1.Green, N. M. Avidin. Adv. Protein Chem. 29, 85-133 (1975).
2.Chaiet, L. & Wolf, F. J. The properties of streptavidin, a biotin-binding protein produced by streptomycetes. Arch. Biochem. Biophys. 106, 1–5 (1964).
3.Pähler, A., Hendrickson, W. A., Kolks, M. A., Argaraña, C. E. & Cantor, C. R. Characterization and Crystallization of Core Streptavidin. J. Biol. Chem.262, 13933-13937
4.Sano, T., Pandori, M. W., Chen, X., Smith, C. L. & Cantor, C. R. Recombinant core streptavidins. A minimum-sized core streptavidin has enhanced structural stability and higher accessibility to biotinylated macromolecules. J. Biol. Chem. 270(47), 28204-28209 (1995).
5.Diamandis, E.P. &Christopoulos, T.K. The biotin-(strept)avidin system: principles and applications in biotechnology. Clin. Chem.37, 625–636 (1991).
6.Wilchek, M. & Bayer, E. A. Avidin-biotin mediated immunoassays: Overview. Methods in Enzymology.184, 467-469 (1990).
7.Ternynck, T. &Avrameas, S. Avidin-biotin system in enzyme immunoassays. Methods in Enzymology. 184, 469-481 (1990).
8.Colon, P. J. & Greene, D. N. Biotin Interference in Clinical Immunoassays. J. Appl. Lab. Med.2(6), 941-951 (2018).
9.Reznik, G. O., Vajda, S., Sano, T. & Cantor, C. R. A streptavidinmutant with altered ligand-binding specificity. Proc. Natl. Acad. Sci.95, 13525−13530 (1998).
10.Kawato, T.et al. Structure-based design of a streptavidin mutant specific for an artificial biotin analogue. J. Biochem., 157(6), 467-475 (2015).
11.Kawato, T. et al, A. Structure-based design and synthesis of a bivalent iminobiotin analog showing strong affinity toward a low immunogenic streptavidin mutant. Biosci. Biotechnol. Biochem.79(4), 640-642 (2015).
12.Xu, L., Wang, X., Wang, W. et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature601, 366–373 (2022).
13.Milton, R. C., Milton, S. C. & Kent, S. B. Total Chemical Synthesis of a D-Enzyme: The Enantiomers of HIV-1 Protease Show Reciprocal Chiral Substrate Specificity. Science256, 1445-1448 (1992).
14.Weinstock, M. T., Jacobsen, M. T. & Kay, M. S. Synthesis and folding of a mirror-image enzyme reveals ambidextrous chaperone activity. Proc. Natl. Acad. Sci. U. S. A.111, 11679-11684 (2014).
15.Weidmann, J., Schnölzer, M., Dawson, P. E. &Hoheisel, J. D. Synthesis of an Enzymatically Active Mirror-Image DNA-Ligase Made of D-Amino Acids. Cell Chem. Biol.26(5), 645-651 (2019).
16.Uppalapati, M. et al. A Potent D-Protein Antagonist of VEGF-A is Nonimmunogenic, Metabolically Stable, and Longer-Circulating in Vivo. ACS Chem. Biol.11, 1058-1065 (2016).
17.Schreiber, G. & Keating, A. E. Protein binding specificity versus promiscuity. Curr. Opin. Struct. Biol.21, 50–61 (2011).
18.Lavielle, S., Bory, S., Moreau, B., Luche, M. J. &Marquet, A. A total synthesis of biotin based on the stereoselective alkylation of sulfoxides.J. Am. Chem. Soc.100, 1558-1563 (1978).
19.Chua, L. H., Tan, S. C. & Liew, M. W. O. Process intensification of core streptavidin production through high-cell-density cultivation of recombinant E. coli and a temperature-based refolding method. J. Biotechnol.276-277, 34-41 (2018).
20.Green, N. M. & Melamed, M. D. Optical rotatory dispersion, circular dichroism and far-ultraviolet spectra of avidin and streptavidin. Biochem J. 100, 614-621 (1966).
21.Manning, M. C. & Woody, R. W. Theoretical study of the contribution of aromatic side chains to the circular dichroism of basic bovine pancreatic trypsin inhibitor. Biochemistry, 28, 8609-8613 (1989).