Ambrose, S. H. (2001). Paleolithic technology and human evolution. Science, 291(5509), 1748-1753.
Anzellotti, S., Fairhall, S. L., & Caramazza, A. (2014). Decoding representations of face identity that are tolerant to rotation. Cerebral Cortex, 24(8), 1988-1995.
Arbib, M. A. (1981). Perceptual structures and distributed motor control. In: Brooks V. B. (Ed.) Handbook of physiology – The nervous system II, Motor control, Part 1. American
Bach, P., Nicholson, T., & Hudson, M. (2014). The affordance-matching hypothesis: how objects guide action understanding and prediction. Frontiers in human neuroscience, 8, 254.
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral cortex, 19(12), 2767-2796.
Birn, R. M., Cox, R. W., & Bandettini, P. A. (2004). Experimental designs and processing strategies for fMRI studies involving overt verbal responses. Neuroimage, 23(3), 1046-1058.
Brandi, M. L., Wohlschläger, A., Sorg, C., & Hermsdörfer, J. (2014). The neural correlates of planning and executing actual tool use. Journal of Neuroscience, 34(39), 13183-13194.
Buxbaum, L. J. (2017). Learning, remembering, and predicting how to use tools: Distributed neurocognitive mechanisms: Comment on Osiurak and Badets (2016).
Chao, L. L., Haxby, J. V., & Martin, A. (1999). Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nature neuroscience, 2(10), 913-919.
Chen, Q., Garcea, F. E., & Mahon, B. Z. (2016). The representation of object-directed action and function knowledge in the human brain. Cerebral Cortex, 26(4), 1609-1618.
Christensen, W., Sutton, J., & Bicknell, K. (2019). Memory systems and the control of skilled action. Philosophical Psychology, 32(5), 692-718.
Cisek, P. (2007). Cortical mechanisms of action selection: the affordance competition hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences , 362 (1485), 1585-1599.
Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269-298
Devlin, J. T., Rushworth, M. F., & Matthews, P. M. (2005). Category-related activation for written words in the posterior fusiform is task specific. Neuropsychologia, 43(1), 69-74.
Fairhall, S. L., & Caramazza, A. (2013). Brain regions that represent amodal conceptual knowledge. Journal of Neuroscience, 33(25), 10552-10558.
Fischer, J., Mikhael, J. G., Tenenbaum, J. B., & Kanwisher, N. (2016). Functional neuroanatomy of intuitive physical inference. Proceedings of the national academy of sciences, 113(34), E5072-E5081.
Freud, E., Macdonald, S. N., Chen, J., Quinlan, D. J., Goodale, M. A., & Culham, J. C. (2018). Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations. Cortex, 98, 34-48.
Garcea, F. E., & Mahon, B. Z. (2014). Parcellation of left parietal tool representations by functional connectivity. Neuropsychologia, 60, 131-143.
Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton-Mifflin
Goldenberg, G. (2017). Facets of pantomime. Journal of the International Neuropsychological Society, 23(2), 121-127.
Hodges, J. R., Patterson, K., Oxbury, S., & Funnell, E. (1992). Semantic dementia: Progressive fluent aphasia with temporal lobe atrophy. Brain, 115(6), 1783-1806.
Ishibashi, R., Lambon Ralph, M. A., Saito, S., & Pobric, G. (2011). Different roles of lateral anterior temporal lobe and inferior parietal lobule in coding function and manipulation tool knowledge: evidence from an rTMS study. Neuropsychologia, 49(5), 1128-1135.
Ishibashi, R., Mima, T., Fukuyama, H., & Pobric, G. (2018). Facilitation of function and manipulation knowledge of tools using transcranial direct current stimulation (tDCS). Frontiers in integrative neuroscience, 11, 37.
Jax, S. A., & Buxbaum, L. J. (2010). Response interference between functional and structural actions linked to the same familiar object. Cognition, 115(2), 350-355.
Jeannerod, M., Arbib, M. A., Rizzolatti, G., & Sakata, H. (1995). Grasping objects: the cortical mechanisms of visuomotor transformation. Trends in neurosciences, 18(7), 314-320.
Jefferies, E., Thompson, H., Cornelissen, P., & Smallwood, J. (2020). The neurocognitive basis of knowledge about object identity and events: dissociations reflect opposing effects of semantic coherence and control. Philosophical Transactions of the Royal Society B, 375(1791), 20190300.
Johnson-Frey, S. H. (2003). What's so special about human tool use?. Neuron, 39(2), 201-204.
Kalénine, S., Peyrin, C., Pichat, C., Segebarth, C., Bonthoux, F., & Baciu, M. (2009). The sensory-motor specificity of taxonomic and thematic conceptual relations: A behavioral and fMRI study. Neuroimage, 44(3), 1152-1162.
Kourtzi, Z., Betts, L. R., Sarkheil, P., & Welchman, A. E. (2005). Distributed neural plasticity for shape learning in the human visual cortex. PLoS biology, 3(7), e204.
Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. Proceedings of the National Academy of Sciences, 103(10), 3863-3868.
Knights, E., Mansfield, C., Tonin, D., Saada, J., Smith, F. W., & Rossit, S. (2021). Hand-selective visual regions represent how to grasp 3D tools: brain decoding during real actions. Journal of Neuroscience, 41(24), 5263-5273.
Lambon Ralph, M. A., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 18(1), 42-55.
Lesourd, M., Servant, M., Baumard, J., Reynaud, E., Ecochard, C., Medjaoui, F. T., ... & Osiurak, F. (2021). Semantic and action tool knowledge in the brain: identifying common and distinct networks. Neuropsychologia, 107918.
Lewis, J. W. (2006). Cortical networks related to human use of tools. The Neuroscientist, 12(3), 211-231.
Liuzzi, A. G., Aglinskas, A., & Fairhall, S. L. (2020). General and feature-based semantic representations in the semantic network. Scientific Reports, 10(1), 1-12.
Mahon, B. Z., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of physiology-Paris, 102(1-3), 59-70.
Marstaller, L., Fynes-Clinton, S., Burianová, H., & Reutens, D. C. (2018). Evidence for a functional specialization of ventral anterior temporal lobe for language. NeuroImage, 183, 800-810.
Martin, A. (2016). GRAPES—Grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain. Psychonomic bulletin & review, 23(4), 979-990.
Milner, A. D., & Goodale, M. (2006). The visual brain in action (2nd Edition). Oxford University Press, Oxford
Montagu, A. (1976). Toolmaking, hunting, and the origin of language. Annals of the New York Academy of Sciences, 280(1), 266-274.
Mummery, C. J., Patterson, K., Price, C. J., Ashburner, J., Frackowiak, R. S., & Hodges, J. R. (2000). A voxel‐based morphometry study of semantic dementia: relationship between temporal lobe atrophy and semantic memory. Annals of neurology, 47(1), 36-45.
Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97-113.
Osiurak, F., & Badets, A. (2016). Tool use and affordance: Manipulation-based versus reasoning-based approaches. Psychological review, 123(5), 534.
Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature reviews neuroscience, 8(12), 976-987.
Peelen, M. V., & Caramazza, A. (2012). Conceptual object representations in human anterior temporal cortex. Journal of Neuroscience, 32(45), 15728-15736.
Prado, J., Clavagnier, S., Otzenberger, H., Scheiber, C., Kennedy, H., & Perenin, M. T. (2005). Two cortical systems for reaching in central and peripheral vision. Neuron, 48(5), 849-858.
Putt, S. S., Wijeakumar, S., Franciscus, R. G., & Spencer, J. P. (2017). The functional brain networks that underlie Early Stone Age tool manufacture. Nature Human Behaviour, 1(6), 1-8.
Reynaud, E., Lesourd, M., Navarro, J., & Osiurak, F. (2016). On the neurocognitive origins of human tool use: A critical review of neuroimaging data. Neuroscience & Biobehavioral Reviews, 64, 421-437.
Rossit, S., McAdam, T., Mclean, D. A., Goodale, M. A., & Culham, J. C. (2013). fMRI reveals a lower visual field preference for hand actions in human superior parieto-occipital cortex (SPOC) and precuneus. Cortex, 49(9), 2525-2541.
Rumiati, R. I., & Humphreys, G. W. (1998). Recognition by action: dissociating visual and semantic routes to action in normal observers. Journal of Experimental Psychology: Human Perception and Performance, 24(2), 631.
Scholz, J., Klein, M. C., Behrens, T. E., & Johansen-Berg, H. (2009). Training induces changes in white-matter architecture. Nature neuroscience, 12(11), 1370-1371.
Schwartz, M. F., Kimberg, D. Y., Walker, G. M., Brecher, A., Faseyitan, O. K., Dell, G. S., ... & Coslett, H. B. (2011). Neuroanatomical dissociation for taxonomic and thematic knowledge in the human brain. Proceedings of the National Academy of Sciences, 108(20), 8520-8524.
Schwettmann, S., Tenenbaum, J. B., & Kanwisher, N. (2019). Invariant representations of mass in the human brain. Elife, 8, e46619.
Shibasaki, H., & Hallett, M. (2006). What is the Bereitschaftspotential?. Clinical neurophysiology, 117(11), 2341-2356.
Smith, F. W., & Goodale, M. A. (2015). Decoding visual object categories in early somatosensory cortex. Cerebral cortex, 25(4), 1020-1031.
Snow, J. C., & Culham, J. C. (2021). The treachery of images: how realism influences brain and behavior. Trends in Cognitive Sciences.
Snow, J. C., Pettypiece, C. E., McAdam, T. D., McLean, A. D., Stroman, P. W., Goodale, M. A., & Culham, J. C. (2011). Bringing the real world into the fMRI scanner: Repetition effects for pictures versus real objects. Scientific reports, 1(1), 1-10.
Stout, D., & Chaminade, T. (2012). Stone tools, language and the brain in human evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1585), 75-87.
Styrkowiec, P. P., Nowik, A. M., & Króliczak, G. (2019). The neural underpinnings of haptically guided functional grasping of tools: an fMRI study. Neuroimage, 194, 149-162.
Tak, Y. W., Knights, E., Henson, R., & Zeidman, P. (2021). Ageing and the ipsilateral M1 BOLD response: a connectivity study. Brain sciences, 11(9), 1130.
Thibault, S., Py, R., Gervasi, A. M., Salemme, R., Koun, E., Lövden, M., ... & Brozzoli, C. (2021). Tool use and language share syntactic processes and neural patterns in the basal ganglia. Science, 374(6569), eabe0874.
Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human perception and performance, 24(3), 830.
Valyear, K. (2016). The neuroscience of human tool use. In Evolution of Nervous Systems: Second Edition (pp. 341-353). Academic Press.
Valyear, K. F., Gallivan, J. P., McLean, D. A., & Culham, J. C. (2012). fMRI repetition suppression for familiar but not arbitrary actions with tools. Journal of Neuroscience, 32(12), 4247-4259.
Weisberg, J., Van Turennout, M., & Martin, A. (2006). A neural system for learning about object function. Cerebral Cortex, 17(3), 513-521.
Xia M, Wang J, He Y (2013) BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics. PLoS ONE 8: e68910.
Young, G. (2006). Are different affordances subserved by different neural pathways?. Brain and Cognition, 62(2), 134-142.
Zagha, E., Erlich, J. C., Lee, S., Lur, G., O’Connor, D. H., Steinmetz, N. A., ... & Yang, H. (2022). The importance of accounting for movement when relating neuronal activity to sensory and cognitive processes. Journal of Neuroscience. https://doi.org/10.1523/JNEUROSCI.1919-21.2021