[1] Kansara M, Teng MW, Smyth MJ, Thomas DM. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14:722-735.
[2] Ritter J, Bielack SS. Osteosarcoma. Ann Oncol. 2010;21:320-325.
[3] Botter SM, Neri D, Fuchs B. Recent advances in osteosarcoma. Curr Opin Pharmacol. 2014;16:15-23.
[4] Kager L, Tamamyan G, Bielack S. Novel insights and therapeutic interventions for pediatric osteosarcoma. Future Oncol. 2017;13:357-368.
[5] Wedekind MF, Wagner LM, Cripe TP. Immunotherapy for osteosarcoma: Where do we go from here? Pediatr Blood Cancer. 2018;65:27227.
[6] Chen KC, Lu R, Iqbal U, Hsu KC, Chen BL, Nguyen PA, Yang HC, Huang CW, Li YC, Jian WS, Tsai SH. Interactions between traditional Chinese medicine and western drugs in Taiwan: A population-based study. Comput Methods Programs Biomed. 2015;122:462-470.
[7] Li X, Qu L, Dong Y, Han L, Liu E, Fang S, Zhang Y, Wang T. A review of recent research progress on the astragalus genus. Molecules. 2014;19:18850-18880.
[8] Zhang DQ, Wang HB, Wang SF, Wang DQ. Research achievements on biological activities of calycosin. Zhongguo Zhong Yao Za Zhi. 2015;40:4339-4345.
[9] Huang C, Li R, Shi W, Huang Z. Discovery of the Anti-Tumor Mechanism of Calycosin Against Colorectal Cancer by Using System Pharmacology Approach. Med Sci Monit. 2019;25:5589-5593.
[10] Qiu R, Ma G, Li X, Shi Q, Li X, Zhou X, Tang Y, Xie Z, Liao S, Qin Y, Wang R, Ye Y, Luo J, Zhang J. Clinical case report of patients with osteosarcoma and anticancer benefit of calycosin against human osteosarcoma cells. J Cell Biochem. 2019;120:10697-10706.
[11] Zhou R, Wu K, Su M, Li R. Bioinformatic and experimental data decipher the pharmacological targets and mechanisms of plumbagin against hepatocellular carcinoma. Environ Toxicol Pharmacol. 2019;70:103200.
[12] Wu K, Wei P, Liu M, Liang X, Su M. To reveal pharmacological targets and molecular mechanisms of curcumol against interstitial cystitis. J Adv Res. 2019;20:43-50.
[13] Li R, Ma X, Song Y, Zhang Y1, Xiong W, Li L, Zhou L. Anti‐colorectal cancer targets of resveratrol and biological molecular mechanism: Analyses of network pharmacology, human and experimental data. J Cell Biochem. 2019; 120: 11265-11273.
[14] Li J, Guo C, Lu X, Tan W. Anti-colorectal cancer biotargets and biological mechanisms of puerarin: Study of molecular networks. Eur J Pharmacol. 2019 Sep 5;858:172483.
[15] Li R, Song Y, Ji Z, Li L, Zhou L. Pharmacological biotargets and the molecular mechanisms of oxyresveratrol treating colorectal cancer: Network and experimental analyses. Biofactors. 2019. doi.org/10.1002/biof.1583.
[16] Su M, Guo C, Liu M, Liang X, Yang B. Therapeutic targets of vitamin C on liver injury and associated biological mechanisms: A study of network pharmacology. Int Immunopharmacol. 2019;66:383-387.
[17] Li R, Guo C, Tse WKF, Su M, Zhang X, Lai KP. Metabolomic analysis reveals metabolic alterations of human peripheral blood lymphocytes by perfluorooctanoic acid. Chemosphere. 2019;239:124810.
[18] Zhou R, Liu M, Liang X, Su M, Li R. Clinical features of aflatoxin B1-exposed patients with liver cancer and the molecular mechanism of aflatoxin B1 on liver cancer cells. Environ Toxicol Pharmacol. 2019;71:103225.
[19] Wu K, Guo C, Yang B, Wu X, Wang W. Antihepatotoxic benefits of Poria cocos polysaccharides on acetaminophen-lesioned livers in vivo and in vitro. J Cell Biochem. 2019;120:7482-7488.
[20] Wu X, Liang M, Yang Z, Su M, Yang B. Effect of acute exposure to PFOA on mouse liver cells in vivo and in vitro. Environ Sci Pollut Res Int. 2017;24:24201-24206.
[21] Huang W, Su L, Zhang X, Xu X, Li R. Endocrinological characterization of pancreatic ducts in HFD and HGD fed mice. J Cell Biochem. 2019;120:16153-16159.
[22] Xu X, Guo C, Liang X, Li R, Chen J. Potential biomarker of fibroblast growth factor 21 in valproic acid-treated livers. Biofactors. 2019;45:740-749.
[23] Li R, Qin X, Liang X, Liu M, Zhang X. Lipidomic characteristics and clinical findings of epileptic patients treated with valproic acid. J Cell Mol Med. 2019;23:6017-6023.
[24] Kim HJ, Chalmers PN, Morris CD. Pediatric osteogenic sarcoma. Curr Opin Pediatr. 2010;22:61-66.
[25] Gao J, Liu ZJ, Chen T, Zhao D. Pharmaceutical properties of calycosin, the major bioactive isoflavonoid in the dry root extract of Radix astragali.
Pharm Biol. 2014;52:1217-1222.
[26] Gong AG, Li N, Lau KM, Lee PS, Yan L, Xu ML, Lam CT, Kong AY, Lin HQ, Dong TT, Tsim KW. Calycosin orchestrates the functions of Danggui Buxue Tang, a Chinese herbal decoction composing of Astragali Radix and Angelica Sinensis Radix: An evaluation by using calycosin-knock out herbal extract. J Ethnopharmacol. 2015;168:150-157.
[27] Soussi T, Wiman KG. TP53: an oncogene in disguise. Cell Death Differ. 2015;22:1239-1249.
[28] Patel KR, Patel HD. p53: An Attractive Therapeutic Target for Cancer. Curr Med Chem. 2019.
[29] Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99-104.
[30] Pu X, Storr SJ, Zhang Y, Rakha EA, Green AR, Ellis IO, Martin SG. Caspase-3 and caspase-8 expression in breast cancer: caspase-3 is associated with survival. Apoptosis. 2017;22:357-368.
[31] Obexer P, Ausserlechner MJ. X-linked inhibitor of apoptosis protein - a critical death resistance regulator and therapeutic target for personalized cancer therapy. Front Oncol. 2014;4:197.
[32] Muñoz D, Brucoli M, Zecchini S, et al., XIAP as a Target of New Small Organic Natural Molecules Inducing Human Cancer Cell Death. Cancers (Basel). 2019;11. doi: 10.3390/cancers11091336 .