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Abstract 22 

Background: CD146 is a tight junction associated molecule involved in maintaining 23 

endothelial barrier and balancing immune-inflammation response in cardiovascular disease. 24 

Notably, the peripheral CD146
+
 cells significantly upsurge under vessel dyshomeostasis like 25 

acute myocardial injury (AMI), appearing to be promising therapeutic targets. In this study, in 26 

a new view of gene correlation, we aim at deciphering the underlying complex mechanism of 27 

CD146
+ 

cells in the development of AMI. 28 

Methods: Transcription dataset GSE 66360 of CD146
+
 blood cells from clinical subjects were 29 

downloaded from NCBI. Pearson networks were constructed and the clustering coefficients 30 

were calculated to disclose the differential connectivity genes (DCGs). Analysis of gene 31 

connectivity and gene expression was performed to reveal the hub genes and hub genes clusters 32 

followed by gene enrichment analysis.  33 

Results and conclusions: Among the total 23520 genes, 27 genes out of 126 differential 34 

expression genes are identified as DCGs. Those DCGs normally stay in the peripheral of 35 

networks while transfer to the functional central position under AMI situation. Moreover, it is 36 

revealed that DCGs spontaneously crowd together into two functional models, CCL20 cluster 37 

and NR4A3 cluster, influencing the CD146-mediated signaling pathways during the pathology 38 

of AMI for the first time.  39 

 40 

Keywords: acute myocardial infarction (AMI), CD146, Pearson network, clustering 41 

coefficient, differential connectivity genes (DCGs) 42 



 

 

3	

	

 

1. Introduction 43 

Cluster of differentiation 146 (CD146) / melanoma cell associated molecule is an essential 44 

immunoglobulin-like protein initially discovered in metastatic melanoma (1). It locates at 45 

endothelial tight junctions across all vessel beds, mediating physiological and pathological 46 

events under vascular dyshomeostasis (2, 3). Pioneering researchers regard CD146 as a 47 

historical marker for isolating circulation endothelial cells that sloughed off the inflamed 48 

vasculature (4). Over several decades, CD146 has also been discovered in other cell types 49 

including mesenchymal stem cells (5), endothelial progenitor cells (6), macrophages (7), T 50 

helper 17 cells (8), B lymphocytes (9), T lymphocytes (9, 10), and natural killer cells (9). The 51 

CD146
+ 

circulating
 
cells occupy about 2 % of peripheral mononuclear cells in healthy 52 

individuals (9) and most notably, this percentage increases in certain conditions associated with 53 

vascular dysfunction for instance myocardial infarction, connective tissue diseases, and cancers 54 

(6, 11-13). Moreover, CD146 activated T cells have shown an enhanced ability to interact with 55 

endothelium in adhesion, rolling, and transmigration, evidenced by human and murine studies 56 

(14, 15). Given its multi-function in vessel structure, angiogenesis, and lymphocyte activation 57 

and its enabled detection in the bloodstream, CD146 appears to be a potential target for vascular 58 

disorders (16-18).  59 

Complex networks are of great interest to researchers in the fields of computational biology 60 

and bioinformatics (19-21). It has been gradually extended from initial gene comparison to 61 

protein-protein network modeling, to protein-genetic investigation, and up to the disease-62 
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disease association exploration (22). Most of the successful bioinformatics approaches that 63 

identify the initial key genes, however, have based on sole gene expression comparison and 64 

accordingly the top differential expression genes (DEGs) forward to mechanism validation 65 

without paying attention to the gene interaction rearrangement (23, 24). Instead, the hub-66 

structured network is an important motif that is, to our best knowledge, leading the genome-67 

wide association characterization in complex networks (25, 26). It generates the structure view 68 

angle to present the innermost gene-gene interaction, thus giving a comprehensive 69 

understanding of underlying mechanisms of disorders.  70 

Acute myocardial injury (AMI) dataset GSE 66360 rests on the performance of CD146
+
 71 

populations during the AMI early development (12, 27-29). In this paper, we try to decipher 72 

gene reassemble with the correlation network structure parameter analysis (30, 31), and extract 73 

optimal genes collection, the differential connectivity genes (DCGs), and reveal functional 74 

gene clusters which likely leading the pathogenesis of peripheral CD146
+
 blood cells during 75 

the AMI development in human for the first time. 76 

2. Materials and methods  77 

2.1 Data 78 

The GSE66360 (12) gene transcription profile data of human AMI in the NCBI database was 79 

selected as the primary interest. Clinical subjects including fifty healthy individuals and forty-80 

nine AMI patient subjects were recruited in the original investment by the Topol group. To 81 
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gather the data, CD146
+ 

cells were obtained by CD146-based magnetic immunoisolation from 82 

the subjects’ blood samples. RNA samples were isolated from the CD146
+
 cells and processed 83 

microarray by Affymetrix human U133 Plus 2.0 array. In this study, two cohorts were formed, 84 

a discovery cohort, consisting of twenty-two healthy subjects (control group) and twenty-one 85 

AMI patients (AMI group), which were used for the discovery of genes and appropriate testing 86 

methods, along with a validation cohort, consisting of twenty-eight healthy subjects and 87 

twenty-eight AMI patients, which were used for the validation of the genes and methods 88 

discovered in the other cohort. No data was excluded from the original databases used during 89 

this study. 90 

2.2 Study design 91 

Firstly, using the hypothesis test, we distinguished DEGs based on the gene expression profile 92 

in the discovery cohort and then verified in the validation cohort. Secondly, the gene networks 93 

of DEGs were constructed based on the Pearson coefficients, followed by the network 94 

separation assessment. Thirdly, the clustering coefficient, which is a parameter indicating gene 95 

connectivity, was calculated for each DEG under each gene network (32). Accordingly, genes 96 

with a clustering coefficient that represent a consistent increase in the AMI group among 97 

different cohorts were labeled as DCGs. Finally, two-dimensional analysis of gene connectivity 98 

and expression was employed, for identifying the hub gene clusters, alongside performing the 99 

gene enrichment analysis (Figure 1).  100 

2.3 Identify DEGs 101 
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A total of 23520 genes were screened in each sample. The hypothesis test was used to screen 102 

the DEGs between control and AMI group (33). The method primarily gave weight for the 103 

distribution shape of the expression spectrum. If the distribution shape was different between 104 

the two groups, then the gene expression was different and the significance level was α1. If not, 105 

a normal distribution test (significance level α2) and homogeneity test of variance (significance 106 

level α3) would be carried out. t-test or welch's t-test (significance level α4) was used for normal 107 

distribution; Rank sum test (significance level α4) was used for abnormal distribution with a 108 

similar distribution of expression spectrum (33). We defined α1 = 0.00001, α2=0.00002, α3 = 109 

0.00001, and α4= 0.00001 as the significant level of the hypothesis test.  110 

2.4 Clustering coefficient 111 

A local clustering coefficient was introduced to measure the compactness, or the connectivity 112 

of genes within a suspected cluster, of a complete array formed by the adjacent nodes within a 113 

network (34). To clarify, assume that a node i in a network was connected to ki nodes. The ki 114 

nodes were called neighbors of node i. The ratio of the actual number Ei of edges and the total 115 

number ki(ki-1)/2 of possible edges between ki nodes were defined as the clustering coefficient, 116 

Ci, of node i, that is, Ci = 2Ei/(ki(ki-1)). 117 

2.5 Pearson network construction and assessment  118 

Pearson correlation networks of DEGs were constructed according to the absolute value of 119 

Pearson coefficients. Two genes were considered correlated if the absolute value of the Pearson 120 
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coefficient was greater than the threshold x (0< x <1), then a line could be drawn between the 121 

two genes. In the cases when genes were not correlated, there would be no link in the network 122 

and thus no line could be drawn. Gene clusters were determined by examining the clustering 123 

coefficients, and those with a non-zero value could be labeled clusters. Gene clusters represent 124 

a functional module as a whole with varying degrees of connectivity; while a degree describes 125 

the number of genes connected to one another. The average clustering coefficients of DEGs 126 

were calculated to evaluate the overall separation of the control and AMI networks. The method 127 

was implemented in R i386 3.6.2. 128 

Natural biological networks are scale-free networks and the degree distributions follow the 129 

power-law exponential distribution index range 2 ~ 3 (35, 36). We indicated the gene networks 130 

under threshold 0.5 and 0.7 since the power-law indexes of degree distribution in discovery 131 

cohort were in the range of 2 ~ 3 and presented the corresponding networks in validation cohort 132 

in this study (Supplement Table 1). 133 

2.6 Identify DCGs  134 

In the analysis of network connection parameters, the greater the difference between the control 135 

and AMI group, the higher the correlation with AMI. The following is describing our unique 136 

identifying method. Assume that the average clustering coefficient of the control group and 137 

AMI group could be separated at the threshold [0.1, 0.9]. First, the clustering coefficient of 138 

each gene in the Pearson correlation networks of the control group and AMI group, under the 139 

threshold 0.1 ~ 0.9, were calculated with step length 0.1. Secondly, the average clustering 140 
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coefficient of each gene cross threshold 0.4 ~ 0.8 was calculated to compare changes in 141 

connectivity between the two groups within the validation and discovery cohorts. Finally, if 142 

clustering coefficient differences in discovery cohort and validation cohorts were consistently 143 

greater than 0.1 between the AMI group and the control group, the genes were identified as 144 

candidates for DCGs.  145 

To test the reliability of the proposed candidate genes across different datasets, we expanded 146 

our method to a combination cohort, which included all subjects in both discovery and 147 

validation cohorts. Increasing the number of subjects, but also introducing some variation in 148 

the data due to the less categorized subject population. The overall network between the control 149 

and the AMI groups were still separable through threshold 0.4 ~ 0.8 (data not shown). While 150 

having 27 out of 39 candidate genes still showing clustering coefficient differences were 151 

greater than 0.1 in this combination cohort were define as DCGs. 152 

2.7 Gene set enrichment 153 

Gene set enrichment was performed by the STRING server. Biological process, Reactome 154 

pathways and protein-protein association networks were generated for CCL20 cluster, NR4A3 155 

cluster and DCGs. 156 

2.8 Graphs 157 

Heatmaps of DEGs and DCGs were generated by using heatmap.2 function in the gplots 158 

package. Networks were computed by using igraph::graph.data.frame function. Layout 159 
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algorithm of layout.kamada.kawai was used for visualizing the overall DEGs networks and the 160 

connections for individual genes. Layout algorithm of layout.circle was used to visualize the 161 

gene connections within DEGs and DCGs in circle view. Cytoscape network function was used 162 

to generate the clustered DCGs networks. 163 

3. Results 164 

3.1 DEGs identification  165 

In our initial analysis, 126 out of 23520 genes are significantly altered in the AMI group 166 

compare to the control group in discovery cohort, defined as DEGs, with the majority (79 of 167 

126) demonstrate an up-regulation feature (Figure 2A). And those genes show a similar 168 

expression pattern in the validation cohort (Figure 2B).  169 

3.2 Assessment of DEGs’ networks  170 

The overall gene networks of DEGs in the control group and the AMI group are distinctly 171 

independent through a large range of thresholds in discovery cohort and validation cohort 172 

(Figure 3A). The networks in discovery cohort are separable through threshold 0.1 ~ 0.9 and 173 

in validation cohort are separable through 0.1 ~ 0.8. The average separable widths of the 174 

discovery cohort and validation cohort are 0.218 and 0.0518, respectively. The validation 175 

cohort shows a narrower split range possibly attributed to the variations between two cohorts, 176 

for instance, the differential sample size, age, and co-morbid disorders.  177 
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In addition, the gene connections within DEGs’ networks in the AMI group are more complex 178 

than those in the control group in both cohorts (Figure 3C). In discovery cohort, the number 179 

of gene clusters within AMI network gradually decreases from 125 to 67, when threshold 180 

increases from 0.4 to 0.8, while it more sharply decreases from 123 to 17 in the control group 181 

(Figure 3B). Similarly, the clusters decline with a lower slope in the AMI group compared to 182 

the control group in validation cohort (Figure 3B).  183 

The data described above suggest that gene networks of DEGs are largely and consistently 184 

disturbed by AMI stimulation as is seen in two independent cohorts, verifying our findings. 185 

Thus, DEGs and DEGs-networks are mathematically reliable and hereafter can be set as the 186 

foundation for in-depth gene interaction data mining.  187 

3.3 DCGs identification and connectivity analysis 188 

Beyond DEGs, we identified 27 genes as DCGs whose clustering coefficients difference is 189 

greater than 0.1 in the discovery cohort, the validation cohort, and the extended combination 190 

cohort (Figure 4A, Supplement Table 2). The sub-networks of DCGs present obvious tighter 191 

connections in the AMI group compare to the control group, in both discovery and validation 192 

cohorts (Figure 4C). When threshold increased from 0.4 to 0.8, the average degree of DCGs 193 

progressively decreases from 16.0 to 4.30 in the AMI group, while it decreases from 7.93 to 0 194 

in the control group in discovery cohort (Figure 4D). Similarly, in validation cohort, this 195 

number decreases from 19.9 to 1.41 in the AMI group while from 3.26 to 0 in the control group 196 



 

 

11	

	

 

(Figure 4D). Besides clustering coefficients, gene expression of those DCGs is showing a 197 

steady increase in the AMI group in discovery and validation cohorts (Figure 4B). 198 

Therefore, we propose that the networks’ differential of all DEGs largely attributes to the 199 

connection changes within DCGs. As visualized in kamada-kawai layout, the DCGs randomly 200 

participate in the DEGs’ network and connect to a few genes under a normal steady state. 201 

However, they appear to interact with more functional genes and shift into central positions 202 

after AMI in both discovery and validation cohorts (Figure 5).  203 

3.4 Two-dimensional analysis of gene connectivity and gene expression 204 

Since the power-law indexes of degree distribution in the discovery are in the range of natural 205 

network, we regard the discovery cohort as a more precise dataset and it is selected for the 206 

following analysis. The average clustering coefficient and gene expression of DCGs are plotted 207 

into a scatterplot for the two-dimensional analysis (Figure 6A). NR4A3 and CCL20 present 208 

high levels of clustering coefficient and gene expression changes, defined as CC
high

GeExp
high

 209 

genes. SOCS3, FOSL2, PLIN2 are the genes that were found to have high clustering coefficient 210 

changes (fold change > 2) with low expression change, defined as CC
high

GeExp
low

 genes; while 211 

IL1R2, NLRP3, ANXA3 and AC079305.10 are the genes that were found to have high 212 

expression changes (fold change > 0.4) with low clustering coefficient changes, defined as 213 

CC
low

GeExp
high

 genes. All information on these genes is shown in Table 1. Subgraphs of 214 

NR4A3, CCL20, and other DCGs provide pieces of evidence that support their increased gene 215 

connectivity after AMI in the discovery cohort (Figure 6C, Supplement Figure 1A and 1B).  216 
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3.5 NR4A3 and CCL20 clusters identification  217 

Zooming into the subgraphs of individual genes, we reveal that DCGs stay “non-activated” in 218 

the control group (Figure 7A). Interestingly, they appear to be spontaneously gathering 219 

together as two separate clusters after AMI stimulation (Figure 7B, Supplement Figure 1A 220 

and 1B). CCL20 connects with SKIL, MMP9, ITPRIP, ANXA3, GLUL, CXCL16, IL1R2, 221 

TMCC3, NLRP3, PYGL, RNF144B, BCL6, LILRB2, CLEC4E, FCER1G, and AC079305.10, 222 

identify as the CCL20 cluster. NR4A3 connects with NR4A2, FOSL2, CDKN1A, SOCS3, 223 

GABARAPL1, ITPRIP, SYTL3, PELI1, MAP3K8, and PLIN2, identify as the NR4A3 cluster. 224 

While there are overlapping genes between clusters, ITPRIP, SKIL and MAPK38 are the 225 

intermediate genes that connect both clusters according to their subgraphs (Supplement 226 

Figure 1B). The CC
high

GeExp
high

 gene, NR4A3 or CCL20, serve as leading-like hub gene in 227 

each cluster. The clustering coefficient fold changes of NR4A3 and CCL20 are 15.7 and 10.2, 228 

respectively; and the gene expression fold changes are 0.379 and 0.422, respectively.  229 

3.6 Gene enrichment  230 

Biological process analysis shows that DCGs are involving in response to organic substrates, 231 

positive regulation of leukocyte activation, immune response, immune system process, 232 

response to cytokine and regulation of cytokine production. The CCL20 cluster is essential to 233 

the immune response, immune system process, and regulation of localization while the NR4A3 234 

cluster is essential to cellular response to corticotropin-releasing hormone stimulus, positive 235 

regulation of leukocyte activation, and regulation of apoptotic process (Table 2).  236 
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Reactome pathway analysis revealed that DCGs are related to the immune system with regards 237 

to tasks such as signaling by interleukins, namely interleukin-1, interleukin-4 and interleukin-238 

13 signaling, the innate immune system and the dectin-2 family. The CCL20 cluster is essential 239 

to immune system, innate immune system, the dectin-2 family, and neutrophil degranulation 240 

while the NR4A3 cluster is essential to RNA Polymerase II Transcription, Generic 241 

Transcription Pathway, and MyD88 cascade initiated on plasma membrane (Table 2).  242 

4. Discussion  243 

CD146 is a junction-associated adhesion molecule that participates in immune and 244 

inflammatory pathological processes in the initiation and development of vascular diseases (2). 245 

CD146 activated leukocytes are recruited to the inflamed endothelial to induce the expression 246 

of chemokines and cytokines and, in doing so, progressively destroys the blood vessel barrier. 247 

Our study found that following AMI stimulation, in CD146
+
 human blood cells, 126 out of 248 

total 23,520 genes show significant differential expression (P<0.0001) and among those, 27 249 

genes show consistent connectivity changes and serve as DCGs. Unlike DEGs, DCGs are able 250 

to not only aggregate gene expression but also encompass gene connectivity properties, 251 

internally coupling into functional gene clusters—NR4A3 cluster and CCL20 cluster, 252 

orchestrating the gene networks’ entire dynamics in CD146 associated AMI pathophysiology 253 

development. Meanwhile, NR4A3 and CCL20 are revealed as hub genes since they experienced 254 

both connectivity and expression experienced significant changes after AMI stimuli. 255 

Furthermore, gene enrichment analysis shows that the DCGs are involved in inflammation-256 
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immune response, with CCL20 being principal to the immune response and regulation of 257 

localization; while, the NR4A3 cluster is principal to leukocyte activation, apoptotic process, 258 

and cellular response to corticotropin-releasing hormone stimulus; such findings align with the 259 

well-known hypothesis that CD146 mediated inflammation plays an important role in the 260 

pathogenesis of AMI.   261 

The network structural parameter analysis method is applied to weave the gene-gene 262 

correlation network. We identify DCGs which present steadily elevated connectivity under 263 

AMI conditions, in both the discovery and validation cohorts, further confirming the 264 

upregulation seen in the combination cohort (Supplement Table 2). As expected, the gene 265 

expression of DCGs was increased after AMI, but was not distinguishable from DEGs solely 266 

by expression signature (data not shown). NR4A3 and CCL20 as highlight hub genes were also 267 

defined as AMI biomarkers after pre-filtering the co-morbidity relevant genes by the original 268 

Topol group (12). SOCS3 tends to be the only “shared” AMI biomarker candidate revealed by 269 

other groups in which the same GSE66360 dataset is included as one of their study objects (27, 270 

28). Recognizing the CCL20, NR4A3, and SOCS3 as top DCGs substantiate previous outputs 271 

and in turn, the validity of our method is enhanced. Therefore, we recommend the gene 272 

connectivity analysis, along with gene expression signature, to be used as a powerful and 273 

unbiased way for researchers to rank the importance of candidate DEGs.  274 

NR4A3 belongs to the NR4A orphan nuclear receptor family (with NR4A2 and NR4A1), playing 275 

a protective role in AMI development. The JM Penninger group reports that NR4A3 is the 276 
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highest-ranking gene in circulating human endothelial cells under atherosclerosis (37). 277 

Transcription analysis of human left ventricular myocardium shows that NR4A3 up-regulated 278 

during ischemia and reperfusion in normal and chronic ischemic myocardium (38). Similarly, 279 

NR4A3 is found to be elevated 10-days post left anterior descending artery ligation ischemia 280 

surgery in mice (39). Overexpression of NR4A3 significantly reduces infarct size, preventing 281 

deterioration of left ventricular function and repression of neutrophil infiltration in the heart of 282 

mice after coronary artery ligation, relate to the activation of JAK2/STAT3 and the inhibition 283 

of STAT3 dependent NF-κB signaling pathways (40). Additionally, it has to point out that the 284 

NR4A subgroup including NR4A3 is an immediate early response gene induced by diverse 285 

physiological, i.e., mechanical agitation, calcium, and inflammation cytokines (41). This 286 

reinforces our data that, in the very early-stage AMI, NR4A3 has a significant 16-fold clustering 287 

coefficient climb and 42% gene expression increase. Yet the nuclear factor NR4A3 implications 288 

in CD146
+ 

related myocardial disorders remain a mystery. 289 

CCL20, a C-C motif chemokine, is a chemoattractant for recruiting leukocytes to sites of injury 290 

and inflammation (Figure 6B). CCL20 secretion is induced by pro-inflammatory chemokines 291 

and cytokines, such as CXCL12, IL17, IL1β, IL6, and is in part related to JAK/STAT pathway 292 

signaling in multiple cells (42-44). IL6 and soluble IL6 receptor stimulate STAT3 binding to 293 

the CCL20 promotor and IL17 stimulate the phosphorylated NF-κB binding to the CCL20 294 

promoter in murine astrocytes, facilitate the neuroinflammation within central nervous system 295 

(42). In addition, the co-expression of CCL20 receptor CCR6 and CD146 is a marker of effector 296 
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memory Th17 cells, which mediate migration and is thought to be essential for inflammation 297 

in human psoriasis (8). Moreover, it is reported that CCL20 level elevated in clinical patients’ 298 

serum with ischemic myocardial infarction (45, 46). In vitro study shows that CCL20 299 

expression increase in CD146
+
 human mesenchymal stromal cells at the early pro-300 

inflammatory phase in fracture healing (47). Thus, we hypothesis that CCL20 binding its 301 

receptor CCR6 is what drives the CD146-mediated vessel inflammation progress in early AMI 302 

phase. 303 

In terms of functional models, DCGs are self-organized into two clusters, the NR4A3 and 304 

CCL20 clusters, with 18 genes and 12 genes in each cluster, respectively. All genes directly 305 

link to its hub gene and partly link to adjacent genes as shown in Figure 7. Protein-protein 306 

connection analyzed by STRING database produced a structure that is greatly similar to our 307 

network pattern in which CCL20 connects with CXCL16, IL1R2, MMP9, NLRP3, BCL6 308 

LILRB2, PELI1, CLEC4E, FCER1G, and NR4A3 connect with NR4A2, FOSL2, RNF144B, 309 

CDKN1A, SOCS3 (Supplement Figure 2). A few of gene-gene correlations within clusters are 310 

stated in inflammatory diseases. MMP9 activation correlates with CCL20 expression in 311 

astrocytes via Notch-1/Akt/NF-κB pathway promoting leukocyte migration cross blood-brain 312 

barrier (48). NR4A2 and NR4A3 as orphan nuclear receptors mediate neutrophil number and 313 

survival in chronic inflammatory signals multiple hematologic disorders (49-51). FOSL2 acts 314 

as an activating protein-1 transcription factor promoting hematopoietic progenitor cell to 315 
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macrophage and neutrophils in a SOCS3 dependent manner is reported (52). Nevertheless, most 316 

of the cluster functions are rarely reported in AMI pathogenesis.  317 

Taken together, we reveal that NR4A3 and CCL20 clusters are novel functional modules in 318 

CD146
+
 cells-mediated immuno-inflammatory balance, triggering increased susceptibility to 319 

vascular deterioration and accelerating myocardial injury. NR4A3 and CCL20 as hub genes 320 

largely impact the early AMI development and can be promising targets for clinical diagnosis. 321 

In-depth studies are necessary for understanding the mechanisms of peripheral CD146
+
 cells 322 

in cardiovascular disease. 323 
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 494 

Figure Legends 495 

Figure 1. Flow chart for study design. DEGs, differential expression genes; DCGs, differential 496 

connectivity genes. 497 

Figure 2. Gene expression profiles of DEGs. 126 genes show significant differential 498 

expressions between the AMI and the control groups in the discovery cohort (A) and validation 499 

cohort (B), thus define as DEGs. DEGs, differential expression genes. 500 

Figure 3. Assessment of DEGs’ networks. Networks in the control and AMI groups are 501 

independent and separable according to the average clustering coefficients of DEGs (A). 502 

Number of clusters within DEGs’ networks progressively decline when thresholds increase 503 

from 0.1 to 0.9 (B). The AMI group has a lower decline slope. The gene networks of DEGs in 504 

the AMI group has more complex connection compare to that in the control group (C). 505 

Networks are present under threshold 0.5 and 0.7. Darker line represents connections under 506 

threshold 0.7; lighter line represents connections under threshold 0.5. DEGs, differential 507 

expression genes. 508 
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Figure 4. Identification of DCGs. Genes that clustering coefficient increased over 0.1 in the 509 

AMI group, in discovery cohort and validation cohort, are revealed as DCGs (A). Gene 510 

expression profile of DCGs shows stable increase in AMI group in two cohorts (B). The 511 

connection among DCGs in the AMI group are denser (C) and the average degrees of DCGs 512 

in AMI group are higher (D) compare to the control group in two cohorts. Networks are 513 

presented under threshold 0.5 and 0.7. Darker line represents connections under threshold 0.7; 514 

lighter line represents connections under threshold 0.5. Degree are presented as mean ± SEM. 515 

DCGs, differential connectivity genes. 516 

Figure 5. Visualization of DCGs in DEGs’ networks. The networks of DEGs in discovery 517 

cohort (A) and in the validation cohort (B) indicate that the DCGs participate in distinctive 518 

ways in the control group and in the AMI group. DCGs switch to central functional position of 519 

networks and participate in more intricate connections under AMI situation. Yellow nodes 520 

indicate the DCGs. Red gene names indicate the hub genes. DEGs, differential expression 521 

genes; DCGs, differential connectivity genes. 522 

Figure 6. Analysis of gene connection and expression of DCGs in discovery cohort. The 523 

analysis of clustering coefficient and gene expression revealed CCL20 and NR4A3 as hub genes 524 

(A). The CCL20 is a chemoattractant while NR4A3 is a nuclear factor receptor (B). Subgraphs 525 

of CCL20 and NR4A3 substantiate their important roles in AMI development (C). Networks 526 

are presented under threshold 0.5 and 0.7. Darker line represents connections under threshold 527 

0.7; lighter line represents connections under threshold 0.5. DCGs, differential connectivity 528 

genes; CC, clustering coefficient; GeExp, gene expression. 529 
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Figure 7. CCL20 cluster and NR4A3 cluster formation in early-stage AMI. CCL20 and NR4A3 530 

stay in the peripheral position of DCGs’ network under normal state (A). However, they shift 531 

to the primary position of DCGs’ network dominating two functional clusters under AMI 532 

stimulation (B). DCGs, differential connectivity genes. 533 



Figures

Figure 1

Flow chart for study design. DEGs, differential expression genes; DCGs, differential connectivity genes.



Figure 2

Gene expression pro�les of DEGs. 126 genes show signi�cant differential expressions between the AMI
and the control groups in the discovery cohort (A) and validation cohort (B), thus de�ne as DEGs. DEGs,
differential expression genes.



Figure 3

Assessment of DEGs’ networks. Networks in the control and AMI groups are independent and separable
according to the average clustering coe�cients of DEGs (A). Number of clusters within DEGs’ networks
progressively decline when thresholds increase from 0.1 to 0.9 (B). The AMI group has a lower decline
slope. The gene networks of DEGs in the AMI group has more complex connection compare to that in the
control group (C). Networks are present under threshold 0.5 and 0.7. Darker line represents connections



under threshold 0.7; lighter line represents connections under threshold 0.5. DEGs, differential expression
genes.

Figure 4

Identi�cation of DCGs. Genes that clustering coe�cient increased over 0.1 in the AMI group, in discovery
cohort and validation cohort, are revealed as DCGs (A). Gene expression pro�le of DCGs shows stable
increase in AMI group in two cohorts (B). The connection among DCGs in the AMI group are denser (C)
and the average degrees of DCGs in AMI group are higher (D) compare to the control group in two



cohorts. Networks are presented under threshold 0.5 and 0.7. Darker line represents connections under
threshold 0.7; lighter line represents connections under threshold 0.5. Degree are presented as mean ±
SEM. DCGs, differential connectivity genes.

Figure 5

Visualization of DCGs in DEGs’ networks. The networks of DEGs in discovery cohort (A) and in the
validation cohort (B) indicate that the DCGs participate in distinctive ways in the control group and in the



AMI group. DCGs switch to central functional position of networks and participate in more intricate
connections under AMI situation. Yellow nodes indicate the DCGs. Red gene names indicate the hub
genes. DEGs, differential expression genes; DCGs, differential connectivity genes.

Figure 6

Analysis of gene connection and expression of DCGs in discovery cohort. The analysis of clustering
coe�cient and gene expression revealed CCL20 and NR4A3 as hub genes (A). The CCL20 is a
chemoattractant while NR4A3 is a nuclear factor receptor (B). Subgraphs of CCL20 and NR4A3
substantiate their important roles in AMI development (C). Networks are presented under threshold 0.5
and 0.7. Darker line represents connections under threshold 0.7; lighter line represents connections under
threshold 0.5. DCGs, differential connectivity genes; CC, clustering coe�cient; GeExp, gene expression.



Figure 7

CCL20 cluster and NR4A3 cluster formation in early-stage AMI. CCL20 and NR4A3 stay in the peripheral
position of DCGs’ network under normal state (A). However, they shift to the primary position of DCGs’
network dominating two functional clusters under AMI stimulation (B). DCGs, differential connectivity
genes.
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