[1] A. S. Ahmad et al., “A review on applications of ANN and SVM for building electrical energy consumption forecasting,” Renew. Sustain. Energy Rev., vol. 33, pp. 102–109, 2014, doi: 10.1016/j.rser.2014.01.069.
[2] K. Amasyali and N. M. El-Gohary, “A review of data-driven building energy consumption prediction studies,” Renew. Sustain. Energy Rev., vol. 81, no. March 2017, pp. 1192–1205, 2018, doi: 10.1016/j.rser.2017.04.095.
[3] Bosseboeuf et al., “Energy Efficiency Trends and Policies in the Household and Tertiary Sectors : An Analysis Based on the ODYSSEE and MURE Databases,” no. June, pp. 1–97, 2015, doi: DOI 10.1089/pho.2012.3369.
[4] X. Cao, X. Dai, and J. Liu, “Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade,” Energy Build., vol. 128, pp. 198–213, 2016, doi: 10.1016/j.enbuild.2016.06.089.
[5] O. Kaynakli, “A review of the economical and optimum thermal insulation thickness for building applications,” Renew. Sustain. Energy Rev., vol. 16, no. 1, pp. 415–425, 2012, doi: 10.1016/j.rser.2011.08.006.
[6] L. Yan, B. Kasal, and L. Huang, “A review of recent research on the use of cellulosic fi bres , their fi bre fabric reinforced cementitious , geo-polymer and polymer composites in civil engineering,” Compos. Part B, vol. 92, pp. 94–132, 2016, doi: 10.1016/j.compositesb.2016.02.002.
[7] F. Asdrubali, F. D’Alessandro, and S. Schiavoni, “A review of unconventional sustainable building insulation materials,” Sustain. Mater. Technol., vol. 4, no. 2015, pp. 1–17, 2015, doi: 10.1016/j.susmat.2015.05.002.
[8] F. Collet, M. Bart, L. Serres, and J. Miriel, “Porous structure and water vapour sorption of hemp-based materials,” vol. 22, pp. 1271–1280, 2008, doi: 10.1016/j.conbuildmat.2007.01.018.
[9] M. Palumbo, A. M. Lacasta, N. Holcroft, A. Shea, and P. Walker, “Determination of hygrothermal parameters of experimental and commercial bio-based insulation materials,” Constr. Build. Mater., vol. 124, pp. 269–275, 2016, doi: 10.1016/j.conbuildmat.2016.07.106.
[10] P. Strandberg-de Bruijn and P. Johansson, “Moisture transport properties of lime-hemp concrete determined over the complete moisture range,” Biosyst. Eng., vol. 122, pp. 31–41, 2014, doi: 10.1016/j.biosystemseng.2014.03.001.
[11] S. Pretot, F. Collet, and C. Garnier, “Life cycle assessment of a hemp concrete wall: Impact of thickness and coating,” Build. Environ., vol. 72, pp. 223–231, 2014, doi: 10.1016/j.buildenv.2013.11.010.
[12] F. Pittau, F. Krause, G. Lumia, and G. Habert, “Fast-growing bio-based materials as an opportunity for storing carbon in exterior walls,” Build. Environ., vol. 129, no. August 2017, pp. 117–129, 2018, doi: 10.1016/j.buildenv.2017.12.006.
[13] P. M. Boutin, C. Flamin, S. Quinton, and G. Gosse, Analyse du cycle de vie d’un mur en béton de chanvre banché sur ossature bois. 2005.
[14] K. Ip and A. Miller, “Life cycle greenhouse gas emissions of hemp-lime wall constructions in the UK,” Resour. Conserv. Recycl., vol. 69, pp. 1–9, 2012, doi: 10.1016/j.resconrec.2012.09.001.
[15] C. Niyigena et al., “Variability of the mechanical properties of hemp concrete,” Mater. Today Commun., vol. 7, pp. 122–133, 2016, doi: 10.1016/j.mtcomm.2016.03.003.
[16] F. Collet and S. Pretot, “Thermal conductivity of hemp concretes: Variation with formulation, density and water content,” Constr. Build. Mater., vol. 65, pp. 612–619, 2014, doi: 10.1016/j.conbuildmat.2014.05.039.
[17] Y. Diquélou, E. Gourlay, L. Arnaud, and B. Kurek, “Influence of binder characteristics on the setting and hardening of hemp lightweight concrete,” Constr. Build. Mater., vol. 112, pp. 506–517, 2016, doi: 10.1016/j.conbuildmat.2016.02.138.
[18] V. Nozahic and S. Amziane, “Influence of sunflower aggregates surface treatments on physical properties and adhesion with a mineral binder,” Compos. Part A Appl. Sci. Manuf., vol. 43, no. 11, pp. 1837–1849, 2012, doi: 10.1016/j.compositesa.2012.07.011.
[19] M. Chabannes, V. Nozahic, and S. Amziane, “Design and multi-physical properties of a new insulating concrete using sunflower stem aggregates and eco-friendly binders,” Mater. Struct. Constr., vol. 48, no. 6, pp. 1815–1829, 2015, doi: 10.1617/s11527-014-0276-9.
[20] M. Rahim et al., “Characterization of flax lime and hemp lime concretes: Hygric properties and moisture buffer capacity,” Energy Build., vol. 88, pp. 91–99, 2015, doi: 10.1016/j.enbuild.2014.11.043.
[21] M. Chabannes, E. Garcia-diaz, L. Clerc, and J. Bénézet, “Effect of curing conditions and Ca ( OH ) 2 -treated aggregates on mechanical properties of rice husk and hemp concretes using a lime-based binder,” vol. 102, pp. 821–833, 2016, doi: 10.1016/j.conbuildmat.2015.10.206.
[22] M. Chabannes, E. Garcia-diaz, L. Clerc, and J. Bénézet, “Studying the hardening and mechanical performances of rice husk and hemp-based building materials cured under natural and accelerated carbonation,” Constr. Build. Mater., vol. 94, pp. 105–115, 2015, doi: 10.1016/j.conbuildmat.2015.06.032.
[23] M. Chabannes, J. Bénézet, L. Clerc, and E. Garcia-diaz, “Use of raw rice husk as natural aggregate in a lightweight insulating concrete : An innovative application,” Constr. Build. Mater., vol. 70, pp. 428–438, 2014, doi: 10.1016/j.conbuildmat.2014.07.025.
[24] V. Nozahic, S. Amziane, G. Torrent, K. Saïdi, and H. De Baynast, “Design of green concrete made of plant-derived aggregates and a pumice-lime binder,” Cem. Concr. Compos., vol. 34, no. 2, pp. 231–241, 2012, doi: 10.1016/j.cemconcomp.2011.09.002.
[25] M. Rahim, O. Douzane, A. D. Tran Le, G. Promis, and T. Langlet, “Characterization and comparison of hygric properties of rape straw concrete and hemp concrete,” Constr. Build. Mater., vol. 102, pp. 679–687, 2016, doi: 10.1016/j.conbuildmat.2015.11.021.
[26] N. Belayachi, M. Bouasker, D. Hoxha, and M. Al-Mukhtar, “Thermo-mechanical behaviour of an innovant straw lime composite for thermal insulation applications,” Appl. Mech. Mater., vol. 390, no. youssef, pp. 542–546, 2013, doi: 10.4028/www.scientific.net/AMM.390.542.
[27] M. Labat, C. Magniont, N. Oudhof, and J. E. Aubert, “From the experimental characterization of the hygrothermal properties of straw-clay mixtures to the numerical assessment of their buffering potential,” Build. Environ., vol. 97, pp. 69–81, 2016, doi: 10.1016/j.buildenv.2015.12.004.
[28] B. Belhadj, M. Bederina, N. Montrelay, J. Houessou, and M. Quéneudec, “Effect of substitution of wood shavings by barley straws on the physico-mechanical properties of lightweight sand concrete,” Constr. Build. Mater., vol. 66, pp. 247–258, 2014, doi: 10.1016/j.conbuildmat.2014.05.090.
[29] B. Belhadj, M. Bederina, Z. Makhloufi, R. M. Dheilly, N. Montrelay, and M. Quéneudéc, “Contribution to the development of a sand concrete lightened by the addition of barley straws,” Constr. Build. Mater., vol. 113, pp. 513–522, 2016, doi: 10.1016/j.conbuildmat.2016.03.067.
[30] X. Chen, X. Shi, J. Zhou, Z. Yu, and P. Huang, “Determination of mechanical, flowability, and microstructural properties of cemented tailings backfill containing rice straw,” Constr. Build. Mater., vol. 246, p. 118520, 2020, doi: 10.1016/j.conbuildmat.2020.118520.
[31] J. Roselló, L. Soriano, M. P. Santamarina, J. L. Akasaki, J. Monzó, and J. Payá, “Rice straw ashA potential pozzolanic supplementary material for cementing systems,” Ind. Crops Prod., vol. 103, pp. 39–50, 2017, doi: 10.1016/j.indcrop.2017.03.030.
[32] B. Gadde, S. Bonnet, C. Menke, and S. Garivait, “Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines,” Environ. Pollut., vol. 157, no. 5, pp. 1554–1558, 2009, doi: 10.1016/j.envpol.2009.01.004.
[33] R. R. Romasanta et al., “How does burning of rice straw affect CH4 and N2O emissions? A comparative experiment of different on-field straw management practices,” Agric. Ecosyst. Environ., vol. 239, pp. 143–153, 2017, doi: 10.1016/j.agee.2016.12.042.
[34] A. Singh and P. Basak, “Economic and environmental evaluation of rice straw processing technologies for energy generation: A case study of Punjab, India,” J. Clean. Prod., vol. 212, pp. 343–352, 2019, doi: 10.1016/j.jclepro.2018.12.033.
[35] J. Page, M. Sonebi, and S. Amziane, “Design and multi-physical properties of a new hybrid hemp-flax composite material,” Constr. Build. Mater., vol. 139, pp. 502–512, 2017, doi: 10.1016/j.conbuildmat.2016.12.037.
[36] M. Fernández Bertos, S. J. R. Simons, C. D. Hills, and P. J. Carey, “A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2,” J. Hazard. Mater., vol. 112, no. 3, pp. 193–205, 2004, doi: 10.1016/j.jhazmat.2004.04.019.
[37] B. Mazian, A. Bergeret, J. C. Benezet, and L. Malhautier, “Influence of field retting duration on the biochemical, microstructural, thermal and mechanical properties of hemp fibres harvested at the beginning of flowering,” Ind. Crops Prod., vol. 116, no. January, pp. 170–181, 2018, doi: 10.1016/j.indcrop.2018.02.062.
[38] T. Phuong, T. Tran, J. Bénézet, and A. Bergeret, “Rice and Einkorn wheat husks reinforced poly ( lactic acid ) ( PLA ) biocomposites : Effects of alkaline and silane surface treatments of husks,” Ind. Crop. Prod., vol. 58, pp. 111–124, 2014, doi: 10.1016/j.indcrop.2014.04.012.
[39] J. Acera Fernández et al., “Role of flax cell wall components on the microstructure and transverse mechanical behaviour of flax fabrics reinforced epoxy biocomposites,” Ind. Crops Prod., vol. 85, pp. 93–108, 2016, doi: 10.1016/j.indcrop.2016.02.047.
[40] S. Amziane, F. Collet, M. Lawrence, C. Magniont, V. Picandet, and M. Sonebi, “Recommendation of the RILEM TC 236-BBM: characterisation testing of hemp shiv to determine the initial water content, water absorption, dry density, particle size distribution and thermal conductivity,” Mater. Struct. Constr., vol. 50, no. 3, pp. 1–11, 2017, doi: 10.1617/s11527-017-1029-3.
[41] M. Viel, F. Collet, and C. Lanos, “Development and characterization of thermal insulation materials from renewable resources,” Constr. Build. Mater., vol. 214, no. x, pp. 685–697, 2019, doi: 10.1016/j.conbuildmat.2019.04.139.
[42] M. Chabannes, E. Garcia-Diaz, J. Bénézet, and L. Clerc, Lime Hemp and Rice Husk- Based Concretes for Building Envelopes. SPRINGER BRIEFS IN MOLECULAR SCIENCE, 2018.
[43] C. Rode, Moisture Buffering of Building Materials Department of Civil Engineering Technical University of Denmark. 2005.
[44] B. D. Park, S. Gon Wi, K. Ho Lee, A. P. Singh, T. H. Yoon, and Y. Soo Kim, “Characterization of anatomical features and silica distribution in rice husk using microscopic and micro-analytical techniques,” Biomass and Bioenergy, vol. 25, no. 3, pp. 319–327, 2003, doi: 10.1016/S0961-9534(03)00014-X.
[45] S. Jin and H. Chen, “Structural properties and enzymatic hydrolysis of rice straw,” Process Biochem., vol. 41, no. 6, pp. 1261–1264, 2006, doi: 10.1016/j.procbio.2005.12.022.
[46] M. Chabannes, F. Becquart, E. Garcia-Diaz, N. E. Abriak, and L. Clerc, “Experimental investigation of the shear behaviour of hemp and rice husk-based concretes using triaxial compression,” Constr. Build. Mater., vol. 143, pp. 621–632, 2017, doi: 10.1016/j.conbuildmat.2017.03.148.
[47] F. Kargbo, J. Xing, and Y. Zhang, “Property analysis and pretreatment of rice straw for energy use in grain drying: A review,” Agric. Biol. J. North Am., vol. 1, no. 3, pp. 195–200, 2010, doi: 10.5251/abjna.2010.1.3.195.200.
[48] X. Chen et al., “Enhancing methane production from rice straw by extrusion pretreatment,” Appl. Energy, vol. 122, pp. 34–41, 2014, doi: 10.1016/j.apenergy.2014.01.076.
[49] M. Bouasker, N. Belayachi, D. Hoxha, and M. Al-mukhtar, “Physical Characterization of Natural Straw Fibers as Aggregates for Construction Materials Applications,” pp. 3034–3048, 2014, doi: 10.3390/ma7043034.
[50] Y. Brouard, N. Belayachi, D. Hoxha, N. Ranganathan, and S. Méo, “Mechanical and hygrothermal behavior of clay – Sunflower (Helianthus annuus) and rape straw (Brassica napus) plaster bio-composites for building insulation,” Constr. Build. Mater., vol. 161, pp. 196–207, 2018, doi: 10.1016/j.conbuildmat.2017.11.140.
[51] T. Nguyen et al., “Influence of compactness and hemp hurd characteristics on the mechanical properties of lime and hemp concrete Influence of compactness and hemp hurd characteristics on the mechanical properties of lime and hemp concrete,” vol. 8189, 2011, doi: 10.3166/EJECE.13.1039-1050.
[52] A. T. Le, A. Gacoin, A. Li, T. H. Mai, and N. El Wakil, “Influence of various starch/hemp mixtures on mechanical and acoustical behavior of starch-hemp composite materials,” Compos. Part B Eng., vol. 75, pp. 201–211, 2015, doi: 10.1016/j.compositesb.2015.01.038.
[53] R. Walker, S. Pavia, and R. Mitchell, “Mechanical properties and durability of hemp-lime concretes,” Constr. Build. Mater., vol. 61, pp. 340–348, 2014, doi: 10.1016/j.conbuildmat.2014.02.065.
[54] N. Belayachi, D. Hoxha, and M. Slaimia, “Impact of accelerated climatic aging on the behavior of gypsum plaster-straw material for building thermal insulation,” Constr. Build. Mater., vol. 125, pp. 912–918, 2016, doi: 10.1016/j.conbuildmat.2016.08.120.
[55] M. Maraldi, L. Molari, N. Regazzi, and G. Molari, “Method for the characterisation of the mechanical behaviour of straw bales,” Biosyst. Eng., vol. 151, pp. 141–151, 2016, doi: 10.1016/j.biosystemseng.2016.09.003.
[56] M. Maraldi, L. Molari, N. Regazzi, and G. Molari, “Analysis of the parameters affecting the mechanical behaviour of straw bales under compression,” Biosyst. Eng., vol. 160, pp. 179–193, 2017, doi: 10.1016/j.biosystemseng.2017.06.007.
[57] T. Lecompte and A. Le Duigou, “Mechanics of straw bales for building applications,” J. Build. Eng., vol. 9, no. June 2016, pp. 84–90, 2017, doi: 10.1016/j.jobe.2016.12.001.
[58] R. Muthuraj, C. Lacoste, P. Lacroix, and A. Bergeret, “Sustainable thermal insulation biocomposites from rice husk, wheat husk, wood fibers and textile waste fibers: Elaboration and performances evaluation,” Ind. Crops Prod., vol. 135, no. April, pp. 238–245, 2019, doi: 10.1016/j.indcrop.2019.04.053.
[59] N. Mati-Baouche et al., “Mechanical, thermal and acoustical characterizations of an insulating bio-based composite made from sunflower stalks particles and chitosan,” Ind. Crops Prod., vol. 58, pp. 244–250, 2014, doi: 10.1016/j.indcrop.2014.04.022.
[60] F. Collet and S. Pretot, “Experimental investigation of moisture buffering capacity of sprayed hemp concrete,” Constr. Build. Mater., vol. 36, pp. 58–65, 2012, doi: 10.1016/j.conbuildmat.2012.04.139.
[61] F. Benmahiddine, R. Cherif, F. Bennai, R. Belarbi, A. Tahakourt, and K. Abahri, “Effect of flax shives content and size on the hygrothermal and mechanical properties of flax concrete,” Constr. Build. Mater., vol. 262, p. 120077, 2020, doi: 10.1016/j.conbuildmat.2020.120077.