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Abstract
The kinetic studies on co-pyrolysis of sugarcane bagasse, and expanded polystyrene (waste thermocol)
was performed using a thermogravimetric analyzer to decipher the mechanism of co-pyrolysis at 5, 10,
15, and 20°C min−1 and to estimate the kinetic triplet and thermodynamics of the co-pyrolysis process.
The kinetic parameter values were estimated using Maples first order fitting process.. The co-pyrolysis
experiments was performed in a semi-batch reactor at 10°C min−1 in an inert nitrogen atmosphere, from
ambient temperatures upto 700°C. The outcome revealed that the optimum temperature and blending
ratio was 550°C and 1:3 blending ratio of (sugarcane bagasse:thermocol waste) for the optimum bio-oil
yield of 66.75 wt. %. The characterization of the co-pyrolysis bio-oil using FT-IR revealed the presence of
more amount of aromatic compounds and hydrocarbons. The increase in aromatic compounds was
mostly due to the addition of thermocol waste, which is an aromatic polymer.

1. Introduction
The increase in global warming and nearing the depletion of the fossil-based sources has shifted the
dependency from non-renewable to renewable bio-energy sources. As biomass is considered as a carbon-
neutral alternative, it is an extensively accessible source for the satiation of energy demand. Therefore,
the conversion of biomass using pyrolysis is considered a promising option, which involves certain steps
of mass transfer, heat transfer, and some chemical reactions during its course (Dupont et al., 2009).
Pyrolysis is a process for converting organics into energy-dense products that is both efficient and cost-
effective. In general, pyrolysis of biomass produces bio-oil, biochar, and non-condensable gases, among
which bio-oil is considered as a drop-in-fuel because its combustion releases less amount of SOx and NOx

(Banu et al., 2020). The bio-oil has some drawbacks such as high oxygen content (35-60 wt.%) which
reduces calorific value, increases corrosion problems, leads to instability, and so on. As a result, certain
upgradation procedures are used, such as co-pyrolysis of biomass with a hydrogen-rich precursor, which
is a simple, cost-effective, and safe process for producing high-quality fuels (Uzoejinwa et al., 2018)
(Abnisa et al., 2014). Plastic wastes are considered as one of the crucial hydrogen-rich sources and are
generated from two sources i.e., industries and consumers. However, the plastic wastes generated from
industrial sources are clean as compared to those generated by consumers. Plastics are, in general, of
two types, i.e., thermoplastic and thermosetting, wherein thermoplastics constitute about 80% of plastic
wastes and thermosetting plastics constitute 20% of plastic wastes. Moreover, thermoplastics are easily
recycled, and they include polyethylene, polypropylene, polystyrene, etc. Moreover, the plastic wastes
contain an abundance of hydrocarbons and possess a high calorific value and hence are considered as a
crucial source of alternate fuels (Phanisankar et al., 2020)(Singh et al., 2019). The thermal pyrolysis and
co-pyrolysis can be studied mathematically and validated by the use of kinetic models. Moreover, the
information on the thermal degradation and kinetics of the precursor used in a process can help in the
effective design of reactors and optimization of the process (Durange et al., 2013).. The biomass
residues are a potent source of precursor for the biorefinery sector. Also, among the biomass residues,
sugarcane bagasse residues are produced abundantly, and India is the second-largest producer of
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sugarcane bagasse in the world. Besides bagasse, some residues produced are used in boiler plants of
sugar mills, paper industries, production of value-added chemicals such as vanillin and syringaldehyde,
cement production, production of ethanol, etc.(Roy & Dias, 2017), (Cardoen et al., 2015), (Varshney et al.,
2019). Among the co-feeds, plastic wastes are one of the crucial waste generated primarily by consumers
and are the major part of municipal waste and are termed plastic solid waste. Due to high cost of
disposal and decreasing landfill space, plastic solid wastes are reclaimed and recycled using various
procedures such as reuse, chemical and mechanical recycling, and energy recovery. Among the plastic
solid wastes, thermocol waste is abundantly generated for it is used in our day to day activities in form of
cups, trays, cartons, food containers, and protective packaging, etc. However, most of the generated
thermocol wastes are subjected to landfilling, and energy recovery respectively by use of thermochemical
conversion methods like combustion, pyrolysis, etc (Lopez et al., 2017) (Uttaravalli et al., 2020). Many
researchers have explored the co-pyrolysis kinetics of biomass and polystyrene, including (epelioullar &
Pütün, 2013), (zsin & Pütün, 2017), (Alam et al., 2020), (Ng et al., 2018), (Kositkanawuth et al., 2017), (zsin
& Pütün, 2018), (H (Pradhan et al., 2020). However, kinetic, thermodynamic, and co-pyrolysis experiments
combining sugarcane bagasse (SB) and thermocol waste (TW) have not been documented in the
literature.

2. Materials And Methods
Shakthi Sugars in Dhenkanal, Odisha, provided sugarcane bagasse, while thermocol waste samples were
gathered from the National Institute of Technology in Rourkela, Odisha. Prior to analysis, bagasse
samples were sundried and oven-dried at 50°C for 24 hours, whereas TW samples were attrited with a
shredder and then oven-dried at 130°C to minimise TW volume. Both feedstocks were maintained in a
desiccator after oven drying. Figure. 1, and Figure. 2 depict pictures of bagasse and thermocol waste
samples, respectively.

2.2 Methods of Characterization
The feedstocks, i.e., SB, and TW were analyzed for physicochemical composition study adhering to
ASTM standards. The properties include proximate, ultimate analysis, Higher heating value, and
elemental analysis respectively. The (1:1) ratio of SB:TW was subjected to thermogravimetric analysis at
heating rates of 5, 10, 15, and 20°K min−1 using a thermogravimetric analyzer (SDT Q 600) in an inert
atmosphere of nitrogen. The chemical analysis of the liquid product obtained at optimum condition was
performed for FTIR analysis using a spectrophotometer (Najo Mull) in an ATR mode within 400–4000
cm−1. The GC-MS analysis of the co-pyrolysis bio-oil was conducted to determine the compounds present
in the bio-oil using a GC analyzer (7890B, AGILENT). The GC analyzer was equipped with a DB5 MS
detector, which determines the quantity of the compounds present in the form of area (%). The
compounds were identified in terms of area (%) after comparing them with the NIST library.

2.3 Experimental setup and procedure
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A stainless steel semi-batch reactor, an electrically heated furnace, a glass liebig condenser, and a
measuring cylinder were used to conduct the co-pyrolysis experiments. The reactor had a length of 16.5
cm, an internal diameter of 4.7 cm, and an external diameter of 5 cm, and it had two openings: one for
condensing gases and the other for allowing the inert gas to purge during pyrolysis. The furnace
consisted of a K-type thermocouple for temperature measurement inside the furnace, and a PID controller
to regulate the rate of heating. The furnace, condenser, and the nitrogen cylinder are all deployed in
performing the co-pyrolysis experiments, and is portrayed in Fig. 3.

3. Kinetic Study
The thermal degradation of biomass, in general proceeds through a series of complex reactions due to
the presence of many components present in the biomass which leads to the occurrence of series of
parallel, and consecutive reactions respectively (Gouda & Kumar, 2019). However, the thermal
degradation of any biomass is investigated after carrying out the thermogravimetric analysis of the
biomass used. The reaction rate for the degradation of any biomass can be written as

dx
dt = kf(x)n (1)

where ‘x’ stands for the fractional conversion of the precursor used and is written as, x = 
w0−wt

w0−wf
, where ‘

w0’ is the initial weight of the sample, ‘wt’ denotes the degradation after a certain time elapsed i.e., ‘t’,
and ‘wf’ denotes weight loss after the final degradation of the material has occurred. Furthermore, ‘k’ is

the rate constant, and ‘n’ stands for the order of the reaction. The arrhenius equation (1) can be written as

k = Aexp −
E

RT  (2)

where ‘A’ denotes the pre-exponential factor, ‘E’ stands for the activation energy, ‘R’ is the real gas

constant, and ‘T’ is the absolute temperature. Now we introduce the term ‘ β ’ wherein β = 
dT
dt in the above

equation, we get,

dx
dt ˟β = Aexp −

E
RT  \left(1-x\right) \left(3\right)

Now, by integrating both the sides, we get,a

\int \frac{dx}{1-x}=\frac{A}{\beta } \int {e}^{\frac{-E}{RT} dT} \left(4\right)

-ln \left(1-x\right) = \frac{{ART}^{2}}{\beta E {e}^{\frac{-E}{RT} dT}} - \frac{E}{RT}\left(5\right)

( )

( )
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Equation \left(5\right) in general, demonstrates a straight line having a negative slope. Now plotting the
graph taking ln \left(-\text{ln}\left(1-x\right)\right) as ordinate vs \frac{1}{T} as abscissa, we obtain a
straight line with slope m = \frac{E}{R}. Now the activation energy can be written as

\frac{-E}{R}= -Slope \left(R\right) \left(6\right)

The graph reveals the Y-intercept can be written as c = ln\left(\frac{{ART}^{2}}{\beta E}\right), however, the
pre-exponential factor is equation is generated by the use of equation \left(6\right),

A= \left(\frac{\beta E}{{RT}^{2}}\right) {e}^{c}\left(7\right)

3.1 Thermodynamics study
The thermodynamics study includes the change of parameters like Gibbs free energy (ΔG), enthalpy (ΔH),
and entropy (ΔS) respectively. However, the aforementioned parameters are determined by the use of the
theory of activated complex, which is expressed in the underneath equation as

A = \frac{e\chi {K}_{B{T}_{P}}}{h}\text{ Exp }\frac{\varDelta S}{R}\left(8\right)

Where ‘{e}_{\chi }’ posses value of 2.7183 and is named as neper number; ‘χ’ stands for transition factor
and posses a value of unity for first-order kinetic equations; ‘{K}_{B}’ is Boltzmann constant; ‘{T}_{P}’ is the
peak temperature obtained from the DTG curve, and ‘h’ is known as plancks constant. Now, the entropy
associated during the formation of the activation complex can be written as

ΔS= R ln \frac{Ah}{e\chi {K}_{B{T}_{P}}} \left(9\right)

The change in enthalpy \left(\varDelta \text{H}\right) can is determined by the use of the equation
\left(10\right)given below

\varDelta \text{H}=\text{E}-\text{R} Tp \left(10\right)

The ‘Tp’ value indicates the peak temperature which indicates the highest temperature at which the
highest decomposition occurs. The change in gibbs free energy \left({\Delta }\text{G}\right), is calculated
using the equation given below as equation\left(11\right)

ΔG = ΔH - Tp ΔS \left(11\right)

The above three equations govern the calculation of values of ΔS, \varDelta \text{H}, and ΔG respectively,
which are the thermodynamic parameters.

4. Results And Discussion

4.2 Thermogravimetric analysis (TGA)
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The thermogravimetric analysis and the differential thermogravimetry curves of SB: TW blend at 1:1 ratio
at different heating rates of 5, 10, 15, and 20°C min−1 are portrayed in Fig. 4 and Fig. 5 respectively. The
results revealed that the initial weight loss occurred from room temperature upto 160℃ resulting in some
minor weight loss, indicating removal of moisture and some extractives. The active pyrolysis zone was
found to take place between 190-510℃, wherein about 65-80% weight loss occurred indicating maximum
volatilization in the zone. Furthermore, from 520-590℃, wherein, complete carbonization of the blends
occur leaving behind the residue. However, the longer range of degradation is probably due to lignin
component of SB. The degradation paradigm for the components present in the blend was the same
irrespective of the rate of heating values, only the weight loss was more at higher heating rates. From the
TGA study, we can comprehend that with excel in the rate of heating values, the rate of degradation
becomes higher, wherein the increase in the rate of degradation may be attributed to a synergistic effect
coming into action due to the interaction between SB, and TW. Furthermore, a marginal shift towards a
higher temperature region was visible from the graphs. Pertinent results were reported by (Özsin & Pütün,
2018), wherein, the co-pyrolysis of lignocellulosic biomass and synthetic polymers was conducted.
Moreover, it was witnessed that with excel in the rate of heating values, the amount of residue generated
gets curtailed. The reason, however, could be attributed to more fast volatilization at higher heating rates.
The DTG peaks, in general, give the idea of the maximum degradation temperature, during degradation.
From our study for DTG, from Fig. 5, its visible that with excel in the rate of heating values the maximum
peak for degradation also shifts marginally towards higher temperature zone from 410℃ at 5℃ min−1 to
425℃ at 20℃ min−1. However, the shift in peaks towards higher temperature regions could be attributed
to resistance generated which thereby leads to an increase in mass loss rate at higher heating rates.
(Pradhan et al., 2020). The radical study of TGA and DTG results demonstrate the shift in paradigm for
different heating rates. Furthermore, by use of TGA and DTG results, we have estimated the kinetic, and
thermodynamic parameters in the upcoming sections using the non-isothermal maples method and
Gibbs free method respectively.

5. Kinetic And Thermodynamic Parameters Evaluation
The results of the method are portrayed in Fig. 6 with ln \left(-\text{ln}\left(1-x\right)\right) as ordinate vs
\frac{1}{T} as abscissa in Fig. 6. The kinetics evaluation of the co-pyrolysis of SB and TW blend at 1:1
ratio is evaluated using the maples method at different heating rates of 5, 10, 15, and 20℃ min−1 to
predict the values of the kinetic parameters at different heating rates. The kinetic parameters namely
apparent activation energy, pre-exponential factor are determined by the use of arrhenius equation in its
integral form. The results of the kinetic study are manifested in Table. 2, wherein the determined kinetic
parameters are summed up for different heating rates and presented. According to Table. 2, the R2 values
increased with excel in the rate of heating values indicating the proximity of higher heating rates towards
forming a straight line. Furthermore, the pre-exponential factor was found increasing with excel in the rate
of heating values showing an utmost higher value may be attributed to the higher intensity of collision
between the blends.
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The thermodynamic study involves calculation of parameters namely ΔS, ΔH, and ΔG based on the peak
temperature corresponding to maximum degradation from the DTG curves. The calculated
thermodynamic parameters are displayed in Table. 2. The results showed negative values for ΔS for all
the heating rates except for 20°C min−1. The lesser the ΔS values, the more developed is the complex
formed albeit more ordered structure is formed. The ΔH provides an idea about exothermic or
endothermic nature, along with signifying the formation of the activated complex. From our study the
least ΔH value was found at 5°C min−1, which indicates ease for formation of activated complex as
compared to other rates of heating values. The ΔG in general, gives the amount of energy consumed for
the formation of the activated complex. From our study least ΔG value was found for 5℃ min−1, which
implies it’s suitability in formation of activated complexs as compared to other rates of heating.

Table 2
Kinetic and thermodynamic parameters

SB: TW
blend
rates of
heating
(⁰C/min)

Tavg
(K)

R2

value
Ea (KJ
mol−1)

A (min−1) ΔS (J
K.mol−1)

ΔH (kJ
mol−1)

ΔG (kJ
mol−1)

5 689.89 0.9548 80.18 1.76 × 105 -157.85 74.507 182.352

10 681.00 0.9565 87.14 503203.08 -149.29 81.347 185.419

15 672.41 0.9542 96.94 2681326.66 -135.48 91.081 186.640

20 663.90 0.999 199.60 128847840518892.00 11.531 193.705 185.527

Average     115.96   -107.77 110.160 184.984

5. Co-pyrolysis Experiments
In the first set of experiments, we conducted co-pyrolysis at 1:1 blending ratio, and then by optimizing the
temperature, we conducted co-pyrolysis of SB, and TW by varying the blending ratios of SB: TW at 1:0,
1:1, 1:2, 1:3, 3:1, and 0:1. The experimentation is performed to establish the optimum condition for the
yield of co-pyrolysis bio-oil. The results of co-pyrolysis at 1:1 blending ratio of SB: PS is portrayed in
Fig. 8. The study established an optimum co-pyrolysis bio-oil yield of 52.61 wt.% at 550°C, after which the
bio-oil production indicated a decreasing trend. On the contrary, the biochar yield showed a consecutive
decreasing trend and non-condensable gases showed reduced values upto 550°C, and thereafter they
showed an increasing trend. However, the increase in gases was at the cost of a decrease in the bio-oil
yield. Moreover, the reaction time decreased over the whole range of studies with increasing
temperatures.

Based on the optimum temperature of 550℃ obtained from the first set of experiments, co-pyrolysis
experimentation by varying the blending ratio was conducted, and the results are manifested in Fig. 9.
The results showed an optimum bio-oil yield of 66.75 wt.% at a 1:3 blending ratio of SB: PS and 10°C
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min−1. On the contrary, the biochar and non-condensable gases showed a decreasing trend in yield with
the increase in TW content in the blends. Moreover, the reaction time showed an increasing trend with an
increase in TW content in the blend. The increase in co-pyrolysis bio-oil yield with an excel in TW content
is attributed to the synergistic effect coming into action.

6. Ftir Analysis Of The Co-pyrolysis Bio-oil
The FTIR spectrum of the co-pyrolysis bio-oil obtained at a 1:3 blending ratio of SB: TW is displayed in
Fig. 10. The results presented the presence of several functional groups indicated by different
transmittance peaks in the spectrum. There are several peaks observed at 3037 cm−1, 1504 cm−1, 905
cm−1, and 692 cm−1, demonstrating the presence of aromatic compounds. The abundance in aromatic
compounds is due to the incorporation of TW in the blend with SB, which resulted in a synergistic effect
between the precursors and thereby increased the aromatic compounds in the bio-oil. However, the
upsurge in aromatic compounds in the co-pyrolysis bio-oil is reported by using polystyrene as a co-feed
by (Abnisa et al., 2013), (Reshad et al., 2019).

7. Conclusion
The kinetic, thermodynamics, and the co-pyrolysis investigation of SB and TW revealed several key
findings. The characterization of both the feedstocks revelaed presence of more volatile matter content,
and least ash content in TW, as compared to SB. The TGA analysis of SB:TW blend at 1:1 ratio revealed
that, with excel in heating rates, the degradation shifts towards higher temperature regions. The kinetic
study showed that the apparent activation energy (Ea) increased along with pre-exponential factor (A),
with increase in rate of heating values. The thermodynamics study showed that the ΔS, ΔH, and ΔG
values increased with increase in rate of heating values.The kinetic and thermodynamic parameters
study will help generate an idea on effective reactor design. The co-pyrolysis studies revealed 1:3 (SB:
TW) as the optimum blend ratio and 66.75 wt.% as the optimum liquid product yield at 550°C. The
characterization using FT-IR revealed the presence of several aromatic compounds.
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Figures

Figure 1

Sugarcane bagasse (SB)

Figure 2

Termocol Waste (TW)
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Figure 3

Schematic presentation of the co-pyrolysis experiment setup
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Figure 4

TGA analysis of SB: TW (1:1) blend at 5, 10, 15, and 20℃ min-1

Figure 5

DTG curves of 1:1 co-pyrolysis blend of SB: TW blend at 5, 10, 15, and 20℃ min-1

Figure 6

Non-isothermal plots for kinetic study of SB:TW blend at different heating rates
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Figure 7

This image is not available with this version.

Figure 8

Effect of temperature on yields of various products and reaction time during co-pyrolysis

Figure 9

Effect of blending ratio on yields of various products and reaction time during co-pyrolysis
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Figure 10

FTIR spectrum of the co-pyrolysis bio-oil obtained at 1:3 blending ratio of SB: TW


