1 Smyrnaeus, Q. The Fall of Troy Aeschylus, Prometheus Bound, 510-518: Theoi Project – Ananke "Theoi project: Moirae and the Throne of Zeus". (1913).
2 Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45-51, doi:10.1038/36285 (1997).
3 Forsberg, E. A., Olauson, H., Larsson, T. & Catrina, S. B. Effect of systemically increasing human full-length Klotho on glucose metabolism in db/db mice. Diabetes research and clinical practice 113, 208-210, doi:10.1016/j.diabres.2016.01.006 (2016).
4 Hu, M. C. & Moe, O. W. Klotho as a potential biomarker and therapy for acute kidney injury. Nature reviews. Nephrology 8, 423-429, doi:10.1038/nrneph.2012.92 (2012).
5 Hu, M. C. et al. Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective. Kidney international 78, 1240-1251, doi:10.1038/ki.2010.328 (2010).
6 Kurosu, H. et al. Regulation of fibroblast growth factor-23 signaling by klotho. The Journal of biological chemistry 281, 6120-6123, doi:10.1074/jbc.C500457200 (2006).
7 Neyra, J. A. & Hu, M. C. Potential application of klotho in human chronic kidney disease. Bone 100, 41-49, doi:10.1016/j.bone.2017.01.017 (2017).
8 Tang, X. et al. Klotho: a tumor suppressor and modulator of the Wnt/β-catenin pathway in human hepatocellular carcinoma. Laboratory investigation; a journal of technical methods and pathology 96, 197-205, doi:10.1038/labinvest.2015.86 (2016).
9 Yang, Y. L. et al. Long noncoding RNA NEAT1 is involved in the protective effect of Klotho on renal tubular epithelial cells in diabetic kidney disease through the ERK1/2 signaling pathway. Experimental & molecular medicine 52, 266-280, doi:10.1038/s12276-020-0381-5 (2020).
10 Lin, Y. & Sun, Z. In vivo pancreatic β-cell-specific expression of antiaging gene Klotho: a novel approach for preserving β-cells in type 2 diabetes. Diabetes 64, 1444-1458, doi:10.2337/db14-0632 (2015).
11 Kuro-o, M. Klotho as a regulator of oxidative stress and senescence. Biological chemistry 389, 233-241, doi:10.1515/bc.2008.028 (2008).
12 Liu, F., Wu, S., Ren, H. & Gu, J. Klotho suppresses RIG-I-mediated senescence-associated inflammation. Nature cell biology 13, 254-262, doi:10.1038/ncb2167 (2011).
13 Yamamoto, M. et al. Regulation of oxidative stress by the anti-aging hormone klotho. The Journal of biological chemistry 280, 38029-38034, doi:10.1074/jbc.M509039200 (2005).
14 M., K.-o. The Klotho proteins in health and disease. Nature reviews. Nephrology 15, 27-44, doi:10.1038/s41581-018-0078-3 (2019).
15 Takenaka, T. et al. Klotho protein supplementation reduces blood pressure and renal hypertrophy in db/db mice, a model of type 2 diabetes. Acta physiologica (Oxford, England) 225, e13190, doi:10.1111/apha.13190 (2019).
16 Hui, H. et al. Klotho suppresses the inflammatory responses and ameliorates cardiac dysfunction in aging endotoxemic mice. Oncotarget 8, 15663-15676, doi:10.18632/oncotarget.14933 (2017).
17 Percy, C. J., Power, D. & Gobe, G. C. Renal ageing: changes in the cellular mechanism of energy metabolism and oxidant handling. Nephrology (Carlton, Vic.) 13, 147-152, doi:10.1111/j.1440-1797.2008.00924.x (2008).
18 Ravikumar, P. et al. α-Klotho protects against oxidative damage in pulmonary epithelia. American journal of physiology. Lung cellular and molecular physiology 307, L566-575, doi:10.1152/ajplung.00306.2013 (2014).
19 Takenaka, T. et al. Klotho supplementation ameliorates blood pressure and renal function in DBA/2-pcy mice, a model of polycystic kidney disease. American journal of physiology. Renal physiology 318, F557-f564, doi:10.1152/ajprenal.00299.2019 (2020).
20 Zhang, H. et al. Klotho is a target gene of PPAR-gamma. Kidney international 74, 732-739, doi:10.1038/ki.2008.244 (2008).
21 Farzanegi, P., Dana, A., Ebrahimpoor, Z., Asadi, M. & Azarbayjani, M. A. Mechanisms of beneficial effects of exercise training on non-alcoholic fatty liver disease (NAFLD): Roles of oxidative stress and inflammation. European journal of sport science 19, 994-1003, doi:10.1080/17461391.2019.1571114 (2019).
22 Spangenburg, E. E., Brown, D. A., Johnson, M. S. & Moore, R. L. Alterations in peroxisome proliferator-activated receptor mRNA expression in skeletal muscle after acute and repeated bouts of exercise. Molecular and cellular biochemistry 332, 225-231, doi:10.1007/s11010-009-0195-1 (2009).
23 Thomas, A. W. et al. Exercise-associated generation of PPARγ ligands activates PPARγ signaling events and upregulates genes related to lipid metabolism. Journal of applied physiology (Bethesda, Md. : 1985) 112, 806-815, doi:10.1152/japplphysiol.00864.2011 (2012).
24 Avin, K. G. et al. Skeletal muscle as a regulator of the longevity protein, Klotho. Frontiers in physiology 5, 189, doi:10.3389/fphys.2014.00189 (2014).
25 Colaianni, G., Cinti, S., Colucci, S. & Grano, M. Irisin and musculoskeletal health. Annals of the New York Academy of Sciences 1402, 5-9, doi:10.1111/nyas.13345 (2017).
26 Lenhare, L. et al. Physical exercise increases Sestrin 2 protein levels and induces autophagy in the skeletal muscle of old mice. Experimental gerontology 97, 17-21, doi:10.1016/j.exger.2017.07.009 (2017).
27 Widmann, M., Nieß, A. M. & Munz, B. Physical Exercise and Epigenetic Modifications in Skeletal Muscle. Sports medicine (Auckland, N.Z.) 49, 509-523, doi:10.1007/s40279-019-01070-4 (2019).
28 Safdar, A., Saleem, A. & Tarnopolsky, M. A. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nature reviews. Endocrinology 12, 504-517, doi:10.1038/nrendo.2016.76 (2016).
29 Safdar, A. & Tarnopolsky, M. A. Exosomes as Mediators of the Systemic Adaptations to Endurance Exercise. Cold Spring Harbor perspectives in medicine 8, doi:10.1101/cshperspect.a029827 (2018).
30 Lee, T. H. et al. Potential exerkines for physical exercise-elicited pro-cognitive effects: Insight from clinical and animal research. International review of neurobiology 147, 361-395, doi:10.1016/bs.irn.2019.06.002 (2019).
31 Yu, M., Tsai, S. F. & Kuo, Y. M. The Therapeutic Potential of Anti-Inflammatory Exerkines in the Treatment of Atherosclerosis. International journal of molecular sciences 18, doi:10.3390/ijms18061260 (2017).
32 Hawley, J. A., Joyner, M. J. & Green, D. J. Mimicking exercise: what matters most and where to next? The Journal of physiology 599, 791-802, doi:10.1113/jp278761 (2021).
33 Whitham, M. & Febbraio, M. A. The ever-expanding myokinome: discovery challenges and therapeutic implications. Nature reviews. Drug discovery 15, 719-729, doi:10.1038/nrd.2016.153 (2016).
34 Kurosu, H. et al. Suppression of aging in mice by the hormone Klotho. Science (New York, N.Y.) 309, 1829-1833, doi:10.1126/science.1112766 (2005).
35 Amaro-Gahete, F. J. et al. Exercise training increases the S-Klotho plasma levels in sedentary middle-aged adults: A randomised controlled trial. The FIT-AGEING study. Journal of sports sciences 37, 2175-2183, doi:10.1080/02640414.2019.1626048 (2019).
36 Corrêa, H. L. et al. Blood Flow Restriction Training Blunts Chronic Kidney Disease Progression in Humans. Medicine and science in sports and exercise 53, 249-257, doi:10.1249/mss.0000000000002465 (2021).
37 Neves, R. V. P. et al. Dynamic not isometric training blunts osteo-renal disease and improves the sclerostin/FGF23/Klotho axis in maintenance hemodialysis patients: a randomized clinical trial. Journal of applied physiology (Bethesda, Md. : 1985) 130, 508-516, doi:10.1152/japplphysiol.00416.2020 (2021).
38 Boeselt, T. et al. Benefits of High-Intensity Exercise Training to Patients with Chronic Obstructive Pulmonary Disease: A Controlled Study. Respiration; international review of thoracic diseases 93, 301-310, doi:10.1159/000464139 (2017).
39 Fakhrpour, R. et al. Effect of Sixteen Weeks Combined Training on FGF-23, Klotho, and Fetuin-A Levels in Patients on Maintenance Hemodialysis. Iranian journal of kidney diseases 14, 212-218 (2020).
40 Saghiv, M., Goldhammer, E. & Radzishevski, E. The Impact of 12 Weeks Exercise Training on Circulating Soluble-Klotho and Pro-BNP in Coronary Artery Disease Patients. J Cardiol Vasc Res 1, 1-4 (2017).
41 Matsubara, T. et al. Aerobic exercise training increases plasma Klotho levels and reduces arterial stiffness in postmenopausal women. American journal of physiology. Heart and circulatory physiology 306, H348-355, doi:10.1152/ajpheart.00429.2013 (2014).
42 Rahimi, S., Khademvatani, K. & Zolfaghari, M. R. Association of circular Klotho and insulin-like growth factor 1 with cardiac hypertrophy indexes in athlete and non-athlete women following acute and chronic exercise. Biochemical and biophysical research communications 505, 448-452, doi:10.1016/j.bbrc.2018.09.138 (2018).
43 Amaro-Gahete, F. J. et al. Role of Exercise on S-Klotho Protein Regulation: A Systematic Review. Current aging science 11, 100-107, doi:10.2174/1874609811666180702101338 (2018).
44 Rosa, T. D. S. et al. Age-related Decline in Renal Function is Attenuated in Master Athletes. International journal of sports medicine, doi:10.1055/a-1332-1594 (2021).
45 Rosa, T. S. et al. Sprint and endurance training in relation to redox balance, inflammatory status and biomarkers of aging in master athletes. Nitric oxide : biology and chemistry 102, 42-51, doi:10.1016/j.niox.2020.05.004 (2020).
46 Amaro-Gahete, F. J. et al. Body Composition and S-Klotho Plasma Levels in Middle-Aged Adults: A Cross-Sectional Study. Rejuvenation research 22, 478-483, doi:10.1089/rej.2018.2092 (2019).
47 Amaro-Gahete, F. J. et al. Association of physical activity and fitness with S-Klotho plasma levels in middle-aged sedentary adults: The FIT-AGEING study. Maturitas 123, 25-31, doi:10.1016/j.maturitas.2019.02.001 (2019).
48 Amaro-Gahete, F. J., De-la, O. A., Jurado-Fasoli, L., Ruiz, J. R. & Castillo, M. J. Association of basal metabolic rate and fuel oxidation in basal conditions and during exercise, with plasma S-klotho: the FIT-AGEING study. Aging 11, 5319-5333, doi:10.18632/aging.102100 (2019).
49 Amaro-Gahete, F. J. et al. Relationship between plasma S-Klotho and cardiometabolic risk in sedentary adults. Aging 12, 2698-2710, doi:10.18632/aging.102771 (2020).
50 Crasto, C. L. et al. Relationship of low-circulating "anti-aging" klotho hormone with disability in activities of daily living among older community-dwelling adults. Rejuvenation research 15, 295-301, doi:10.1089/rej.2011.1268 (2012).
51 Semba, R. D. et al. Relationship of low plasma klotho with poor grip strength in older community-dwelling adults: the InCHIANTI study. European journal of applied physiology 112, 1215-1220, doi:10.1007/s00421-011-2072-3 (2012).
52 Shardell, M. et al. Serum 25-Hydroxyvitamin D, Plasma Klotho, and Lower-Extremity Physical Performance Among Older Adults: Findings From the InCHIANTI Study. The journals of gerontology. Series A, Biological sciences and medical sciences 70, 1156-1162, doi:10.1093/gerona/glv017 (2015).
53 Santos-Dias, A. et al. Longevity protein klotho is induced by a single bout of exercise. British journal of sports medicine 51, 549-550, doi:10.1136/bjsports-2016-096139 (2017).
54 Mostafidi, E., Moeen, A., Nasri, H., Ghorbani Hagjo, A. & Ardalan, M. Serum Klotho Levels in Trained Athletes. Nephro-urology monthly 8, e30245, doi:10.5812/numonthly.30245 (2016).
55 Beckner, M. E. et al. Impact of simulated military operational stress on executive function relative to trait resilience, aerobic fitness, and neuroendocrine biomarkers. Physiology & behavior 236, 113413, doi:10.1016/j.physbeh.2021.113413 (2021).
56 Ost, M., Coleman, V., Kasch, J. & Klaus, S. Regulation of myokine expression: Role of exercise and cellular stress. Free radical biology & medicine 98, 78-89, doi:10.1016/j.freeradbiomed.2016.02.018 (2016).
57 Welc, S. S. & Clanton, T. L. The regulation of interleukin-6 implicates skeletal muscle as an integrative stress sensor and endocrine organ. Experimental physiology 98, 359-371, doi:10.1113/expphysiol.2012.068189 (2013).
58 Lushchak, V. I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-biological interactions 224, 164-175, doi:10.1016/j.cbi.2014.10.016 (2014).
59 Ji, L. L., Kang, C. & Zhang, Y. Exercise-induced hormesis and skeletal muscle health. Free radical biology & medicine 98, 113-122, doi:10.1016/j.freeradbiomed.2016.02.025 (2016).
60 Calabrese, E. J., Iavicoli, I. & Calabrese, V. Hormesis: its impact on medicine and health. Human & experimental toxicology 32, 120-152, doi:10.1177/0960327112455069 (2013).
61 Guo, Y. et al. Klotho protects the heart from hyperglycemia-induced injury by inactivating ROS and NF-κB-mediated inflammation both in vitro and in vivo. Biochimica et biophysica acta. Molecular basis of disease 1864, 238-251, doi:10.1016/j.bbadis.2017.09.029 (2018).
62 Agita, A. & Alsagaff, M. T. Inflammation, Immunity, and Hypertension. Acta medica Indonesiana 49, 158-165 (2017).
63 Brunetta, H. S., Holwerda, A. M., van Loon, L. J., Holloway, G. P. J. J. o. S. i. S. & Exercise. Mitochondrial ROS and Aging: Understanding Exercise as a Preventive Tool. 2, 15-24 (2020).
64 El Assar, M., Angulo, J. & Rodríguez-Mañas, L. Oxidative stress and vascular inflammation in aging. Free radical biology & medicine 65, 380-401, doi:10.1016/j.freeradbiomed.2013.07.003 (2013).
65 Lim, K. et al. α-Klotho Expression in Human Tissues. The Journal of clinical endocrinology and metabolism 100, E1308-1318, doi:10.1210/jc.2015-1800 (2015).
66 Papaconstantinou, J. The Role of Signaling Pathways of Inflammation and Oxidative Stress in Development of Senescence and Aging Phenotypes in Cardiovascular Disease. Cells 8, doi:10.3390/cells8111383 (2019).
67 Kotoku, K. et al. Effect of exercise intensity on renal blood flow in patients with chronic kidney disease stage 2. Clinical and experimental nephrology 23, 621-628, doi:10.1007/s10157-018-01685-3 (2019).
68 Lacerda, L. T. et al. Variations in Repetition Duration and Repetition Numbers Influence Muscular Activation and Blood Lactate Response in Protocols Equalized by Time Under Tension. Journal of strength and conditioning research 30, 251-258, doi:10.1519/jsc.0000000000001044 (2016).
69 Burd, N. A. et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. The Journal of physiology 590, 351-362, doi:10.1113/jphysiol.2011.221200 (2012).
70 Morton, R. W. et al. Muscle fibre activation is unaffected by load and repetition duration when resistance exercise is performed to task failure. The Journal of physiology 597, 4601-4613, doi:10.1113/jp278056 (2019).
71 Araneda, O. F., Contreras-Briceño, F., Cavada, G. & Viscor, G. Swimming versus running: effects on exhaled breath condensate pro-oxidants and pH. European journal of applied physiology 118, 2319-2329, doi:10.1007/s00421-018-3958-0 (2018).
72 Millet, G. P., Vleck, V. E. & Bentley, D. J. Physiological differences between cycling and running: lessons from triathletes. Sports medicine (Auckland, N.Z.) 39, 179-206, doi:10.2165/00007256-200939030-00002 (2009).
73 Vargas-Ortiz, K. et al. Aerobic training but no resistance training increases SIRT3 in skeletal muscle of sedentary obese male adolescents. European journal of sport science 18, 226-234, doi:10.1080/17461391.2017.1406007 (2018).
74 McGuire, D. K. et al. A 30-year follow-up of the Dallas Bedrest and Training Study: I. Effect of age on the cardiovascular response to exercise. Circulation 104, 1350-1357 (2001).
75 Bullock, G. S. et al. Methods matter: clinical prediction models will benefit sports medicine practice, but only if they are properly developed and validated. British journal of sports medicine, doi:10.1136/bjsports-2021-104329 (2021).
76 Cook, C. Predicting future physical injury in sports: it's a complicated dynamic system. British journal of sports medicine 50, 1356-1357, doi:10.1136/bjsports-2016-096445 (2016).
77 Kox, L. S., Kuijer, P. P., Kerkhoffs, G. M., Maas, M. & Frings-Dresen, M. H. Prevalence, incidence and risk factors for overuse injuries of the wrist in young athletes: a systematic review. British journal of sports medicine 49, 1189-1196, doi:10.1136/bjsports-2014-094492 (2015).
78 Takeda, H., Nakagawa, T., Nakamura, K. & Engebretsen, L. Prevention and management of knee osteoarthritis and knee cartilage injury in sports. British journal of sports medicine 45, 304-309, doi:10.1136/bjsm.2010.082321 (2011).
79 Ahrens, H. E., Huettemeister, J., Schmidt, M., Kaether, C. & von Maltzahn, J. Klotho expression is a prerequisite for proper muscle stem cell function and regeneration of skeletal muscle. Skeletal muscle 8, 20, doi:10.1186/s13395-018-0166-x (2018).
80 Gu, Y., Ren, K., Wang, L. & Yao, Q. Loss of Klotho contributes to cartilage damage by derepression of canonical Wnt/β-catenin signaling in osteoarthritis mice. Aging 11, 12793-12809, doi:10.18632/aging.102603 (2019).
81 Welc, S. S., Wehling-Henricks, M., Kuro, O. M., Thomas, K. A. & Tidball, J. G. Modulation of Klotho expression in injured muscle perturbs Wnt signalling and influences the rate of muscle growth. Experimental physiology 105, 132-147, doi:10.1113/ep088142 (2020).
82 Phelps, M., Pettan-Brewer, C., Ladiges, W. & Yablonka-Reuveni, Z. Decline in muscle strength and running endurance in klotho deficient C57BL/6 mice. Biogerontology 14, 729-739, doi:10.1007/s10522-013-9447-2 (2013).
83 Sahu, A. et al. Age-related declines in α-Klotho drive progenitor cell mitochondrial dysfunction and impaired muscle regeneration. Nature communications 9, 4859, doi:10.1038/s41467-018-07253-3 (2018).
84 Higgins, J. P. et al. Cochrane handbook for systematic reviews of interventions. (John Wiley & Sons, 2019).
85 Shamseer, L. et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ (Clinical research ed.) 350, g7647, doi:10.1136/bmj.g7647 (2015).