1 Huston, A., Siler, N., Roe, G. H., Pettit, E. & Steiger, N. J. Understanding drivers of glacier-length variability over the last millennium. The Cryosphere 15, 1645-1662, doi:10.5194/tc-15-1645-2021 (2021).
2 Oerlemans, J. Extracting a climate signal from 169 glacier records. Science 308, 675-677 (2005).
3 IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (2021).
4 Hock, R. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds H.-O. Pörtner et al.) 131-202 (IPCC - Intergovernmental Panel on Climate Change, 2019).
5 Salcher, B., Prasicek, G., Baumann, S. & Kober, F. Alpine relief limited by glacial occupation time. Geology 49, 1209-1213, doi:10.1130/G48639.1 (2021).
6 Cunningham, M. T., Stark, C. P., Kaplan, M. R. & Schaefer, J. M. Glacial limitation of tropical mountain height. Earth Surf Dynam 7, 147-169, doi:10.5194/esurf-7-147-2019 (2019).
7 Ivy-Ochs, S. Glacier Variations in the European Alps at the End of the Last Glaciation. Cuad Investig Geogr 41, 295-315, doi:10.18172/cig.2750 (2015).
8 Protin, M. et al. Millennial‐scale deglaciation across the European Alps at the transition between the Younger Dryas and the Early Holocene – evidence from a new cosmogenic nuclide chronology. Boreas 50, 671–685, doi:10.1111/bor.12519 (2021).
9 Braumann, S. M. et al. Early Holocene cold snaps and their expression in the moraine record of the eastern European Alps. Clim. Past 17, 2451-2479, doi:10.5194/cp-17-2451-2021 (2021).
10 Schindelwig, I., Akcar, N., Kubik, P. W. & Schlüchter, C. Lateglacial and early Holocene dynamics of adjacent valley glaciers in the Western Swiss Alps. J Quaternary Sci 27, 114-124, doi:10.1002/jqs.1523 (2012).
11 Schimmelpfennig, I. et al. Holocene glacier culminations in the Western Alps and their hemispheric relevance. Geology 40, 891-894, doi:10.1130/G33169.1 (2012).
12 Friebe, G. Geologie der österreichischen Bundesländer - Vorarlberg. 174 (Verlag der Geologischen Bundesanstalt, 2007).
13 Fuchs, G. & Oberhauser, R. 170 Galtür. (1990).
14 Fischer, A., Schwaizer, G., Seiser, B., Helfricht, K. & Stocker-Waldhuber, M. High-resolution inventory to capture glacier disintegration in the Austrian Silvretta. Cryosphere 15, 4637-4654 (2021).
15 Nicolussi, K. & Patzelt, G. Discovery of early-Holocene wood and peat on the forefield of the Pasterze Glacier, Eastern Alps, Austria. Holocene 10, 191-199, doi:10.1191/095968300666855842 (2000).
16 Patzelt, G. Das Bunte Moor in der Oberfernau (Stubaier Alpen, Tirol) – Eine neu bearbeitete Schlüsselstelle für die Kenntnis der nacheiszeitlichen Gletscherschwankungen der Ostalpen. Jahrbuch der Geologischen Bundesanstalt Band 156, 97-107 (2016).
17 Braumann, S. M. et al. Holocene glacier change in the Silvretta Massif (Austrian Alps) constrained by a new Be-10 chronology, historical records and modern observations. Quaternary Sci Rev 245, doi:10.1016/j.quascirev.2020.106493 (2020).
18 Ivy-Ochs, S., Kerschner, H., Kubik, P. W. & Schlüchter, C. Glacier response in the European Alps to Heinrich Event 1 cooling: the Gschnitz stadial. J Quaternary Sci 21, 115-130, doi:10.1002/jqs.955 (2006).
19 Heinrich, H. Origin and Consequences of Cyclic Ice Rafting in the Northeast Atlantic Ocean During the Past 130,000 Years. Quaternary Res 29, 142-152, doi:10.1016/0033-5894(88)90057-9 (1988).
20 Schmidt, R., Weckstrom, K., Lauterbach, S., Tessadri, R. & Huber, K. North Atlantic climate impact on early late-glacial climate oscillations in the south-eastern Alps inferred from a multi-proxy lake sediment record. J Quaternary Sci 27, 40-50, doi:10.1002/jqs.1505 (2012).
21 Dielforder, A. & Hetzel, R. The deglaciation history of the Simplon region (southern Swiss Alps) constrained by Be-10 exposure dating of ice-molded bedrock surfaces. Quaternary Sci Rev 84, 26-38, doi:10.1016/j.quascirev.2013.11.008 (2014).
22 Hippe, K. et al. Chronology of Lateglacial ice flow reorganization and deglaciation in the Gotthard Pass area, Central Swiss Alps, based on cosmogenic Be-10 and in situ C-14. Quat Geochronol 19, 14-26, doi:10.1016/j.quageo.2013.03.003 (2014).
23 Wirsig, C., Zasadni, J., Christl, M., Akcar, N. & Ivy-Ochs, S. Dating the onset of LGM ice surface lowering in the High Alps. Quaternary Sci Rev 143, 37-50 (2016).
24 Kelly, M. A., Ivy-Ochs, S., Kubik, P. W., von Blanckenburg, F. & Schluchter, C. Chronology of deglaciation based on Be-10 dates of glacial erosional features in the Grimsel Pass region, central Swiss Alps. Boreas 35, 634-643 (2006).
25 Wölfler, A., Hampel, A., Dielforder, A., Hetzel, R. & Glotzbach, C. LGM ice extent and deglaciation history in the Gurktal and Lavantal Alps (eastern European Alps): first constraints from 10Be surface exposure dating of glacially polished quartz veins. J Quaternary Sci Online Version of Record before inclusion in an issue, doi:10.1002/jqs.3399 (2021).
26 Böhlert, R. et al. Application of a combination of dating techniques to reconstruct the Lateglacial and early Holocene landscape history of the Albula region (eastern Switzerland). Geomorphology 127, 1-13 (2011).
27 Rolland, Y. et al. Deglaciation history at the Alpine-Mediterranean transition (Argentera-Mercantour, SW Alps) from Be-10 dating of moraines and glacially polished bedrock. Earth Surf Proc Land 45, 393-410 (2020).
28 Maisch, M. Zur Gletscher- und Klimageschichte des alpinen Spätglazials. Geographica Helvetica 37, 93-104, doi:10.5169/seals-58303 (1982).
29 Kerschner, H. in Klimawandel in Österreich: Die letzten 20.000 Jahre ... und ein Blick voraus Vol. 6 alpine space – man & environment (eds R. Schmidt, C. Matulla, & R. Psenner) 5-26 (Innsbruck University Press, 2009).
30 Federici, P. R. et al. Exposure age dating and Equilibrium Line Altitude reconstruction of an Egesen moraine in the Maritime Alps, Italy. Boreas 37, 245-253, doi:10.1111/j.1502-3885.2007.00018.x (2008).
31 Kelly, M. A., Kubik, P. W., Von Blanckenburg, F. & Schlüchter, C. Surface exposure dating of the Great Aletsch Glacier Egesen moraine system, western Swiss Alps, using the cosmogenic nuclide Be-10. J Quaternary Sci 19, 431-441, doi:10.1002/jqs.854 (2004).
32 Reitner, J. M., Ivy-Ochs, S., Drescher-Schneider, R., Hajdas, I. & Linner, M. Reconsidering the current stratigraphy of the Alpine Lateglacial: Implications of the sedimentary and morphological record of the Lienz area (Tyrol/Austria). E&G Quaternary Sci. J. 65, 113-144, doi:10.3285/eg.65.2.02 (2016).
33 Heuberger, H. Die Alpengletscher im Spät- und Postglazial. Eiszeitalter und Gegenwart 19, 270-275 (1968).
34 Lauterbach, S. et al. Environmental responses to Lateglacial climatic fluctuations recorded in the sediments of pre-Alpine Lake Mondsee (northeastern Alps). J Quaternary Sci 26, 253-267 (2011).
35 Heiri, O. et al. Palaeoclimate records 60-8 ka in the Austrian and Swiss Alps and their forelands. Quaternary Sci Rev 106, 186-205, doi:10.1016/j.quascirev.2014.05.021 (2014).
36 Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Sci Rev 106, 14-28, doi:10.1016/j.quascirev.2014.09.007 (2014).
37 Li, H. Y., Spotl, C. & Cheng, H. A high-resolution speleothem proxy record of the Late Glacial in the European Alps: extending the NALPS19 record until the beginning of the Holocene. J Quaternary Sci 36, 29-39 (2021).
38 Kruger, S. & Damrath, M. In search of the Bolling-Oscillation: a new high resolution pollen record from the locus classicus Lake Bolling, Denmark. Veg Hist Archaeobot 29, 189-211 (2020).
39 Ammann, B. et al. Vegetation responses to rapid warming and to minor climatic fluctuations during the Late-Glacial Interstadial (GI-1) at Gerzensee (Switzerland). Palaeogeogr Palaeocl 391, 40-59, doi:10.1016/j.palaeo.2012.07.010 (2013).
40 Brisset, E. et al. Lateglacial/Holocene environmental changes in the Mediterranean Alps inferred from lacustrine sediments. Quaternary Sci Rev 110, 49-71 (2015).
41 Broecker, W. S. The Great Ocean Conveyor. Oceanography 4, 79-89, doi:10.5670/oceanog.1991.07 (1991).
42 McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834-837, doi:10.1038/nature02494 (2004).
43 Thornalley, D. J. R., McCave, I. N. & Elderfield, H. Freshwater input and abrupt deglacial climate change in the North Atlantic. Paleoceanography 25, PA1201, doi:10.1029/2009PA001772 (2010).
44 Bjorck, S., Rundgren, M., Ingolfsson, O. & Funder, S. The Preboreal oscillation around the Nordic Seas: terrestrial and lacustrine responses. J Quaternary Sci 12, 455-465 (1997).
45 Hald, M. & Hagen, S. Early preboreal cooling in the Nordic seas region triggered by meltwater. Geology 26, 615-618 (1998).
46 Young, N. E. et al. Deglaciation of the Greenland and Laurentide ice sheets interrupted by glacier advance during abrupt coolings. Quaternary Sci Rev 229, 106091, doi:10.1016/j.quascirev.2019.106091 (2020).
47 Lambeck, K., Rouby, H., Purcell, A., Sun, Y. Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. P Natl Acad Sci USA 111, 15296-15303, doi:10.1073/pnas.1411762111 (2014).
48 Mitrovica, J. X., Gomez, N. & Clark, P. U. The Sea-Level Fingerprint of West Antarctic Collapse. Science 323, 753-753, doi:10.1126/science.1166510 (2009).
49 Lin, Y. et al. A reconciled solution of Meltwater Pulse 1A sources using sea-level fingerprinting. Nat Commun 12, 2015, doi:10.1038/s41467-021-21990-y (2021).
50 Ivanovic, R. F., Gregoire, L. J., Wickert, A. D., Valdes, P. J. & Burke, A. Collapse of the North American ice saddle 14,500 years ago caused widespread cooling and reduced ocean overturning circulation. Geophys Res Lett 44, 383-392, doi:10.1002/2016gl071849 (2017).
51 Menviel, L., Timmermann, A., Timm, O. E. & Mouchet, A. Deconstructing the Last Glacial termination: the role of millennial and orbital-scale forcings. Quaternary Sci Rev 30, 1155-1172, doi:10.1016/j.quascirev.2011.02.005 (2011).
52 Wittmeier, H. E. et al. Late Glacial mountain glacier culmination in Arctic Norway prior to the Younger Dryas. Quaternary Sci Rev 245, doi:10.1016/j.quascirev.2020.106461 (2020).
53 Briner, J. P., Svendsen, J. I., Mangerud, J., Lohne, O. S. & Young, N. E. A Be-10 chronology of south-western Scandinavian Ice Sheet history during the Lateglacial period. J Quaternary Sci 29, 370-380, doi:10.1002/jqs.2710 (2014).
54 Glasser, N. F. et al. Cosmogenic nuclide exposure ages for moraines in the Lago San Martin Valley, Argentina. Quaternary Res 75, 636-646, doi:10.1016/j.yqres.2010.11.005 (2011).
55 Garcia, J. L. et al. Glacier expansion in southern Patagonia throughout the Antarctic cold reversal. Geology 40, 859-862, doi:10.1130/G33164.1 (2012).
56 Moreno, P. I. et al. Renewed glacial activity during the Antarctic cold reversal and persistence of cold conditions until 11.5 ka in southwestern Patagonia. Geology 37, 375-378, doi:10.1130/G25399a.1 (2009).
57 Sagredo, E. A. et al. Trans-pacific glacial response to the Antarctic Cold Reversal in the southern mid-latitudes. Quaternary Sci Rev 188, 160-166, doi:10.1016/j.quascirev.2018.01.011 (2018).
58 Davies, B. J., Thorndycraft, V. R., Fabel, D. & Martin, J. R. V. Asynchronous glacier dynamics during the Antarctic Cold Reversal in central Patagonia. Quaternary Sci Rev 200, 287-312, doi:10.1016/j.quascirev.2018.09.025 (2018).
59 Putnam, A. E. et al. Glacier advance in southern middle-latitudes during the Antarctic Cold Reversal. Nat Geosci 3, 700-704, doi:10.1038/Ngeo962 (2010).
60 Putnam, A. E. et al. Warming and glacier recession in the Rakaia valley, Southern Alps of New Zealand, during Heinrich Stadial 1. Earth Planet Sc Lett 382, 98-110, doi:10.1016/j.epsl.2013.09.005 (2013).
61 Lee, S. Y. et al. Late Quaternary glaciation in the Nun-Kun massif, northwestern India. Boreas 43, 67-89, doi:10.1111/bor.12022 (2014).
62 Lemieux-Dudon, B. et al. Consistent dating for Antarctic and Greenland ice cores. Quaternary Sci Rev 29, 8-20, doi:10.1016/j.quascirev.2009.11.010 (2010).
63 Hertl, A. Untersuchungen zur spätglazialen Gletscher- und Klimageschichte der Österreichischen Silvrettagruppe, Leopold-Franzens-Universität Innsbruck, (2001).
64 Alley, R. B. The Younger Dryas cold interval as viewed from central Greenland. Quaternary Sci Rev 19, 213-226, doi:10.1016/S0277-3791(99)00062-1 (2000).
65 Briner, J. P. et al. Using in situ cosmogenic Be-10, C-14, and Al-26 to decipher the history of polythermal ice sheets on Baffin Island, Arctic Canada. Quat Geochronol 19, 4-13, doi:10.1016/j.quageo.2012.11.005 (2014).
66 Buizert, C. et al. Greenland-Wide Seasonal Temperatures During the Last Deglaciation. Geophys Res Lett 45, 1905-1914, doi:10.1002/2017gl075601 (2018).
67 Kaplan, M. R. et al. Glacier retreat in New Zealand during the Younger Dryas stadial. Nature 467, 194-197, doi:10.1038/nature09313 (2010).
68 Cheng, H. et al. Timing and structure of the Younger Dryas event and its underlying climate dynamics. P Natl Acad Sci USA 117, 23408-23417, doi:10.1073/pnas.2007869117 (2020).
69 Putnam, A. E. et al. Regional climate control of glaciers in New Zealand and Europe during the pre-industrial Holocene. Nat Geosci 5, 627-630, doi:10.1038/NGEO1548 (2012).
70 Glasser, N. F., Harrison, S., Schnabel, C., Fabel, D. & Jansson, K. N. Younger Dryas and early Holocene age glacier advances in Patagonia. Quaternary Sci Rev 58, 7-17, doi:10.1016/j.quascirev.2012.10.011 (2012).
71 Reynhout, S. A. et al. Holocene glacier fluctuations in Patagonia are modulated by summer insolation intensity and paced by Southern Annular Mode-like variability. Quaternary Sci Rev 220, 178-187, doi:10.1016/j.quascirev.2019.05.029 (2019).
72 Saha, S., Owen, L. A., Orr, E. N. & Caffee, M. W. High-frequency Holocene glacier fluctuations in the Himalayan-Tibetan orogen. Quaternary Sci Rev 220, 372-400, doi:10.1016/j.quascirev.2019.07.021 (2019).
73 Fischer, A., Seiser, B., Waldhuber, M. S., Mitterer, C. & Abermann, J. Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based high-resolution glacier inventory in Austria. Cryosphere 9, 753-766, doi:10.5194/tc-9-753-2015 (2015).
74 Land Tirol. (Land Tirol, Innsbruck, 2021).
75 swisstopo. (Bundesamt für Landestopografie, Wabern, 2021).
76 Hartl, L., Felbauer, L., Schwaizer, G. & Fischer, A. Small-scale spatial variability in bare-ice reflectance at Jamtalferner, Austria. Cryosphere 14, 4063-4081 (2020).
77 Fischer, A., Fickert, T., Schweizer, G., Patzelt, G. & Gross, G. Vegetation dynamics in Alpine glacier forelands tackled from space. Sci Rep-Uk 9, 13918, doi:10.1038/s41598-019-50273-2 (2019).
78 WGMS. Global Glacier Change Bulletin No. 4 (2018–2019). Global Glacier Change Bulletin, doi:doi:10.5904/wgms-fog-2021-05 (2021).
79 Lal, D. In situ-produced Cosmogenic Isotopes in Terrestrial Rocks. Annu Rev Earth Pl Sc 16, 355-388, doi:10.1146/annurev.ea.16.050188.002035 (1988).
80 LDEO. Separation and Purifiation of Quartz from Whole Rock. 8 (2012).
81 LDEO. Extraction of Beryllium from Quartz. 19 (2012).
82 Nishiizumi, K. et al. Absolute calibration of Be-10 AMS standards. Nucl Instrum Meth B 258, 403-413, doi:10.1016/j.nimb.2007.01.297 (2007).
83 Balco, G., Stone, J. O., Lifton, N. A. & Dunai, T. J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from Be-10 and Al-26 measurements. Quat Geochronol 3, 174-195, doi:10.1016/j.quageo.2007.12.001 (2008).
84 Claude, A. et al. The Chironico landslide (Valle Leventina, southern Swiss Alps): age and evolution. Swiss J Geosci 107, 273-291, doi:10.1007/s00015-014-0170-z (2014).
85 Stone, J. O. Air pressure and cosmogenic isotope production. J Geophys Res-Sol Ea 105, 23753-23759, doi:10.1029/2000jb900181 (2000).
86 Linsbauer, A. et al. The New Swiss Glacier Inventory SGI2016: From a Topographical to a Glaciological Dataset. Frontiers in Earth Science 9, doi:10.3389/feart.2021.704189 (2021).
87 Moran, A. P., Kerschner, H. & Ivy-Ochs, S. Redating the moraines in the Kromer Valley (Silvretta Mountains) - New evidence for an early Holocene glacier advance. Holocene 26, 655-664, doi:10.1177/0959683615612571 (2016).
88 Auer, I. et al. HISTALP - historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27, 17-46, doi:10.1002/joc.1377 (2007).
89 BMLRT. Vol. 2009-2018 (BMLRT, Vienna, 2021).
90 MacFarling Meure, C. et al. Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys Res Lett 33, L14810, doi:10.1029/2006GL026152 (2006).
91 NOAA Global Monitoring Laboratory. (NOAA Research, 2021).
92 Berger, A. & Loutre, M. F. in Supplement to: Berger, A; Loutre, M-F (1991): Insolation values for the climate of the last 10 million of years. Quaternary Science Reviews, 10(4), 297-317, https://doi.org/10.1016/0277-3791(91)90033-Q (PANGAEA, 1999).