Abdullah AS, Moffat CS, Lopez-Ruiz FJ, Gibberd MR, Hamblin J, Zerihun A (2017) Host–multi-pathogen warfare: pathogen interactions in co-infected plants. Front Plant Sci 8:1806. https://doi.org/10.3389/fpls.2017.01806
Al-Lami HFD, You MP, Barbetti MJ (2019) Incidence, pathogenicity and diversity of Alternaria spp. associated with alternaria leaf spot of canola (Brassica napus) in Australia. Plant Pathol 68:492–503. https://doi.org/10.1111/ppa.12955
Arifuzzaman M, Oladzadabbasabadi A, McClean P, Rahman M (2019) Shovelomics for phenotyping root architectural traits of rapeseed/canola (Brassica napus L.) and genome-wide association mapping. Mol Genet Genom 294:985–1000. https://doi.org/10.1007/s00438-019-01563-x
Bainard LD, Hamel C, Gan Y (2016) Edaphic properties override the influence of crops on the composition of the soil bacterial community in a semiarid agroecosystem. Appl Soil Ecol 105:160–168. https://doi.org/10.1016/j.apsoil.2016.03.013
Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:567–576. https://doi.org/10.1038/s41579-018-0024-1
Bardgett RD, Caruso T (2020) Soil microbial community responses to climate extremes: Resistance, resilience and transitions to alternative states. Philos Trans R Soc Lond B Biol Sci 375:20190112. https://doi.org/10.1098/rstb.2019.0112
Bazghaleh N, Hamel C, Gan Y, Tar'an B, Knight JD (2015) Genotype-specific variation in the structure of root fungal communities is related to chickpea plant productivity. Appl Environ Microbiol 81:2368-2377. https://doi.org/10.1128/AEM.03692-14
Bazghaleh N, Mamet SD, Bell JK, et al (2020) An intensive multilocation temporal dataset of fungal communities in the root and rhizosphere of Brassica napus. Data Br 30:105467. https://doi.org/10.1016/j.dib.2020.105467
Bolyen E, Rideout JR, Dillon MR, et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9
Bonito G, Reynolds H, Robeson MS, et al (2014) Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Mol Ecol 23:3356–3370. https://doi.org/10.1111/mec.12821
Bouffaud M-L, Poirier M-A, Muller D, Moënne-Loccoz Y (2014) Root microbiome relates to plant host evolution in maize and other Poaceae. Environ Microbiol 16:2804–2814. https://doi.org/10.1111/1462-2920.12442
Bressan M, Roncato MA, Bellvert F, et al (2009) Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J 3:1243–1257. https://doi.org/10.1038/ismej.2009.68
Broeckling CD, Broz AK, Bergelson J, et al (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744. https://doi.org/10.1128/AEM.02188-07
Bulgarelli D, Garrido-Oter R, Münch PC, et al (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403. https://doi.org/10.1016/j.chom.2015.01.011
Busby PE, Soman C, Wagner MR, et al (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15:1–14. https://doi.org/10.1371/journal.pbio.2001793
Callahan BJ, McMurdie PJ, Rosen MJ, et al (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869
Canola council of Canada (2019) Canola council of Canada. In: https://www.canolacouncil.org/markets-stats/industry-overview/
Carvalhais LC, Dennis PG, Fan B, et al (2013) Linking plant nutritional status to plant-microbe interactions. PLoS One 8:e68555. https://doi.org/10.1371/journal.pone.0068555
Chaparro JM, Badri D V., Bakker MG, et al (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8:1–10. https://doi.org/10.1371/annotation/51142aed-2d94-4195-8a8a-9cb24b3c733b
Chen H, Mothapo N V., Shi W (2014) Soil moisture and pH control relative contributions of fungi and bacteria to N2O production. Microb Ecol 69:180–191. https://doi.org/10.1007/s00248-014-0488-0
Clark CA, Valverde RA, Wilder-Ayers JA, Nelson PE (1990) Fusarium lateritium, causal agent of sweetpotato chlorotic leaf distortion. Phytopathology 80:741–744
Cregger MA, Veach AM, Yang ZK, et al (2018) The Populus holobiont: Dissecting the effects of plant niches and genotype on the microbiome. Microbiome 6:1–14. https://doi.org/10.1186/s40168-018-0413-8
Deltedesco E, Keiblinger KM, Piepho HP, et al (2020) Soil microbial community structure and function mainly respond to indirect effects in a multifactorial climate manipulation experiment. Soil Biol Biochem 142:107704. https://doi.org/10.1016/j.soilbio.2020.107704
Desjardins AE (2003) Gibberella from a (venaceae) to Z (eae). Annu Rev Phytopathol 41:177–198. https://doi.org/10.1146/annurev.phyto.41.011703.115501
Dizge N, Keskinler B, Tanriseven A (2009) Biodiesel production from canola oil by using lipase immobilized onto hydrophobic microporous styrene-divinylbenzene copolymer. Biochem Eng J 44:220–225. https://doi.org/10.1016/j.bej.2008.12.008
Edwards J, Johnson C, Santos-Medellín C, et al (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A 112:E911–E920. https://doi.org/10.1073/pnas.1414592112
Fitzpatrick CR, Copeland J, Wang PW, et al (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci U S A 115:E1157–E1165. https://doi.org/10.1073/pnas.1717617115
Floc’h JB, Hamel C, Harker KN, St-Arnaud M (2020) Fungal communities of the canola rhizosphere: keystone species and substantial between-year variation of the rhizosphere microbiome. Microb Ecol. 80:762-777. https://doi.org/10.1007/s00248-019-01475-8
Frison EA, Cherfas J, Hodgkin T (2011) Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 3:238–253. https://doi.org/10.3390/su3010238
Gebremariam ES, Dababat AA, Erginbas-Orakci G, et al (2016) First report of Fusarium hostae causing crown rot on wheat (Triticum spp.) in Turkey. Plant Dis 100:216–216. https://doi.org/10.1094/PDIS-06-15-0628-PDN
Geiser DM, Juba JH, Wang B, Jeffers SN (2001) Fusarium hostae sp. nov., a relative of F. redolens with a Gibberella teleomorph. Mycologia 93:670–678. https://doi.org/10.1080/00275514.2001.12063198
Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ (2017) Microbiome datasets are compositional: And this is not optional. Front Microbiol 8:1–6. https://doi.org/10.3389/fmicb.2017.02224
Gloor GB, Reid G (2016) Compositional analysis: A valid approach to analyze microbiome high-throughput sequencing data. Can J Microbiol 62:692–703. https://doi.org/10.1139/cjm-2015-0821
Gottel NR, Castro HF, Kerley M, et al (2011) Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol 77:5934–5944. https://doi.org/10.1128/AEM.05255-11
Hartwright LM, Hunter PJ, Walsh JA (2010) A comparison of Olpidium isolates from a range of host plants using internal transcribed spacer sequence analysis and host range studies. Fungal Biol 114:26–33. https://doi.org/10.1016/j.mycres.2009.09.008
Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. Sci J Biol Sci 10:273–290
Hilton S, Bennett AJ, Keane G, et al (2013) Impact of shortened crop rotation of oilseed rape on soil and rhizosphere microbial diversity in relation to yield decline. PLOS One 8:e59859. https://doi.org/10.1371/journal.pone.0059859
Hilton S, Picot E, Schreiter S, et al (2021) Identification of microbial signatures linked to oilseed rape yield decline at the landscape scale. Microbiome 9:19. https://doi.org/10.1186/s40168-020-00972-0
Hirooka Y, Ichihara Y, Masuya H, Kubono T (2012) Seed rot, a new disease of beech tree caused by neonectria ramulariae (anamorph: Cylindrocarpon obtusiusculum). J Phytopathol 160:504–506. https://doi.org/10.1111/j.1439-0434.2012.01934.x
Hu L, Robert CAM, Cadot S, et al (2018) Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun 9:1–13. https://doi.org/10.1038/s41467-018-05122-7
Iwamoto Y, Inoue K, Nishiguchi S, et al (2017) Acidic soil conditions suppress zoospore release from zoosporangia in Olpidium virulentus. J Gen Plant Pathol 83:240–243. https://doi.org/10.1007/s10327-017-0715-x
Jankowiak R, Bilański P, Paluch J, Kołodziej Z (2016) Fungi associated with dieback of Abies alba seedlings in naturally regenerating forest ecosystems. Fungal Ecol 24:61–69. https://doi.org/10.1016/j.funeco.2016.08.013
Kiran A, Wakeel A, Snowdon R, Friedt W (2019) Genetic dissection of root architectural traits by QTL and genome-wide association mapping in rapeseed (Brassica napus). Plant Breed 138:184–192. https://doi.org/10.1111/pbr.12665
Kristin A, Miranda H (2013) The root microbiota-a fingerprint in the soil? Plant Soil 370:671–686. https://doi.org/10.1007/s11104-013-1647-7
Kumar AS, Bais HP (2012) Wired to the roots: impact of root-beneficial microbe interactions on aboveground plant physiology and protection. Plant Signal Behav 7:1598–1604. https://doi.org/10.4161/psb.22356
Lau JA, Lennon JT (2012) Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci U S A 109:14058–14062. https://doi.org/10.1073/pnas.1202319109
Lay CY, Bell TH, Hamel C, et al (2018a) Canola root-associated microbiomes in the Canadian prairies. Front Microbiol 9:1188. https://doi.org/10.3389/fmicb.2018.01188
Lay C-Y, Hamel C, St-Arnaud M (2018b) Taxonomy and pathogenicity of Olpidium brassicae and its allied species. Fungal Biol 122:837–846. https://doi.org/10.1016/j.funbio.2018.04.012
Li Y, Laterrière M, Lay C-Y, et al (2021) Effects of arbuscular mycorrhizal fungi inoculation and crop sequence on root-associated microbiome, crop productivity and nutrient uptake in wheat-based and flax-based cropping systems. Appl Soil Ecol 168:104136. https://doi.org/10.1016/j.apsoil.2021.104136
Lombard L, van der Merwe NA, Groenewald JZ, Crous PW (2015) Generic concepts in Nectriaceae. Stud Mycol 80:189–245. https://doi.org/10.1016/j.simyco.2014.12.002
Lucas García JA, Barbas C, Probanza A, et al (2001) Low molecular weight organic acids and fatty acids in root exudates of two Lupinus cultivars at flowering and fruiting stages. Phytochem Anal 12:305–311. https://doi.org/10.1002/pca.596
Lundberg DS, Lebeis SL, Paredes SH, et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90. https://doi.org/10.1038/nature11237
Mamet SD, Helgason BL, Lamb EG, et al (2021) Phenology-dependent root bacteria enhance yield of Brassica napus. Soil Biol Biochem 108468. https://doi.org/10.1016/j.soilbio.2021.108468
Manici LM, Saccà ML, Caputo F, et al (2017) Long- term grapevine cultivation and agro-environment affect rhizosphere microbiome rather than plant age. Appl Soil Ecol 119:214–225. https://doi.org/10.1016/j.apsoil.2017.06.027
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j 17:10–12. https://doi.org/10.14806/ej.17.1.200
McMurdie PJ, Holmes S (2013) Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. https://doi.org/10.1371/journal.pone.0061217
Mina D, Pereira JA, Lino-Neto T, Baptista P (2020) Impact of plant genotype and plant habitat in shaping bacterial pathobiome: a comparative study in olive tree. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-60596-0
Morella NM, Zhang X, Koskella B (2019) Tomato seed-associated bacteria confer protection of seedlings against foliar disease caused by pseudomonas syringae. Phytobiomes J 3:177–190. https://doi.org/10.1094/PBIOMES-01-19-0007-R
Moreno AB, López-Moya JJ (2020) When viruses play team sports: mixed infections in plants. Phytopathology 110:29–48. https://doi.org/10.1094/PHYTO-07-19-0250-FI
Naylor D, DeGraaf S, Purdom E, Coleman-Derr D (2017) Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J 11:2691–2704. https://doi.org/10.1038/ismej.2017.118
Oksanen AJ, Blanchet FG, Friendly M, et al (2020) vegan: Community ecology package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan
Padje A van’t, Whiteside MD, Kiers ET (2016) Signals and cues in the evolution of plant–microbe communication. Curr Opin Plant Biol 32:47–52. https://doi.org/10.1016/j.pbi.2016.06.006
Palarea-Albaladejo J, Martín-Fernández JA (2015) ZCompositions - R package for multivariate imputation of left-censored data under a compositional approach. Chemometr Intell Lab Syst 143:85–96. https://doi.org/10.1016/j.chemolab.2015.02.019
Peiffer JA, Spor A, Koren O, et al (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A 110:6548–6553. https://doi.org/10.1073/pnas.1302837110
Pérez-Artés E, Mercado-Blanco J, Ruz-Carrillo AR, et al (2005) Detection of the defoliating and nondefoliating pathotypes of Verticillium dahliae in artificial and natural soils by nested PCR. Plant Soil 268:349–356. https://doi.org/10.1007/s11104-004-0378-1
Peterson EA (1959) Seed-borne fungi in relation to colonization of roots. Can J Microbiol 5:579–582. https://doi.org/10.1139/m59-070
Petit E, Gubler WD (2005) Characterization of Cylindrocarpon species, the cause of black foot disease of grapevine in California. Plant Dis 89:1051–1059. https://doi.org/10.1094/PD-89-1051
Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH (2013) Going back to the roots: The microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799. https://doi.org/10.1038/nrmicro3109
R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Rivera-Pinto J, Egozcue JJ, Pawlowsky-Glahn V, et al (2018) Balances: a New Perspective for Microbiome Analysis. MSystems 3:e00053-18. https://doi.org/10.1128/mSystems.00053-18
Rousk J, Bååth E, Brookes PC, et al (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351. https://doi.org/10.1038/ismej.2010.58
Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596. https://doi.org/10.1128/AEM.02775-08
RStudio Team (2019) RStudio: Integrated development for R. RStudio, PBC, Boston, MA
Sasse J, Martinoia E, Northen T (2018) Feed your friends: Do plant exudates shape the root microbiome? Trends Plant Sci 23:25–41. https://doi.org/10.1016/j.tplants.2017.09.003
Schweitzer JA, Bailey JK, Fischer DG, et al (2008) Plant-soil-microorganism interactions: Heritable relationship between plant genotype and associated soil microorganisms. Ecology 89:773–781. https://doi.org/10.1890/07-0337.1
Shahidi F (1990) Canola and rapeseed: production, chemistry, nutrition, and processing technology. Springer Science & Business Media
Taye ZM, Helgason BL, Bell JK, et al (2020) Core and differentially abundant bacterial taxa in the rhizosphere of field grown Brassica napus genotypes: Implications for canola breeding. Front Microbiol 10:3007. https://doi.org/10.3389/fmicb.2019.03007
Taye ZM, Noble K, Siciliano SD, et al (2022) Root growth dynamics, dominant rhizosphere bacteria, and correlation between dominant bacterial genera and root traits through Brassica napus development. Plant Soil 6:1-6. https://doi.org/10.1007/s11104-022-05296-6
Toju H, Peay KG, Yamamichi M, et al (2018) Core microbiomes for sustainable agroecosystems. Nat Plants 4:247–257. https://doi.org/10.1038/s41477-018-0139-4
Tsuge T, Harimoto Y, Akimitsu K, et al (2013) Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiol Rev 37:44–66. https://doi.org/10.1111/j.1574-6976.2012.00350.x
Turner TR, James EKEK, Poole PPS (2013) The plant microbiome. Genome Biol 14:209. https://doi.org/10.1186/gb-2013-14-6-209
UNITE Community (2019) UNITE general FASTA release for Fungi. Version 18.11.2018
Van Der Heijden MGA, Schlaeppi K (2015) Root surface as a frontier for plant microbiome research. Proc Natl Acad Sci U S A 112:2299–2300. https://doi.org/10.1073/pnas.1500709112
Wagner MR, Lundberg DS, Del Rio TG, et al (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:1–15. https://doi.org/10.1038/ncomms12151
Wang B, Sugiyama S (2020) Phylogenetic signal of host plants in the bacterial and fungal root microbiomes of cultivated angiosperms. Plant J 104:522–531. https://doi.org/10.1111/tpj.14943
Wei Z, Gu Y, Friman V-P, et al (2019) Initial soil microbiome composition and functioning predetermine future plant health. Sci Adv 5:eaaw0759. https://doi.org/10.1126/sciadv.aaw0759
Wenneker M, Pham KTK, Lemmers MEC, et al (2016) First report of Neonectria candida causing postharvest decay on ‘Conference’ pears in the Netherlands. Plant Dis 100:1787–1787. https://doi.org/10.1094/PDIS-02-16-0247-PDN
Würschum T, Liu W, Maurer HP, et al (2012) Dissecting the genetic architecture of agronomic traits in multiple segregating populations in rapeseed (Brassica napus L.). Theor Appl Genet 124:153–161. https://doi.org/10.1007/s00122-011-1694-5
Xu L, Naylor D, Dong Z, et al (2018) Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc Natl Acad Sci U S A 115:E4284–E4293. https://doi.org/10.1073/pnas.1717308115
Yamamoto K, Shiwa Y, Ishige T, et al (2018) Bacterial diversity associated with the rhizosphere and endosphere of two halophytes: Glaux maritima and Salicornia europaea. Front Microbiol 9:1–12. https://doi.org/10.3389/fmicb.2018.02878
Yeoh YK, Dennis PG, Paungfoo-Lonhienne C, et al (2017) Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat Commun 8:1-9. https://doi.org/10.1038/s41467-017-00262-8
Younesi H, Darvishnia M, Bazgir E, Chehri K (2021) Morphological, molecular and pathogenic characterization of Fusarium spp. associated with chickpea wilt in western Iran. J Plant Prot Res 61:402–413. https://doi.org/10.24425/jppr.2021.139250
Zancarini A, Mougel C, Voisin AS, et al (2012) Soil nitrogen availability and plant genotype modify the nutrition strategies of M. truncatula and the associated rhizosphere microbial communities. PLoS One 7:e47096. https://doi.org/10.1371/journal.pone.0047096
Zhalnina K, Louie KB, Hao Z, et al (2018) Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3:470–480. https://doi.org/10.1038/s41564-018-0129-3