1. McFaline-Figueroa, J.R. and E.Q. Lee, Brain Tumors. Am J Med, 2018. 131(8): p. 874-882.
2. Bao, S., et al., Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res, 2006. 66(16): p. 7843-8.
3. Brada, M., Radiotherapy in malignant glioma. Ann Oncol, 2006. 17 Suppl 10: p. x183-5.
4. Perry, J.R., et al., Short-Course Radiation plus Temozolomide in Elderly Patients with Glioblastoma. N Engl J Med, 2017. 376(11): p. 1027-1037.
5. Louis, D.N., et al., The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol, 2021. 23(8): p. 1231-1251.
6. van Dijk, E.L., et al., Ten years of next-generation sequencing technology. Trends Genet, 2014. 30(9): p. 418-26.
7. Morganti, S., et al., Next Generation Sequencing (NGS): A Revolutionary Technology in Pharmacogenomics and Personalized Medicine in Cancer. Adv Exp Med Biol, 2019. 1168: p. 9-30.
8. de Miguel, M. and E. Calvo, Clinical Challenges of Immune Checkpoint Inhibitors. Cancer Cell, 2020. 38(3): p. 326-333.
9. Gajewski, T.F., H. Schreiber, and Y.X. Fu, Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol, 2013. 14(10): p. 1014-22.
10. Nagarsheth, N., M.S. Wicha, and W. Zou, Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol, 2017. 17(9): p. 559-572.
11. Desrichard, A., A. Snyder, and T.A. Chan, Cancer Neoantigens and Applications for Immunotherapy. Clin Cancer Res, 2016. 22(4): p. 807-12.
12. Bagchi, S., R. Yuan, and E.G. Engleman, Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annu Rev Pathol, 2021. 16: p. 223-249.
13. Hargadon, K.M., C.E. Johnson, and C.J. Williams, Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol, 2018. 62: p. 29-39.
14. Yang, Y., Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest, 2015. 125(9): p. 3335-7.
15. Qin, S., et al., Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer, 2019. 18(1): p. 155.
16. Newman, A.M., et al., Robust enumeration of cell subsets from tissue expression profiles. Nat Methods, 2015. 12(5): p. 453-7.
17. Dennis, G., Jr., et al., DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol, 2003. 4(5): p. P3.
18. Szklarczyk, D., et al., The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res, 2021. 49(D1): p. D605-D612.
19. Chin, C.H., et al., cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol, 2014. 8 Suppl 4: p. S11.
20. Li, T., et al., TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer Res, 2017. 77(21): p. e108-e110.
21. Ay, F., M. Kellis, and T. Kahveci, SubMAP: aligning metabolic pathways with subnetwork mappings. J Comput Biol, 2011. 18(3): p. 219-35.
22. Yang, K., et al., CMAP: Complement Map Database. Bioinformatics, 2013. 29(14): p. 1832-3.
23. Gusyatiner, O. and M.E. Hegi, Glioma epigenetics: From subclassification to novel treatment options. Semin Cancer Biol, 2018. 51: p. 50-58.
24. Bush, N.A., S.M. Chang, and M.S. Berger, Current and future strategies for treatment of glioma. Neurosurg Rev, 2017. 40(1): p. 1-14.
25. Friedman, C.F., T.A. Proverbs-Singh, and M.A. Postow, Treatment of the Immune-Related Adverse Effects of Immune Checkpoint Inhibitors: A Review. JAMA Oncol, 2016. 2(10): p. 1346-1353.
26. Wang, X., et al., The Relationship of Sphingosine Kinase 1 With Pyroptosis Provides a New Strategy for Tumor Therapy. Front Immunol, 2020. 11: p. 574990.
27. Najafi, M., et al., Macrophage polarity in cancer: A review. J Cell Biochem, 2019. 120(3): p. 2756-2765.
28. Shapouri-Moghaddam, A., et al., Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol, 2018. 233(9): p. 6425-6440.
29. Tedesco, S., et al., Convenience versus Biological Significance: Are PMA-Differentiated THP-1 Cells a Reliable Substitute for Blood-Derived Macrophages When Studying in Vitro Polarization? Front Pharmacol, 2018. 9: p. 71.
30. Olingy, C.E., H.Q. Dinh, and C.C. Hedrick, Monocyte heterogeneity and functions in cancer. J Leukoc Biol, 2019. 106(2): p. 309-322.
31. Zhang, W., et al., IL-6 promotes PD-L1 expression in monocytes and macrophages by decreasing protein tyrosine phosphatase receptor type O expression in human hepatocellular carcinoma. J Immunother Cancer, 2020. 8(1).
32. Balaji, S., et al., NF-kappaB signaling and its relevance to the treatment of mantle cell lymphoma. J Hematol Oncol, 2018. 11(1): p. 83.
33. Zhao, R., et al., PD-1/PD-L1 blockade rescue exhausted CD8+ T cells in gastrointestinal stromal tumours via the PI3K/Akt/mTOR signalling pathway. Cell Prolif, 2019. 52(3): p. e12571.
34. Guo, G., et al., Local Activation of p53 in the Tumor Microenvironment Overcomes Immune Suppression and Enhances Antitumor Immunity. Cancer Res, 2017. 77(9): p. 2292-2305.
35. Bao, Y., et al., Transcriptome profiling revealed multiple genes and ECM-receptor interaction pathways that may be associated with breast cancer. Cell Mol Biol Lett, 2019. 24: p. 38.
36. Chen, G., et al., Oncogenic effect of PHLDB2 is associated with epithelial-mesenchymal transition and E-cadherin regulation in colorectal cancer. Cancer Cell Int, 2019. 19: p. 184.
37. Cui, X., et al., Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis. Biomaterials, 2018. 161: p. 164-178.
38. Malehmir, M., et al., Platelet GPIbalpha is a mediator and potential interventional target for NASH and subsequent liver cancer. Nat Med, 2019. 25(4): p. 641-655.
39. Sarvaria, A., J.A. Madrigal, and A. Saudemont, B cell regulation in cancer and anti-tumor immunity. Cell Mol Immunol, 2017. 14(8): p. 662-674.
40. Lin, T.Y., et al., BIRC5/Survivin is a novel ATG12-ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells. Autophagy, 2020. 16(7): p. 1296-1313.
41. Tang, J.H., et al., Bortezomib inhibits growth and sensitizes glioma to temozolomide (TMZ) via down-regulating the FOXM1-Survivin axis. Cancer Commun (Lond), 2019. 39(1): p. 81.
42. Lee, E., et al., Sensitivity to BUB1B Inhibition Defines an Alternative Classification of Glioblastoma. Cancer Res, 2017. 77(20): p. 5518-5529.
43. Xiong, Q., et al., miR-133b targets NCAPH to promote beta-catenin degradation and reduce cancer stem cell maintenance in non-small cell lung cancer. Signal Transduct Target Ther, 2021. 6(1): p. 252.