinshaw JE. Membrane-bending proteins. Crit Rev Biochem Mol Biol 44, 278-291 (2009).
50. Ahmed S, Holt M, Riedel D, Jahn R. Small-scale isolation of synaptic vesicles from mammalian brain. Nature protocols 8, 998-1009 (2013).
51. Radhakrishnan A, Stein A, Jahn R, Fasshauer D. The Ca2+ affinity of synaptotagmin 1 is markedly increased by a specific interaction of its C2B domain with phosphatidylinositol 4,5-bisphosphate. J Biol Chem 284, 25749-25760 (2009).
52. Nalefski EA, Falke JJ. Use of fluorescence resonance energy transfer to monitor Ca(2+)-triggered membrane docking of C2 domains. Methods in molecular biology 172, 295-303 (2002).
53. Park YS, et al. Involvement of protein kinase C-epsilon in activity-dependent potentiation of large dense-core vesicle exocytosis in chromaffin cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 26, 8999-9005 (2006).
54. Park Y, et al. alpha-SNAP interferes with the zippering of the SNARE protein membrane fusion machinery. J Biol Chem 289, 16326-16335 (2014).