1 Kim, Y., Johnson, R. C. & Hupp, J. T. Gold Nanoparticle-Based Sensing of “Spectroscopically Silent” Heavy Metal Ions. Nano Lett1, 165-167, doi:10.1021/nl0100116 (2001).
2 Yang, P.-H., Sun, X., Chiu, J.-F., Sun, H. & He, Q.-Y. Transferrin-Mediated Gold Nanoparticle Cellular Uptake. Biocon Chem16, 494-496, doi:10.1021/bc049775d (2005).
3 Tkachenko, A. G. et al. Multifunctional Gold Nanoparticle−Peptide Complexes for Nuclear Targeting. J Am Chem Soc125, 4700-4701, doi:10.1021/ja0296935 (2003).
4 Raschke, G. et al. Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering. Nano Lett3, 935-938, doi:10.1021/nl034223+ (2003).
5 Sandhu, K. K., McIntosh, C. M., Simard, J. M., Smith, S. W. & Rotello, V. M. Gold Nanoparticle-Mediated Transfection of Mammalian Cells. Biocon Chem13, 3-6, doi:10.1021/bc015545c (2002).
6 Alarcon, E. I. et al. The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials33, 4947-4956, doi:https://doi.org/10.1016/j.biomaterials.2012.03.033 (2012).
7 Alarcon, E. I. et al. Safety and efficacy of composite collagen–silver nanoparticle hydrogels as tissue engineering scaffolds. Nanoscale7, 18789-18798, doi:10.1039/C5NR03826J (2015).
8 Hosoyama, K. et al. Multi-functional thermo-crosslinkable collagen-metal nanoparticle composites for tissue regeneration: nanosilver vs. nanogold. RSC Advances7, 47704-47708, doi:10.1039/C7RA08960K (2017).
9 Lazurko, C., Ahumada, M., Valenzuela-Henríquez, F. & Alarcon, E. I. NANoPoLC algorithm for correcting nanoparticle concentration by sample polydispersity. Nanoscale10, 3166-3170, doi:10.1039/C7NR08672E (2018).
10 Zhao, P., Li, N. & Astruc, D. State of the art in gold nanoparticle synthesis. Coordination Chem Rev257, 638-665, doi:https://doi.org/10.1016/j.ccr.2012.09.002 (2013).
11 McGilvray, K. L., Decan, M. R., Wang, D. & Scaiano, J. C. Facile Photochemical Synthesis of Unprotected Aqueous Gold Nanoparticles. J Am Chem Soc128, 15980-15981, doi:10.1021/ja066522h (2006).
12 Stamplecoskie, K. G. & Scaiano, J. C. Light Emitting Diode Irradiation Can Control the Morphology and Optical Properties of Silver Nanoparticles. J Am Chem Soc132, 1825-1827, doi:10.1021/ja910010b (2010).
13 Scaiano, J. C., Stamplecoskie, K. G. & Hallett-Tapley, G. L. Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer. Chem Comm48, 4798-4808, doi:10.1039/C2CC30615H (2012).
14 Britton, J. & Raston, C. L. Multi-step continuous-flow synthesis. Chem Soc Rev46, 1250-1271, doi:10.1039/C6CS00830E (2017).
15 du Toit, H., Macdonald, T. J., Huang, H., Parkin, I. P. & Gavriilidis, A. Continuous flow synthesis of citrate capped gold nanoparticles using UV induced nucleation. RSC Advances7, 9632-9638, doi:10.1039/C6RA27173A (2017).
16 Bianchi, P., Petit, G. & Monbaliu, J.-C. M. Scalable and robust photochemical flow process towards small spherical gold nanoparticles. Reaction Chem Eng5, 1224-1236, doi:10.1039/D0RE00092B (2020).
17 Suchomel, P. et al. Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity. Sci Rep8, 4589, doi:10.1038/s41598-018-22976-5 (2018).
18 Zhao, Y., Wang, Z., Zhang, W. & Jiang, X. Adsorbed Tween 80 is unique in its ability to improve the stability of gold nanoparticles in solutions of biomolecules. Nanoscale2, 2114-2119, doi:10.1039/C0NR00309C (2010).
19 Goel, K. et al. Nanoparticle Concentration vs Surface Area in the Interaction of Thiol-Containing Molecules: Toward a Rational Nanoarchitectural Design of Hybrid Materials. ACS Appl Mat Interfaces 11, 17697-17705, doi:10.1021/acsami.9b03942 (2019).
20 Ernest, V., Chandrasekaran, N. & Mukherjee, A. in Encyclopedia of Metalloproteins (eds Robert H. Kretsinger, Vladimir N. Uversky, & Eugene A. Permyakov) 701-706 (Springer New York, 2013).
21 Majeed, S. et al. Bioengineered silver nanoparticles capped with bovine serum albumin and its anticancer and apoptotic activity against breast, bone and intestinal colon cancer cell lines. Mater Sci Eng C Mater Biol Appl102, 254-263, doi:10.1016/j.msec.2019.04.041 (2019).
22 Ritz, S. et al. Protein Corona of Nanoparticles: Distinct Proteins Regulate the Cellular Uptake. Biomacromolecules16, 1311-1321, doi:10.1021/acs.biomac.5b00108 (2015).
23 Bogdan, A. R. & Dombrowski, A. W. Emerging Trends in Flow Chemistry and Applications to the Pharmaceutical Industry. J Med Chem62, 6422-6468, doi:10.1021/acs.jmedchem.8b01760 (2019).
24 Knowles, J. P., Elliott, L. D. & Booker-Milburn, K. I. Flow photochemistry: Old light through new windows. Beilstein J Org Chem8, 2025-2052, doi:10.3762/bjoc.8.229 (2012).
25 Szymczyk, K., Zdziennicka, A. & Jańczuk, B. Effect of Polysorbates on Solids Wettability and Their Adsorption Properties. Coll Inter2, doi:10.3390/colloids2030026 (2018).
26 Hormozi-Nezhad, M. R., Karami, P. & Robatjazi, H. A simple shape-controlled synthesis of gold nanoparticles using nonionic surfactants. RSC Advances3, 7726-7732, doi:10.1039/C3RA40280K (2013).
27 Wang, B., Chen, S., Nie, J. & Zhu, X. Facile method for preparation of superfine copper nanoparticles with high concentration of copper chloride through photoreduction. RSC Advances4, 27381-27388, doi:10.1039/C4RA02870H (2014).
28 Woehrle, G. H., Hutchison, J. E., Özkar, S. & FINKE, R. G. Analysis of nanoparticle transmission electron microscopy data using a public-domain image-processing program, image. Turkish J Chem30, 1-13 (2006).