[1] W. Alafate, D. Xu, W. Wu, J. Xiang, X. Ma, W. Xie, X. Bai, M. Wang, and J. Wang, Loss of PLK2 induces acquired resistance to temozolomide in GBM via activation of notch signaling. J Exp Clin Cancer Res 39 (2020) 239.
[2] M.E. Berens, A. Sood, J.S. Barnholtz-Sloan, J.F. Graf, S. Cho, S. Kim, J. Kiefer, S.A. Byron, R.F. Halperin, S. Nasser, J. Adkins, L. Cuyugan, K. Devine, Q. Ostrom, M. Couce, L. Wolansky, E. McDonough, S. Schyberg, S. Dinn, A.E. Sloan, M. Prados, J.J. Phillips, S.J. Nelson, W.S. Liang, Y. Al-Kofahi, M. Rusu, M.I. Zavodszky, and F. Ginty, Multiscale, multimodal analysis of tumor heterogeneity in IDH1 mutant vs wild-type diffuse gliomas. PLoS One 14 (2019) e0219724.
[3] T.I. Janjua, P. Rewatkar, A. Ahmed-Cox, I. Saeed, F.M. Mansfeld, R. Kulshreshtha, T. Kumeria, D.S. Ziegler, M. Kavallaris, R. Mazzieri, and A. Popat, Frontiers in the treatment of glioblastoma: Past, present and emerging. Adv Drug Deliv Rev 171 (2021) 108-138.
[4] Y. Mou, J. Wu, Y. Zhang, O. Abdihamid, C. Duan, and B. Li, Low expression of ferritinophagy-related NCOA4 gene in relation to unfavorable outcome and defective immune cells infiltration in clear cell renal carcinoma. BMC Cancer 21 (2021) 18.
[5] X. Li, L. Lozovatsky, A. Sukumaran, L. Gonzalez, A. Jain, D. Liu, N. Ayala-Lopez, and K.E. Finberg, NCOA4 is regulated by HIF and mediates mobilization of murine hepatic iron stores after blood loss. Blood 136 (2020) 2691-2702.
[6] M. Quiles Del Rey, and J.D. Mancias, NCOA4-Mediated Ferritinophagy: A Potential Link to Neurodegeneration. Front Neurosci 13 (2019) 238.
[7] N. Santana-Codina, and J.D. Mancias, The Role of NCOA4-Mediated Ferritinophagy in Health and Disease. Pharmaceuticals (Basel) 11 (2018).
[8] J.D. Mancias, X. Wang, S.P. Gygi, J.W. Harper, and A.C. Kimmelman, Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509 (2014) 105-9.
[9] P. Domingues, M. Gonzalez-Tablas, A. Otero, D. Pascual, D. Miranda, L. Ruiz, P. Sousa, J. Ciudad, J.M. Goncalves, M.C. Lopes, A. Orfao, and M.D. Tabernero, Tumor infiltrating immune cells in gliomas and meningiomas. Brain Behav Immun 53 (2016) 1-15.
[10] O. Cohen-Inbar, and M. Zaaroor, Immunological Aspects of Malignant Gliomas. Can J Neurol Sci 43 (2016) 494-502.
[11] N. Santana-Codina, A. Gikandi, and J.D. Mancias, The Role of NCOA4-Mediated Ferritinophagy in Ferroptosis. Adv Exp Med Biol 1301 (2021) 41-57.
[12] L. Shi, Y. Liu, M. Li, and Z. Luo, Emerging roles of ferroptosis in the tumor immune landscape: from danger signals to anti-tumor immunity. FEBS J (2021).
[13] D. Szklarczyk, A.L. Gable, K.C. Nastou, D. Lyon, R. Kirsch, S. Pyysalo, N.T. Doncheva, M. Legeay, T. Fang, P. Bork, L.J. Jensen, and C. von Mering, The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49 (2021) D605-D612.
[14] G. Bindea, B. Mlecnik, M. Tosolini, A. Kirilovsky, M. Waldner, A.C. Obenauf, H. Angell, T. Fredriksen, L. Lafontaine, A. Berger, P. Bruneval, W.H. Fridman, C. Becker, F. Pages, M.R. Speicher, Z. Trajanoski, and J. Galon, Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39 (2013) 782-95.
[15] N. Santana-Codina, S. Gableske, M. Quiles del Rey, B. Malachowska, M.P. Jedrychowski, D.E. Biancur, P.J. Schmidt, M.D. Fleming, W. Fendler, J.W. Harper, A.C. Kimmelman, and J.D. Mancias, NCOA4 maintains murine erythropoiesis via cell autonomous and non-autonomous mechanisms. Haematologica 104 (2019) 1342-1354.
[16] X. Chen, R. Kang, G. Kroemer, and D. Tang, Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol 18 (2021) 280-296.
[17] M. Gao, P. Monian, Q. Pan, W. Zhang, J. Xiang, and X. Jiang, Ferroptosis is an autophagic cell death process. Cell Res 26 (2016) 1021-32.
[18] Y. Wang, Z. Wei, K. Pan, J. Li, and Q. Chen, The function and mechanism of ferroptosis in cancer. Apoptosis 25 (2020) 786-798.
[19] B.S. Paratala, J.H. Chung, C.B. Williams, B. Yilmazel, W. Petrosky, K. Williams, A.B. Schrock, L.M. Gay, E. Lee, S.C. Dolfi, K. Pham, S. Lin, M. Yao, A. Kulkarni, F. DiClemente, C. Liu, L. Rodriguez-Rodriguez, S. Ganesan, J.S. Ross, S.M. Ali, B. Leyland-Jones, and K.M. Hirshfield, RET rearrangements are actionable alterations in breast cancer. Nat Commun 9 (2018) 4821.
[20] S.Y. Kim, S.O. Oh, K. Kim, J. Lee, S. Kang, K.M. Kim, W. Lee, S.T. Kim, and D.N. Nam, NCOA4-RET fusion in colorectal cancer: Therapeutic challenge using patient-derived tumor cell lines. J Cancer 9 (2018) 3032-3037.
[21] R. Roskoski, Jr., and A. Sadeghi-Nejad, Role of RET protein-tyrosine kinase inhibitors in the treatment RET-driven thyroid and lung cancers. Pharmacol Res 128 (2018) 1-17.
[22] Z. Zhang, Z. Yao, L. Wang, H. Ding, J. Shao, A. Chen, F. Zhang, and S. Zheng, Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy 14 (2018) 2083-2103.
[23] Z. Zhang, M. Guo, Y. Li, M. Shen, D. Kong, J. Shao, H. Ding, S. Tan, A. Chen, F. Zhang, and S. Zheng, RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells. Autophagy 16 (2020) 1482-1505.
[24] Y. Peng, C.X. Li, F. Chen, Z. Wang, M. Ligr, J. Melamed, J. Wei, W. Gerald, M. Pagano, M.J. Garabedian, and P. Lee, Stimulation of prostate cancer cellular proliferation and invasion by the androgen receptor co-activator ARA70. Am J Pathol 172 (2008) 225-35.
[25] X. Wu, F. Chen, A. Sahin, C. Albarracin, Z. Pei, X. Zou, B. Singh, R. Xu, G. Daniels, Y. Li, J. Wei, M. Blake, R.J. Schneider, P. Cowin, and P. Lee, Distinct function of androgen receptor coactivator ARA70alpha and ARA70beta in mammary gland development, and in breast cancer. Breast Cancer Res Treat 128 (2011) 391-400.
[26] T.R. Sippel, J. White, K. Nag, V. Tsvankin, M. Klaassen, B.K. Kleinschmidt-DeMasters, and A. Waziri, Neutrophil degranulation and immunosuppression in patients with GBM: restoration of cellular immune function by targeting arginase I. Clin Cancer Res 17 (2011) 6992-7002.
[27] A. Daga, C. Bottino, R. Castriconi, R. Gangemi, and S. Ferrini, New perspectives in glioma immunotherapy. Curr Pharm Des 17 (2011) 2439-67.
[28] S. Huang, Z. Song, T. Zhang, X. He, K. Huang, Q. Zhang, J. Shen, and J. Pan, Identification of Immune Cell Infiltration and Immune-Related Genes in the Tumor Microenvironment of Glioblastomas. Front Immunol 11 (2020) 585034.
[29] M.K. Callahan, and J.D. Wolchok, Recruit or Reboot? How Does Anti-PD-1 Therapy Change Tumor-Infiltrating Lymphocytes? Cancer Cell 36 (2019) 215-217.
[30] R.J. Kishton, M. Sukumar, and N.P. Restifo, Metabolic Regulation of T Cell Longevity and Function in Tumor Immunotherapy. Cell Metab 26 (2017) 94-109.
[31] G.V. Sharonov, E.O. Serebrovskaya, D.V. Yuzhakova, O.V. Britanova, and D.M. Chudakov, B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol 20 (2020) 294-307.
[32] L.J. McHeyzer-Williams, and M.G. McHeyzer-Williams, Antigen-specific memory B cell development. Annu Rev Immunol 23 (2005) 487-513.
[33] A. Dudeck, M. Koberle, O. Goldmann, N. Meyer, J. Dudeck, S. Lemmens, M. Rohde, N.G. Roldan, K. Dietze-Schwonberg, Z. Orinska, E. Medina, S. Hendrix, M. Metz, A.C. Zenclussen, E. von Stebut, and T. Biedermann, Mast cells as protectors of health. J Allergy Clin Immunol 144 (2019) S4-S18.