Affordable therapeutics are vitally needed for humans worldwide. Plant-based production of recombinant proteins can potentially enhance, back-up, or even substitute for the manufacturing capacity of the conventional, fermenter-based technologies. We plastome-engineered a tobacco cultivar to express high levels of two “plantakines” - recombinant human cytokines, interleukins IL-37b and IL-38, and confirmed their native conformation and folding. Assessment of their biological functionality was performed ex vivo by analyzing the effects exerted by the plantakines on levels of 11 cytokines secreted from human Peripheral Blood Mononuclear Cells (PBMCs) challenged with an inflammatory agent. Application of the plant-produced IL-37b and IL-38 in PBMCs stimulated with Lipopolysaccharide or Phytohaemagglutinin resulted in significant, dose-dependent modulation of pro-inflammatory cytokines secretion and attenuation of levels of several cytokines involved in inflammatory response. Our results demonstrate feasibility of manufacturing functional recombinant human proteins using scalable, cost-effective and eco-friendly plant-based bioreactors.