1. Selvam S, Kumar T, Fruttiger M: Retinal vasculature development in health and disease. Prog Retin Eye Res 2018, 63:1-19.
2. Tsai ASH, Cheung N, Gan ATL, Jaffe GJ, Sivaprasad S, Wong TY, Cheung CMG: Retinal angiomatous proliferation. Surv Ophthalmol 2017, 62(4):462-492.
3. Liao ZY, Liang IC, Li HJ, Wu CC, Lo HM, Chang DC, Hung CF: Chrysin Inhibits High Glucose-Induced Migration on Chorioretinal Endothelial Cells via VEGF and VEGFR Down-Regulation. Int J Mol Sci 2020, 21(15).
4. Hanna RM, Barsoum M, Arman F, Selamet U, Hasnain H, Kurtz I: Nephrotoxicity induced by intravitreal vascular endothelial growth factor inhibitors: emerging evidence. Kidney international 2019, 96(3):572-580.
5. Chen J, Ning C, Zhou Z, Yu P, Zhu Y, Tan G, Mao C: Nanomaterials as photothermal therapeutic agents. Prog Mater Sci 2019, 99:1-26.
6. Fischer J, Beckers SJ, Yiamsawas D, Thines E, Landfester K, Wurm FR: Targeted Drug Delivery in Plants: Enzyme-Responsive Lignin Nanocarriers for the Curative Treatment of the Worldwide Grapevine Trunk Disease Esca. Adv Sci (Weinh) 2019, 6(15):1802315.
7. Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M: Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020, 49(14):5008-5057.
8. Karousis N, Suarez-Martinez I, Ewels CP, Tagmatarchis N: Structure, Properties, Functionalization, and Applications of Carbon Nanohorns. Chem Rev 2016, 116(8):4850-4883.
9. Mukherjee S, Patra CR: Therapeutic application of anti-angiogenic nanomaterials in cancers. Nanoscale 2016, 8(25):12444-12470.
10. Su Y, Hu Y, Wang Y, Xu X, Yuan Y, Li Y, Wang Z, Chen K, Zhang F, Ding X et al: A precision-guided MWNT mediated reawakening the sunk synergy in RAS for anti-angiogenesis lung cancer therapy. Biomaterials 2017, 139:75-90.
11. Xin Q, Shah H, Nawaz A, Xie W, Akram MZ, Batool A, Tian L, Jan SU, Boddula R, Guo B et al: Antibacterial Carbon-Based Nanomaterials. Adv Mater 2019, 31(45):e1804838.
12. Fong YT, Chen CH, Chen JP: Intratumoral Delivery of Doxorubicin on Folate-Conjugated Graphene Oxide by In-Situ Forming Thermo-Sensitive Hydrogel for Breast Cancer Therapy. Nanomaterials (Basel) 2017, 7(11).
13. Tabish TA: Graphene-based materials: The missing piece in nanomedicine? Biochemical and biophysical research communications 2018, 504(4):686-689.
14. Du Y, Guo S: Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 2016, 8(5):2532-2543.
15. Fan HY, Yu XH, Wang K, Yin YJ, Tang YJ, Tang YL, Liang XH: Graphene quantum dots (GQDs)-based nanomaterials for improving photodynamic therapy in cancer treatment. Eur J Med Chem 2019, 182:111620.
16. Henna TK, Pramod K: Graphene quantum dots redefine nanobiomedicine. Mater Sci Eng C Mater Biol Appl 2020, 110:110651.
17. Lu H, Li W, Dong H, Wei M: Graphene Quantum Dots for Optical Bioimaging. Small 2019, 15(36):e1902136.
18. Ge J, Lan M, Zhou B, Liu W, Guo L, Wang H, Jia Q, Niu G, Huang X, Zhou H et al: A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun 2014, 5:4596.
19. Yousaf M, Huang H, Li P, Wang C, Yang Y: Fluorine Functionalized Graphene Quantum Dots as Inhibitor against hIAPP Amyloid Aggregation. ACS Chem Neurosci 2017, 8(6):1368-1377.
20. Kim D, Yoo JM, Hwang H, Lee J, Lee SH, Yun SP, Park MJ, Lee M, Choi S, Kwon SH et al: Graphene quantum dots prevent α-synucleinopathy in Parkinson's disease. Nat Nanotechnol 2018, 13(9):812-818.
21. Lai PX, Chen CW, Wei SC, Lin TY, Jian HJ, Lai IP, Mao JY, Hsu PH, Lin HJ, Tzou WS et al: Ultrastrong trapping of VEGF by graphene oxide: Anti-angiogenesis application. Biomaterials 2016, 109:12-22.
22. Duchamp de Lageneste O, Julien A, Abou-Khalil R, Frangi G, Carvalho C, Cagnard N, Cordier C, Conway SJ, Colnot C: Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat Commun 2018, 9(1):773.
23. Ma H, Wang J, Zhao X, Wu T, Huang Z, Chen D, Liu Y, Ouyang G: Periostin Promotes Colorectal Tumorigenesis through Integrin-FAK-Src Pathway-Mediated YAP/TAZ Activation. Cell Rep 2020, 30(3):793-806.e796.
24. Xiao H, Zhang Y, Li Z, Liu B, Cui D, Liu F, Chen D, Liu Y, Ouyang G: Periostin deficiency reduces diethylnitrosamine‐induced liver cancer in mice by decreasing hepatic stellate cell activation and cancer cell proliferation. The Journal of Pathology 2021, 255(2):212-223.
25. Li XY, Wang DP, Lu GQ, Liu KL, Zhang TJ, Li S, Mohamed OK, Xue WH, Qian XH, Meng FH: Development of a novel thymidylate synthase (TS) inhibitor capable of up-regulating P53 expression and inhibiting angiogenesis in NSCLC. J Adv Res 2020, 26:95-110.
26. Icard P, Fournel L, Wu Z, Alifano M, Lincet H: Interconnection between Metabolism and Cell Cycle in Cancer. Trends Biochem Sci 2019, 44(6):490-501.
27. Casar Tena T, Maerz LD, Szafranski K, Groth M, Blätte TJ, Donow C, Matysik S, Walther P, Jeggo PA, Burkhalter MD et al: Resting cells rely on the DNA helicase component MCM2 to build cilia. Nucleic Acids Res 2019, 47(1):134-151.
28. Amara S, Lopez K, Banan B, Brown SK, Whalen M, Myles E, Ivy MT, Johnson T, Schey KL, Tiriveedhi V: Synergistic effect of pro-inflammatory TNFα and IL-17 in periostin mediated collagen deposition: potential role in liver fibrosis. Mol Immunol 2015, 64(1):26-35.
29. Yoshihara T, Nanri Y, Nunomura S, Yamaguchi Y, Feghali-Bostwick C, Ajito K, Murakami S, Mawatari M, Izuhara K: Periostin plays a critical role in the cell cycle in lung fibroblasts. Respir Res 2020, 21(1):38.
30. Song H, Guo T, Zhao Z, Wei Y, Luo H, Weng W, Zhang R, Zhong M, Chen C, Su J et al: Biocompatible PEGylated Gold nanorods function As cytokinesis inhibitors to suppress angiogenesis. Biomaterials 2018, 178:23-35.
31. Song H, Wang W, Zhao P, Qi Z, Zhao S: Cuprous oxide nanoparticles inhibit angiogenesis via down regulation of VEGFR2 expression. Nanoscale 2014, 6(6):3206-3216.
32. Drissi L, Ouarrad H, Ramadan F, Fritzsche W: Graphene and silicene quantum dots for nanomedical diagnostics. RSC Advances 2020, 10(2):801-811.
33. Qin Y, Zhou ZW, Pan ST, He ZX, Zhang X, Qiu JX, Duan W, Yang T, Zhou SF: Graphene quantum dots induce apoptosis, autophagy, and inflammatory response via p38 mitogen-activated protein kinase and nuclear factor-κB mediated signaling pathways in activated THP-1 macrophages. Toxicology 2015, 327:62-76.
34. Singh R, Batoki JC, Ali M, Bonilha VL, Anand-Apte B: Inhibition of choroidal neovascularization by systemic delivery of gold nanoparticles. Nanomedicine 2020, 28:102205.
35. Yang T, Yao Q, Cao F, Liu Q, Liu B, Wang XH: Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis. Int J Nanomedicine 2016, 11:6679-6692.
36. Hu X, Sun A, Kang W, Zhou Q: Strategies and knowledge gaps for improving nanomaterial biocompatibility. Environ Int 2017, 102:177-189.
37. Zhu Y, Wu J, Chen M, Liu X, Xiong Y, Wang Y, Feng T, Kang S, Wang X: Recent advances in the biotoxicity of metal oxide nanoparticles: Impacts on plants, animals and microorganisms. Chemosphere 2019, 237:124403.
38. Tabish TA, Scotton CJ, Ferguson DCJ, Lin L, der Veen AV, Lowry S, Ali M, Jabeen F, Ali M, Winyard PG et al: Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy. Nanomedicine (Lond) 2018, 13(15):1923-1937.
39. Wu C, Wang C, Han T, Zhou X, Guo S, Zhang J: Insight into the cellular internalization and cytotoxicity of graphene quantum dots. Adv Healthc Mater 2013, 2(12):1613-1619.
40. Eelen G, Treps L, Li X, Carmeliet P: Basic and therapeutic aspects of angiogenesis updated. Circulation research 2020, 127(2):310-329.
41. Rohlenova K, Goveia J, García-Caballero M, Subramanian A, Kalucka J, Treps L, Falkenberg KD, de Rooij LP, Zheng Y, Lin L: Single-cell RNA sequencing maps endothelial metabolic plasticity in pathological angiogenesis. Cell metabolism 2020, 31(4):862-877. e814.
42. Kudo A, Kii I: Periostin function in communication with extracellular matrices. Journal of cell communication and signaling 2018, 12(1):301-308.
43. González-González L, Alonso J: Periostin: a matricellular protein with multiple functions in cancer development and progression. Frontiers in oncology 2018, 8:225.
44. Mishra SK, Wheeler JJ, Pitake S, Ding H, Jiang C, Fukuyama T, Paps JS, Ralph P, Coyne J, Parkington M et al: Periostin Activation of Integrin Receptors on Sensory Neurons Induces Allergic Itch. Cell Rep 2020, 31(1):107472.
45. Huang Q, Li F, Liu X, Li W, Shi W, Liu FF, O'Sullivan B, He Z, Peng Y, Tan AC et al: Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 2011, 17(7):860-866.