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Abstract

Epidemiological studies have demonstrated the association between exposure to fine particulate matter (PM, 5) and the onset of Non-alcoholic
fatty liver disease (NAFLD). However, the potential biological mechanism is largely unknown. Our study was aimed to explore the impact of
PM, 5 on the transcriptome level in the liver of ob/ob mice by atmosphere PM, 5 whole-body dynamic exposure system, and meanwhile
preliminarily investigated the effects of metformin intervention in this process. 3,574 differentially expressed genes (DEGs) was screened out
by microarray analysis (p<0.05, FC>1.5). KEGG pathway enrichment analysis showed that these DEGs were mainly enriched in cancers,
infectious diseases and signal transduction, and the most significant pathway were thyroid hormone signaling pathway, chronic myeloid
leukemia and metabolic pathways. Then, 12 hub genes were gained through weighted gene correlation network analysis (WGCNA) and verified
by gRT-PCR. The expression of 5 genes in darkslateblue module (cd53, fcerlg, cd68, ctss, laptm5) increased after PM, 5 exposure, and
decreased after metformin intervention. They were related to insulin resistance, glucose and lipid metabolism and other liver metabolism, and
also neurodegenerative diseases. This study provided valuable clues and possible protective measures to the liver damage in ob/ob mice
caused by PM, 5 exposure, and further research is needed to explore the related mechanism in detail.

Highlights

1. Real time exposure of PM, 5 disturb the transcriptome level in ob/ob mice liver.

2. PM, 5 affect insulin resistance, glucose and lipid metabolism in obese fatty liver.

3. Metformin could protect the PM, s-induced metabolic disturbance in obese fatty liver.

4. WGCNA reveals 12 hub genes as potential biomarkers in PM, s-induced hepatic injury.

1. Introduction

Fine particulate matter (PM, ) refers to particles with an aerodynamic diameter (AED) of less than 2.5 pm in the ambient atmosphere. PM, 5
generally comes from natural sources and man-made production, while the sources in cities are mainly industrial emissions and traffic-related
exhaust particles (Mukherjee and Agrawal, 2018). It was estimated that more than 92% of people in the world living in places with PM, 5
concentrations higher than the 2005 World Health Organization (WHO) air quality guideline of 10 ug/m?. Lately according to the findings in
recent 15 years, WHO released the updated air quality guideline in which the reference value of PM, < was limited as 5ug/m? (WHO, 2021a). An
investigation of 47 representative cities from six continents revealed that PM, 5 concentrations in only 2 cities complied with the new guideline,
while in places from underdeveloped countries PM, 5 concentrations needed more than 90% decrease, which reflected that the majority of
global population would live in the areas with PM, 5 concentration below WHO guideline reference value in a rather long term in future,
especially in the low-income and middle-income countries (Carvalho, 2021). Due to the special physical and chemical properties, a variety of
chemical substances are easily absorbed to the particle surface of PM, s, including metals, polycyclic aromatic hydrocarbons (PAHs) and
endotoxins, which are typical toxicant that could give rise to gene mutations, DNA damage and epigenetic changes (Wu et al., 2017). Strong
and accumulative evidence demonstrated the causal relationships between PM, 5 exposure and all-cause mortality, pulmonary and
cardiovascular diseases (WHO, 2018). The major exposure route of PM, 5 in human is through inhalation, but Li et al. observed the deposition
of PM, 5 not only in the alveolar region of lung as generally recognition, but also in extra-pulmonary organs such as liver and kidney detected
by a fluorescent imaging method in vivo (Liang et al., 2019). As the hazardous health effects of PM, 5 has been raising global concern for
nearly 30 years, the detrimental effects of PM, 5 beyond respiratory and cardiovascular system has drawn more and more attention in recent
years.

Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver diseases from simple non-alcoholic fatty liver, non-alcoholic steatohepatitis
(NASH) to irreversible cirrhosis; it was the most prevalent chronic liver disease which would gradually progress to extrahepatic cancer,
hepatocellular carcinoma, cirrhosis or cardiovascular disease, and was associated with overall and cause-specific mortality (Simon et al.,
2021). Lately a 16-year prospective cohort study reported that long-term PM, 5 exposure was associated with higher risk of NAFLD in 58,026
participants when the concentrations of PM, s exceeded 23.5ug/m3; they found that each 1 pg/m3 elevation in PM, 5 concentration was
related with an HR of 1.06 for NAFLD (Sun et al., 2021). This study provided the first epidemiology evidence to illustrate that PM, 5 exposure
could be an important environmental risk factor for NAFLD. Zheng et al. observed that 10-month exposure of real-world PM, 5 induced NASH-
like phenotype in mice with calculated mean daily exposure concentration at 11.6ug/m? (Zheng et al., 2013). The subsequent animal studies
demonstrated that PM, 5 exposure decreased hepatic glycolysis, the Krebs cycle and GSH synthesis, increased hepatic lipogenesis, thus
disrupting redox balance in the liver, gradually causing inflammation and lipid steatosis in liver (Xu et al., 2019). These studies revealed that
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oxidative stress, inflammation, insulin resistance and circadian rhythm played important roles in contributing the imbalance of liver
metabolism. Even so, the related mechanism and pathways involved in this process were largely unknown.

Obesity population, as susceptible population, may be at a greater risk of air pollution. A large number of epidemiological studies have shown
that obese population are at higher risk of cardiovascular disease and Alzheimer's disease when exposed to particulate matter (Weichenthal et
al., 2014). Meanwhile, obesity is one of the most important driving factors for liver diseases. It has been shown that the prevalence rate of
steatohepatitis was approximately 3% in non-obese persons, 20% in obesity population, and 40% in extremely obese patients (Fabbrini et al.,
2010). The risk of liver cancer in obese patients was 1.4-4.1 times of that in healthy people (Huang et al., 2021). Hiesh et al. observed that
traffic-related air pollution was associated with serum level of cytokeratin-18, the indicator of NASH risk, in 74 overweight and obese
adolescents (Hsieh et al.,, 2018). The ambient PM exposure combined with high-fat diet treatment could cause a synergistic effect on the
changes of lipid accumulation, oxidative stress, and inflammation in the mouse liver (Ghassabian et al.). However, currently known information
about the effects of PM, 5 on the liver in obesity and is limited, and the regulation mechanism is not yet clear. Transcriptomics based on gene
chips is a reliable approach to provide comprehensive understanding on the changes in mRNA level caused by PM, s exposure. The screened
differentially expressed mRNA will provide clues and basis for follow-up research.

Metformin is a universal first-line medication for treating type 2 diabetes, and it was reported that metformin could restrain gluconeogenesis in
liver in a redox-dependent manner (Madiraju et al., 2018). Haberzettl et al. found that metformin could prevent PM, s-induced vascular insulin
resistance and activation of NF-kB and inflammasomes thus preventing endothelial progenitor cells (EPCs) mobilization and restoring EPCs
levels, so as to maintain EPCs homeostasis (Haberzettl et al., 2016). A number of studies have concluded that metformin can reduce the risk of
liver cancer by about 50%, indicating that it had hepatic protection effect while the mechanism was not clear (Huang et al., 2021). It was found
that metformin could effectively alleviate hyperglycemia in obese mice by stimulating CBP (CREB-binding protein) phosphorylation to block
insulin signaling pathway and suppress hepatic gluconeogenesis (He et al., 2009). However, the effect of metformin on PM, s-induced liver
toxicity in obesity has not been reported so far. The health interventions, like metformin, should be investigated to reduce the undesirable
environmental pollution effect.

Therefore, the aim of this study is to preliminarily explore the influence of PM, 5 on the transcriptome level in liver in ob/ob mice, and to
discover whether metformin have hepatic protection under exposure of PM, 5. The study could provide a basis for the screening of biomarkers
and the mechanisms after atmospheric PM, 5 exposure.

2. Methods
2.1 Animal treatment and Real-time Whole-body PM, 5 exposure

Twenty male ob/ob mice (C57BL/6J background, Huafukang Bio-Technique Co., Ltd, Beijing, China) were purchased from the Animal
Experimental Center of Capital Medical University and acclimated for a week before the experiment. Twenty mice were divided into four groups
randomly. And the interaction experiment was designed with two interaction factors (PM, 5 and metformin). The control group (Con group)
was exposed to filtered air and drank pure water, the PM, 5 exposure group (PM, 5 group) was exposed to concentrated PM, s, the drug group
(Met group) drank prepared metformin solution, and the intervention group (PM, s+Met group) has both factors. The metformin concentration
(250 mg/kg/day) in water was determined on a per-mouse basis and adjusted daily, based on measured daily water intake and body weight
(Luo et al., 2016).

Mice were housed four to five per cage on corncob bedding with ad-/ib access to food and water. The humidity was 50% and the temperature
was 22-26°C with a 12 h light/dark cycle. The PM, 5 exposure was carried out in Hinners-type stainless-steel whole-body inhalation chambers,
and concentrated by the ambient particulate matter whole-body dynamic exposure system; the cleaned air was filtered by animal cage air filter.
The exposure period was 6 h per day, 6 days per week from November 14th, 2019 to December 11th, 2019 at a total of 4 weeks, then the mice
was sacrificed. The experimental protocol was approved by the Committee of the Ethics Animal Experiments of Capital Medical University
(AEEI-2019-161) and carried out under the institutional guidelines for ethical animal use.

2.2. The exposure equipment and parameters monitor

The real-time PM, 5 concentrated exposure was conducted by small animal whole-body dynamic exposure system (HRH-300L, Beijing
Huironghe Technology Co., Ltd. Beijing, China). The inhalation exposure chambers were outfitted with air quality monitor and aerosol generator
to concentrate PM, 5, which ensure that the PM exposure is consistent with the changes of the external environment, and the concentration is
not too low (concentrate 6—10 folds).
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The condition inside the chambers was closely monitored to maintain a relatively constant 20-25°C temperature, 40-60% humidity, 18—20/h
ventilation frequency. The ambient PM, 5 concentration was monitored by using the Aerosol Detector Dusttrak Drx Aerosol Monitor 8533 (TSI
Instrument, Shoreview, MN). The characteristics of particles were measured by an Aerodynamic Particle Sizer (APS) Spectrometer 3938N
(including particle number, particle surface, particle mass) and analyzed by Aerosol Instrument Manager Software Version 10.1 (TSI
Instrument, Shoreview, MN).

2.3 Total RNA extraction and microarray analysis

For Affymetrix microarray profiling, the total RNA of mice liver was isolated by using TRIzol reagent (Invitrogen, Carlsbad, Canada), then
purified with RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer's protocol. Finally, the amount and quality of RNA were
determined using a UV-Vis spectrophotometer (Thermo, NanoDrop 2000, USA) at an absorbance of 260 nm. Each group had three replicate
samples tested, and for each sample, the experiment was performed in triplicate as technical replicates. The mRNA expression profile was
measured using Clariom ™ S Assay (Affymetrix GeneChip, USA). GeneChips were washed and stained in the Affymetrix Fluidics Station 450. All
arrays were scanned by using Affymetrix® GeneChip Command Console (AGCC) which was installed in GeneChip® Scanner 3000 7G. The
microarray analysis was performed using Affymetrix Expression Console Software (version 1.2.1). The row data(.cel file) were normalized by
the software TAC (Transcriptome Analysis Console; Vension:4.0.1) with Robust Multichip Analysis (RMA) algorithm using Affymetrix default
analysis settings and global scaling as a normalization method. Values presented are log2 RMA signal intensity. Data from the microarray
analysis (ECL files) discussed in this article were deposited in the National Center for Biotechnology Information (NCBI). All microarray data is
MIAME compliant and the raw data has been deposited in NCBIs Gene Expression Omnibus (NCBIs GEO ID: GSE186900,
https://www.ncbi.nIm.nih.gov/geo/query/acc.cgi?acc=GSE186900).

2.4 Differentially expressed genes (DEGs) analysis

In microarrays, the R package ‘limma’ was used to filter the differentially expressed genes (DEGs). R package ‘limma’ used moderated F-
statistic to filter the multi-group differentially expressed genes. The p-values were corrected by Empirical Bayes moderation. Benjamini-
Hochberg was used for multiple tests correction (FDR was used to adjust the p-values for multiple comparisons). The threshold sets (fold
change >2.0, pvalue<0.05 and FDR < 0.05) were conducted to filter these up- and down-regulated genes.

2.5 Gene Ontology (GO) Enrichment Analysis and Pathway Enrichment Analysis

Gene Ontology analysis is an internationally standardized system that classifies the gene function, and provides a series of dynamically
controlled vocabulary to comprehensively describe the attributes of genes and gene products in organisms. After the GO function classification
annotation of DEGs given, the GO enrichment analysis of DEGs was conducted. GO has three ontologies: molecular function, cellular
component, and biological process. The GO function enrichment analysis can determine the main biological functions performed by the DEGs.

In organisms, different genes coordinate with each other to perform their biological functions. Pathway analysis helps to further understand
the biological functions of genes. KEGG is the main public pathway database. Pathway enrichment analysis takes KEGG Pathway as the unit,
and applies hypergeometric test to find pathways that are significantly enriched in DEGs compared with the background of the entire genome.

Because the basic unit of GO is term, map the DEGs to each term of the GO database (http://www.geneontology.org/), and calculate the
number of genes in each term. Then apply hypergeometric test to find GO terms that are significantly enriched in DEGs compared with the
whole genome background. After the calculated p-value is corrected by FDR, GO terms with corrected p-value < 0.05 are defined as GO terms
that are significantly enriched in DEGs. Pathway enrichment analysis is the same as GO enrichment analysis, but needs to be replaced with
KEGG Pathway database.

2.6 Trend Analysis and Series Test of Cluster of Gene Ontology (STC-GO)
Analysis

Trend analysis was to cluster the gene expression pattern based on the characteristics of multiple continuous samples. The same gene
expression pattern can be found through trend analysis. First of all, all terms enriched by GO/KEGG terms were identified and hierarchically
clustered the terms statistically based on similarities among their gene memberships. Then a subset of representative terms was selected and
converted into a network layout. More specifically, all analysis has been carried out with the following ontology sources: GO Biological
Processes, KEGG Pathway, Reactome Gene Sets, CORUM, TRRUST, PaGenBase, Wiki Pathways and PANTHER Pathway. All genes in the
genome have been used as the enrichment background. Terms with a pvalue <0.01, a minimum count of 3, and enrichment factor>1.5 are
collected and grouped into clusters based on their membership similarities (similarity > 0.3 are considered a cluster).

2.7 Weighted Gene Correlation Network Analysis (WGCNA)

The genes evaluated for availability and the gene co-expression network was constructed by using the R package ‘WGCNA' in R (version 4.1.1).
The strength of correlation between genes was tested by Pearson correlation coefficient. The adjacency matrix was constructed to describe the
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correlation strength between the gene nodes, and further transformed into a topological overlap matrix (TOM). The formulas were as follows
(Langfelder and Horvath, 2008).

sy= [cor(x )|

1, ifsjj =T
710, otherwise

_ B
ajj—sjj

Then, the TOM matrix is used to quantitatively describe the similarity in gene nodes by comparing the weighted correlation between two gene
nodes and other gene nodes. WGCNA identifies gene modules using unsupervised clustering, then the modules of similar gene composition
were identified, the characteristic genes were calculated, the modules were hierarchically clustered, and similar modules were merged.

The co-expression modules analyzed by WGCNA are gene clusters with high topological overlap similarity. Genes in the same module have a
higher correlation and degree of co-expression. The Module eigengene E (ME), as the first principal component of the module, is used to
represent the expression pattern of the genes of the module in each sample.

2.8 Quantitative RT-PCR

The intramodule connectivity of a gene is equal to the sum of the degree of correlation between genes in that module. Therefore, the top 5
genes with the highest intramodule connectivity (the highest degree in each module) were selected as hub genes, and gRT-PCR were used to
verify the expression. According to the protocol provided by the manufacturer, the Direct-zol RNA MiniPrep kits (R2050, ZYMO) were used to
extract total RNA. PrimeScrip RT reagent Kit (RR037A, Takara, Japan) and SYBR Premix Ex Taq Il (Tli RNaseH Plus) (RR820B, Takara, Japan)
are used for reverse transcription and amplification, respectively. Liver samples from 5 animals were used in each group. GAPDH was used as
an internal reference, and the 2 24Ct yalue was normalized to its expression level. The sequence of qPCR primers used in this study are placed
in Supplementary Table 2 (Table S2). The experiment was performed in triplicate.

2.9 Statistical analysis

The OmicShare online analysis tools (http://www.omicshare.com/tools), R, Cytoscape and Metascape was performed in the part of
bioinformation analysis (Zhou et al., 2019). GraphPad Prism 8.0 was used to test and present the results of qRT-PCR. p< 0.05 was considered
as statistically significant.

3. Results
3.1 Concentration and Characterization of PM, 5 in exposure chamber

The experiment was carried out in November and December, and the PM, 5 pollution in Beijing showed strong spatiotemporal variations. Day
to day variation of PM, 5 possessed a long-term trend of fluctuations, with 2-6 peaks each month (Huang et al., 2015). The in-chamber
monitoring data showed that the PM, 5 concentration had been fluctuating dramatically during the 28-day poisoning process (Fig. S1). The
maximum value of PM, 5 concentration was 293 pg/m? with the minimum value was 18 pg/m?, and the average concentration was 164
pg/m? (Table S1).

The particle cutter equipped with the system can block the entry of most large particles, and cut the large particles into fine particles (AED < 2.5
um, aerodynamic equivalent diameter), even the ultrafine particles (AED < 0.1 pm). After measurement, it can be seen that the almost all PMs
are less than 1.0pm, indicating that the system is operating reliably. As for the particle surface area, most of the particles are also concentrated
below 1.0 um, and there are almost no particles above 10.0 pm. The particle mass increased sharply between 2.5 pm and 10 pym, probably
because although there is a small amount of PM;, the weight of PM., is quite considerable compared to PM, 5 (Table S5).

3.2 Global differentially expressed genes expression in liver tissues

A total of 22,207 genes were detected using the chip, of which 3,574 differentially expressed genes (DEGs) were screened out using the set
conditions (p<0.05, FC > 1.5). The cluster heat map shows the relative expression of differential genes after PM and metformin intervention
(Fig. 1A). It can be seen that the expression levels of most genes in the control group and the PM, 5 group are opposite, and some genes and
expression levels in the MP intervention group have recovered to a certain extent. It should be noted that the two samples in the MP group were
eliminated due to the large error and the poor clustering effect. Ranked by statistical significance, the top ten gene symbol are aacs, gm77530,
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synrg, rassf6, anks4b, pnpla3, arntl, ddi2, angptl8. The relative gene expression level of each group, Fold Change (FC), p-value, adjusted p-value
and gene description are listed in detail in the table (Table 1).

Table 1
Top 20 differentially expressed genes ranked by p-Value (p<0.05 FC>1.5).
Gene Con Met PMys PM,s+Met Fold- pValue Adjusted Gene_Discription
Symbol Change
p-Value
Aacs 9.32 712 6.98 7.28 5.063 1.08455E- 3.87943E-  acetoacetyl-CoA synthetase
11 08
Gm17530 9.62 5.75 6.02 6.51 14.621 5.5611E- 9.94603E-  predicted gene, 17530
10 07
Synrg 7.45 7.54 7.46 8.99 2.908 1.44031E- 1.71733E-  synergin, gamma
09 06
Rassf6 8.94 7.16 6.85 6.43 5.696 2.6486E- 1.91781E-  Ras association (RalGDS/AF-6) domain
09 06 family member 6
Anks4b 11.2 10.24 8.65 9.86 5.856 2.68075E- 1.91781E-  ankyrin repeat and sterile alpha motif domain
09 06 containing 4B
Pnpla3 8.27 3.71 5.28 3.84 23.588  6.66366E- 3.97265E-  patatin-like phospholipase domain
09 06 containing 3
Arntl 9.19 7.59 10.26  9.41 6.364 2.54852E- 1.30229E-  aryl hydrocarbon receptor nuclear
08 05 translocator-like
Ddi2 1395 1475 1477 15.59 3.117 3.75735E- 1.68001E- DNA-damage inducible protein 2; regulatory
08 05 solute carrier protein, family 1, member 1
Angptl8 13.51 1121 103 11.59 9.254 7.36948E- 2.76209E-  angiopoietin-like 8
08 05
Xpob6 9.34 9.59 9.97 11.17 3.555 7.7811E- 2.76209E-  exportin 6
08 05
B3galt1 1195 13.01 11.48 12.52 2.888 8.494E-08 2.76209E- UDP-Gal:betaGIcNAc beta 1,3-
05 galactosyltransferase, polypeptide 1
Adgnt 6.11 3.41 3.68 2.98 8.754 9.79116E- 2.78074E-  alpha-1,4-N-acetylglucosaminyltransferase
08 05
Dbp 13.19 1472 1223 13.62 5618 1.01061E- 2.78074E- D site albumin promoter binding protein
07 05
Zfp318 8.1 8.74 8.83 9.64 2.908 1.27955E- 3.18911E-  zinc finger protein 318
07 05
Nr1i3 11.84 1335 12.83 13.63 3.458 1.33734E- 3.18911E-  nuclear receptor subfamily 1, group I, member
07 05 3
Supt6é 7.26 777 8.01 8.96 3.249 1.6363E- 3.41457E-  suppressor of Ty 6
07 05
Gm11437 1403 1168 1215 11.53 5.657 1.65522E- 3.41457E- predicted gene 11437
07 05
Acly 15.97 12.57 1442 13.71 10.556 1.71826E-  3.41457E-  ATP citrate lyase
07 05
I115ra 9.08 10.33 9.96 10.48 2.639 2.21471E- 4.16948E- interleukin 15 receptor, alpha chain
07 05
Ppp1r3c 1425 12.05 12.03 12.82 4.659 3.13329E- 5.60388E-  protein phosphatase 1, regulatory (inhibitor)
07 05 subunit 3C

3.3 Gene Ontology Enrichment Analysis and Pathway Enrichment Analysis of
Differentially Expressed Genes

The GO enrichment analysis showed that the differentially expressed genes were mainly enriched in protein binding, transferase activity,
nucleotide binding, ATP binding, and RNA binding in terms of Molecular Function; nucleus, cytosol, cytoplasm, membrane, and nucleoplasm in
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terms of Cellular Component; while regulation of transcription, DNA-templated transcription, DNA-templated metabolic process, negative
regulation of transcription from RNA polymerase Il promoter, and protein transport in terms of Biological Process (Fig. 1B-D, Table 2).
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Table 2

Top 20 significantly changed GOs of differentially expressed genes

Ontology
Type

Molecular
Function

Cellular
Component

GO_ID

G0:0005515

G0:0016740

G0:0000166

G0:0005524

G0:0003723

G0:0046872

G0:0016787

G0:0008270

G0:0042803

G0:0003700

G0:0008134

G0:0019904

G0:0003824

G0:0016301

G0:0003677

G0:0042802

G0:0003682

G0:0019899

G0:0004672

G0:0016874

G0:0005634

G0:0005829

G0:0005737

GO_Name
protein binding
transferase

activity

nucleotide
binding

ATP binding

RNA binding

metal ion binding

hydrolase activity

zinc ion binding

protein
homodimerization
activity
transcription
factor activity,
sequence-specific
DNA binding

transcription
factor binding

protein domain
specific binding
catalytic activity
kinase activity
DNA binding
identical protein
binding
chromatin binding
enzyme binding
protein kinase
activity

ligase activity
nucleus

cytosol

cytoplasm

Population_mapped_id  Study_mapped_id

4545

1482

1862

1371

1404

2937

1513

932

787

831

347

290

471

614

1723

791

460

388

513

320

5677

2743

5599
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930

350

414

319

324

585

320

214

183

191

97

84

117

143

334

173

112

96

116

80

1159

638

1109

Enrichment

1.428

1.648

1.552

1.624

1.61

1.39

1.476

1.602

1.623

1.604

1.951

2.021

1.733

1.625

1.353

1.526

1.699

1.727

1.578

1.745

1.425

1.623

1.382

p_value
1.28832E-
36

4.9011E-
23

7.42297E-
22

5.70285E-
20

1.07567E-
19

4.94414E-
19

7.11695E-
14

4.38982E-
13

7.42005E-
12

7.57804E-
12

2.54783E-
11

7.73842E-
11

8.17615E-
10

1.33268E-
09

1.38285E-
09

4.08376E-
09

6.26157E-
09

3.2362E-
08

2.48228E-
07

2.78098E-
07

1.23356E-
47

8.79918E-
41

1.74605E-
38

FDR
2.00571E-
33

5.0868E-
20

6.9338E-
19

4.4392E-
17

7.72912E-
17

3.07888E-
16

3.32397E-
11

1.86388E-
10

2.83146E-
09

2.83146E-
09

8.81455E-
09

2.33176E-
08

2.12148E-
07

3.36448E-
07

3.39926E-
07

8.66963E-
07

1.29976E-
06

6.57159E-
06

3.99775E-
05

4.40291E-
05

1.15227E-
43

4.10965E-
37

5.43661E-
35




Ontology
Type

Biological
Process

GO_ID

G0:0016020

G0:0005654

G0:0070062

G0:0005783

G0:0005739

G0:0005794

G0:0043231

G0:0005730

G0:0043234

G0:0005925

G0:0005764

G0:0048471

G0:0005789

G0:0005886

G0:0005913

G0:0005768

G0:0009986

G0:0006355

G0:0006351

G0:0008152

G0:0000122

G0:0015031

GO_Name
membrane
nucleoplasm
extracellular

exosome

endoplasmic
reticulum

mitochondrion

Golgi apparatus

intracellular
membrane-
bounded
organelle

nucleolus

protein complex
focal adhesion
lysosome
perinuclear region
of cytoplasm
endoplasmic
reticulum
membrane

plasma
membrane

cell-cell adherens
junction

endosome

cell surface

regulation of
transcription,
DNA-templated

transcription,
DNA-templated

metabolic process

negative
regulation of
transcription from
RNA polymerase Il
promoter

protein transport

Population_mapped_id

6929

1806

2588

1328

1697

1166

791

695

616

355

333

568

251

3692

317

557

593

2039

1838

439

721

579
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Study_mapped_id

1317

456

589

325

374

274

200

171

151

98

89

133

69

637

79

123

129

442

389

124

172

142

Enrichment

1.326

1.762

1.588

1.708

1.538

1.64

1.764

1.717

1.711

1.926

1.865

1.634

1.918

1.204

1.739

1.541

1.518

1.513

1.477

1.971

1.665

1.711

p_value
4.39428E-
38

1.79833E-
37

1.6781E-
34

4.37123E-
24

4.41175E-
19

7.63883E-
18

1.06219E-
16

2.46578E-
13

8.52983E-
12

4.37588E-
11

1.97725E-
09

3.51319E-
09

3.74746E-
08
3.90333E-
08

3.77637E-
07

4.17785E-
07

5.20669E-
07

4.34733E-
21
8.73211E-
17

1.93914E-
14

3.46844E-
12

3.44932E-
11

FDR
1.02617E-
34

3.35964E-
34

2.2393E-
31
5.10396E-
21

2.94358E-
16

4.45964E-
15

5.51219E-
14

1.0968E-
10

3.06451E-
09

1.40949E-
08

4.73576E-
07

7.84448E-
07

7.44788E-
06
7.59604E-
06

5.81057E-
05

6.19449E-
05

7.25905E-
05

3.69168E-
18
4.79804E-
14

9.53342E-
12

1.40864E-
09

1.15072E-
08




Ontology GO_ID GO_Name Population_mapped_id Study_mapped_id Enrichment p_value FDR
Type
G0O:0045893  positive 569 139 1.705 7.45429E- 2.32102E-
regulation of 11 08
transcription,
DNA-templated
G0:0006810  transport 1803 352 1.362 1.97636E- 5.7624E-
10 08
G0:0016310  phosphorylation 609 145 1.662 2.03575E-  5.7624E-
10 08
G0:0045944  positive 996 214 1.499 2.98336E- 8.19633E-
regulation of 10 08
transcription from
RNA polymerase Il
promoter
G0:0006974  cellular response 427 109 1.781 5.87707E- 1.56851E-
to DNA damage 10 07
stimulus
G0:0006629 lipid metabolic 454 112 1.722 2.84855E-  6.65207E-
process 09 07
G0:0016567  protein 238 69 2.023 3.52712E-  7.84448E-
ubiquitination 09 07
G0O:0006915  apoptotic process 552 130 1.643 3.61777E-  7.85898E-
09 07
G0:0034976  response to 67 28 2.916 4.05568E-  7.73144E-
endoplasmic 08 06
reticulum stress
G0:0045892  negative 481 113 1.639 4.31982E- 8.07029E-
regulation of 08 06
transcription,
DNA-templated
G0:0007049  cell cycle 603 135 1.562 4.95096E- 9.06803E-
08 06
G0:0001889 liver development 68 28 2.873 5.95448E- 1.06963E-
08 05
G0:0043066 negative 488 113 1.616 9.71416E-  1.71207E-
regulation of 08 05
apoptotic process
G0:0043065 positive 313 80 1.784 1.03152E-  1.78434E-
regulation of 07 05
apoptotic process
G0:0055114  oxidation- 669 145 1.512 1.31573E-  2.23459E-
reduction process 07 05

The pathway enrichment analysis was also conducted by using KEGG database, and found that these differentially expressed genes were
mainly involved in thyroid hormone signaling pathway, chronic myeloid leukemia, metabolic pathways, HTLV-Il infection and AMPK signaling
pathway. Among them, thyroid hormone signaling pathway has the smallest p value, indicating that it is most likely to change the signal
transduction of thyroid hormone; metabolic pathways have the smallest RichFactor with the most enriched genes, which indicated that
metabolic pathways was the most important and meaningful pathway for differential genes (Fig. 2A, Table 3).
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Table 3

Top 20 significantly enriched KEGG pathway of differentially expressed genes

Pathway KEGG_A_class KEGG_B_class Out All p-value g-value
(1472) (8154)

Thyroid hormone signaling Organismal Systems Endocrine system 42 117 2.97E-06 0.000619424

pathway

Chronic myeloid leukemia Human Diseases Cancers 31 77 3.90E-06 0.000619424

Metabolic pathways Metabolism Global and overview 300 1353 1.39E-05 0.001114798

maps

HTLV-l infection Human Diseases Infectious diseases 79 280 1.40E-05 0.001114798

AMPK signaling pathway Environmental Signal transduction 42 128 3.73E-05 0.002110601
Information Processing

PPAR signaling pathway Organismal Systems Endocrine system 31 85 4.04E-05 0.002110601

Cell cycle Cellular Processes Cell growth and death 41 125 4.65E-05 0.002110601

Insulin resistance Human Diseases Endocrine and 38 114 5.87E-05 0.002260435

metabolic diseases

Protein processing in Genetic Information Folding, sorting and 50 164 6.40E-05 0.002260435

endoplasmic reticulum Processing degradation

MAPK signaling pathway Environmental Signal transduction 80 302 0.000135374  0.004065063
Information Processing

Renin-angiotensin system Organismal Systems Endocrine system 16 35 0.000148819  0.004065063

Bile secretion Organismal Systems Digestive system 26 71 0.000153399  0.004065063

ErbB signaling pathway Environmental Signal transduction 30 87 0.000173967  0.004255501
Information Processing

Renal cell carcinoma Human Diseases Cancers 25 69 0.000247668  0.005625609

Hepatocellular carcinoma Human Diseases Cancers 51 178 0.00030437 0.006452648

Thyroid cancer Human Diseases Cancers 16 37 0.000328323 0.006515891

Neurotrophin signaling Organismal Systems Nervous system 38 123 0.000348334 0.006515891

pathway

EGFR tyrosine kinase Human Diseases Drug resistance 28 83 0.000427132  0.007545995

inhibitor resistance

HIF-1 signaling pathway Environmental Signal transduction 34 108 0.000477314  0.007988727
Information Processing

FoxO signaling pathway Environmental Signal transduction 40 137 0.000874935 0.012724044
Information Processing

The cluster analysis of the enriched pathways found that, the pathways ranked from high to low belong to human diseases, metabolism,
organismal systems, environmental information processing and cellular process by the top pathway classification, while cancers, infectious
diseases, signal transduction, endocrine system and carbohydrate metabolism by the middle pathway classification, respectively (Fig. 2B and
C)

3.4 Trend analysis and STC-GO analysis of differentially expressed genes

Trend analysis showed that all differentially expressed genes were fitted to 26 trends, of which 9 trends highlighted by color were statistically
different. Red represented a gene set with an overall upward trend, green represented a gene set with an overall downward trend, and black
represented a gene set with an uncertain trend (Fig. 3A). The number of genes contained in each fitted trend and the specific expression trend
of each gene are presented in the figure (Fig. 3B).

Trend analysis was used to find the trends of opposite expression between the PM, s-exposed group and the metformin intervention group.
Among them, Trend 6 (contains 60 genes) and Trend 15 (contains 39 genes) met the requirement. Therefore, these two trends were separately
proposed to use STC-GO analysis. The results showed that the main functions of the genes included in Trend 6 were pentose phosphate
pathway oxidative phase glucose 6P to ribulose 5P, staphylococcus aureus infection, and monocarboxylic acid metabolic process (Fig. 4A,
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Table S3). And Trend 15 was mainly on HTLV-l infection, antigen processing and presentation of exogenous peptide antigen via MHC class I,
and cytokine-mediated signaling pathway (Fig. 4B, Table S4).

Through STC-GO analysis, the relevance of these gene functions has been clearly displayed. In Trend 6 STC-GO network, the largest and most
important cluster was composed of carbon metabolism, monocarboxylic acid metabolic process, pentose biosynthetic process, small molecule
biosynthetic process. The relationships in Trend 15 were also shown in clusters with non-alcoholic fatty liver disease (NAFLD), pertussis, and
staphylococcus aureus infection (Fig. 4C and D).

3.5 Results of WGCNA

First of all, a gene correlation heatmap was constructed to measure the all DEGs co-expression network, and to make use of interaction
patterns among genes (Fig. 5A). Then the hierarchical clustering Dynamic Tree Cut was used to identify modules (Fig. 5B). Through analysis
of the scale independence and mean connectivity, the soft threshold power was determined (Fig. 5C and D). After being raised to a suitable
height, we got five modules with different expression trend (ME darkmagenta, ME red, ME darkslateblue, ME antiquewhite4, ME darkgrey).
Module-trait relationships heatmap indicated the expression level and p-value of different modules in different groups (Fig. 5E). And the
eigengene adjacency heatmap could intuitively reflect the relationship between the modules (Fig. 5F).

Figure 6A showed all the DEGs in the five modules and their relationships. Five genes with top degree in each module was selected as the hub
genes, and the bar graph showed the expression of these 25 hub genes. In order to find biomarkers that can monitor and predict diseases, we
use the WGCNA analysis to find out those important genes (hub genes) in the entire gene co-expression network. The WGCNA clustering
criterion has a great biological significance (Fig. 5). Due to the unique soft threshold algorithm of WGCNA, the gene expression network tended
to be distributed with free-scale network, which made the results have higher reliability (Tian et al., 2020). This analysis divided all DEGs (p<
0.05, FC >1.5) into 5 modules (Fig. 6A). However, after verification and screening, only 12 genes in 4 modules were met the criteria (Fig. 6B and
C)

3.6 Validation of gene chip results by quantitative RT-PCR

To verify the WGCNA analysis results, the expression of 25 hub genes in the liver of ob/ ob mice was detected using qRT-PCR. Repeated
independent experiments for three times, there are 12 hub genes with stable trends and consistent with the WGCNA analysis results (Fig. 6C,
Table 4). The results of verification showed good consistency with WGCNA analysis. In darkslateblue cluster, PM, 5 exposure up-regulated the
gene expressions of cd53, fcer1g, cd68, ctss and laptmb5, and the effects were alleviated by metformin treatment. The gene expressions of
mup6, mup8in the red cluster, and sub7, snrpd2, etohi, zfp931 in the darkmagenta cluster were reduced in response to PM, 5 exposure, the
gene expressions of sub7, etohi7 and zfp931 were significantly reduced (p<0.01), while metformin did not restore the decrease of the gene
expressions. The gene expression of eg/n7 in antiquewhite4 cluster was also down-regulated after PM, 5 exposure while metformin treatment
totally regained the depression.
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Table 4

Top 5 genes ranked by degree of 5 modules in WGCNA
analysis

Module Type Gene Symbol Degree in Module
Red Mup6 33
Mup7 32
Mup12 31
Gm2083 29
Mup8 29
Darkslateblue ~ Cd53 35
Fcerlg 34
Cd68 27
Ctss 27
Laptm5 27
Darkmagenta Sub1 100
Snrpd2 35
Gm14305 26
Zfp931 24
Etohi1 22
Darkgrey Gm20816 36
Gm20823 36
LOC100862025 33
Gm20840 32
Gm20896 32
Antiquewhite4  Usp7 87
Papd5 70
Egin1 51
Insr 47
Ddi2 45

4. Discussion

Air pollution has become a severe environmental problem all over the world. In 2019, air pollution became the fourth leading global risk factor
for death, surpassing other recognized risk factors for chronic diseases such as obesity, high cholesterol, and malnutrition (HEI, 2020). The
annual mean guideline level of PM, s has been modified from 10 pg/m? in 2005 AQG (WHO Air Quality Guidelines) to 5 ug/m? in 2021 AQG
(WHO, 2021b), indicating the urgency and necessity to investigate the adverse effects and related mechanism induced by PM, 5 exposure. This
study explored the changes in the liver of obese mice at the transcriptome level under the cross-intervention of PM, 5 and metformin. Through
the analysis of 12 hub genes, we discussed the pathophysiological and functional changes that may occur in the liver, especially the
physiological processes and diseases associated with the liver, such as thyroid function, insulin resistance and lipid metabolism; NAFLD, HCC,
even neurodegenerative diseases. The study could also provide some biomarkers for early screening of diseases caused by PM, 5.

GO function analysis (Fig. 1) showed that the most obvious term in molecular function is ‘protein binding’. Impairment of liver function may
not only disturb liver metabolism, but also affect plasma protein binding, which in turn affects the distribution and removal of metabolites in
the body (Verbeeck, 2008). What needs attention in cellular component was nucleus, cytosol and cytoplasm, which may be related to cytosol-
nucleus traffic and colocalization in hepatocytes (Romanque et al., 2011). Transcription and metabolism were more important in biological
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processes. This may be because the liver uses a series of liver transcription factors to regulate the expression of genes involved in all aspects
of lipid metabolism (including catabolism, transportation and synthesis) (Karagianni and Talianidis, 2015).

According to the KEGG pathway analysis, PM, 5 could affect the thyroid hormones signal pathway with most statistically different, even
thyroid cancer (Fig. 2). Thyroid hormones (THs) had a significant effect on the anabolism of fatty acids and cholesterol in the liver, and direct
regulate de no lipogenesis, tricarboxylic acid cycle (TCA), fatty acid B-oxidation, OXPHOS, lipolysis and lipophagy pathway, which mainly
involves genes, such as acc1, me, fasn, thrsp, cptia, pdk4, mcad, ucp2, hmgcl, atgl (Sinha et al., 2018). It was reported that low thyroid function
in population is associated with increased likelihood of chronic fibrotic diseases of the liver (Bano et al., 2020). Population studies found that
prenatal exposure to PM, 5 can damage neonatal thyroid function (Ghassabian et al., 2019). Our research found that PM, 5 up-regulates the
thyroid signaling pathway in the liver, which was also proved from the level of metabolic organs (Kim et al., 2020). The risk of NAFLD was
inversely correlated with free thyroxine levels(Ritter et al., 2020). THs modulated the homeostasis of hepatic lipid metabolism by regulating
lipoprotein, triglyceride (TAG) storage and cholesterol levels, which had a key effect on liver-related diseases, such as NAFLD and
hypercholesterolemia(Martinez-Sanchez et al., 2017). And THs may modulate co-activators and co-repressors through the hypothalamic-
pituitary-thyroid axis, thereby altering cholesterol metabolism in the liver (Ritter et al., 2020).

In addition, our results showed that the pathway with the most DEGs enrichment was the ‘metabolic pathways’ (Fig. 2). The liver played an
important role in glucose homeostasis by controlling various pathways of glucose and lipid metabolism, including oxidation, gluconeogenesis
and adipogenesis (Han et al., 2016). It also regulated other important metabolisms, including purines and pyrimidine synthesis, histidine
catabolism, methionine recycling and formic acid utilization (Zaitsev et al., 2019). The results showed that the enriched related pathways were
AMPK signaling pathway, PPAR signaling pathway, insulin resistance and hepatocellular carcinoma. These pathways were involved in the
pathophysiological process of oxidative stress, inflammation, abnormal metabolism leading the accumulation of glucose and lipid in the liver
(Xu et al., 2019). The excessive production and accumulation of hepatic lipid might induce liver fibrosis in further, which was in line with the
evolution of NAFLD. Animal studies have confirmed that PM, 5 can induce excessive extracellular matrix accumulation in liver tissues and
eventually lead to liver fibrosis, which was a foreshadow to liver cancer (Zheng et al., 2015). A prospective epidemiological study in U.S. shown
that environmental PM, 5 exposure may be a risk factor for HCC (VoPham et al., 2018). So, the disturbance of metabolic pathways might be
the first step of PM, s-induced liver injury and the long-term hazardous hepatic effects of PM, 5 exposure could be overwhelming.

In order to understand the changes in DEGs, we conducted a trend analysis and STC-GO analysis and obtained two reasonably interpretable
trends (Fig. 3 and Fig. 4). As can be seen from the plot, the genes in Trend 6 increased after being exposure and decreased with metformin
(Fig. 4A and C). The term ‘GO 0019322: pentose biosynthetic process’ has the most significant difference. Study observed an increasement in
the oxidative branch of the pentose phosphate pathway and '3C incorporations suggestive of enhanced capacity for the de novo synthesis of
fatty acids, which indicates an increase in insulin resistance (Reyes-Caballero et al., 2019). On the other hand, metformin can relieve the
pentose phosphate pathway, inhibit gluconeogenesis and promote glycogen retention to reduce insulin resistance (Atangwho et al., 2014).
Another term * KO 04932: Non-alcoholic fatty liver disease (NAFLD)’ also involved gluconeogenesis, glycogen and insulin resistance, which was
in accordance with the above research results. We also found other interesting pathways, such as ‘KO 05150: staphylococcus aureus infection’,
‘GO 0046942: carboxylic acid transport’, ‘GO 0007188: adenylate cyclase-modulating G protein-coupled receptor signaling pathway’. And there
were also many articles confirmed that these terms are related with liver or PM, 5 exposure. For example, monocarboxylate transporter 1
(MCT1) expression was down-regulated in adipocytes of diabetic rats thus to impair the ability to transport lactic acid (Hajduch et al., 2000);
metastasis and glycolysis could be induced by up-regulation of MCT1 expression and subsequently activating Wnt/B-catenin signaling
pathway in HCC (Fan et al., 2018).

The expression of Trend 15 genes only increased significantly after PM, 5 exposure, and metformin intervention does not change the rising
trend (Fig. 4B and D). The terms ‘WP 447: Adipogenesis genes’ and ‘GO 0046890: regulation of lipid biosynthetic process’ are noteworthy and
need further study. PM, 5 exposure could increase the expression of genes related to lipid synthesis through different mechanism. For example,
srebp1 was involved in regulating the expression of fasn, acc and scdT; exposure to PM, 5 resulted in increased expression of bmalT, rev-erba
and ppara, affecting circadian rhythm, liver triglyceride, free fatty acid levels, or fatty acid transport (Yan et al., 2020). It can be seen from the
network diagram that these interesting gene groups we discussed are not adjacent. The other genes linking them are worthy of attention and
further research.

In WGCNA analysis, the red module (mup6, mup8) is mainly related to lipid metabolism, oxidative stress and inflammation; The darkslateblue
module (cd53, fcerlg, cd68, ctss, laptmb) is mainly related to cell activation, innate immune system and atherosclerosis; The darkmagenta
module (sub1, snrpd2, zfp931, etohiT) is mainly related to transcriptional regulation, mRNA splicing and gene expression; The antiquewhite4
module (eg/nT) is mainly related to cellular oxygen sensor that catalyzes, under normoxic conditions (Fig. 6). More specifically, The cd68 was a
surface marker for M1 macrophages and it was involved in liver damage such as inflammation, liver fibrosis and HCC (Liu et al., 2019). Shi et
al. reported that PM,, 5 up-regulated the expression of CD68 both in cell model and in lung tissues (Shi et al., 2019), indicating PM, 5 promoted
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the pro-inflammatory transformation of macrophage thus inducing tissue damage. The included cd68 and cd53 are related to liver
inflammation and insulin sensitivity (Ehses et al., 2009). Inhibition of the expression of the cd family may be a therapeutic target for HCC.
Additionally, PM, 5 exposure could increase the glucocorticoids in plasma by reducing the expression of glucocorticoid receptors in the
hippocampus, thereby activating the inflammatory response and inducing neurotoxicity (Jia et al., 2018) cd68, ctss, laptmb, fcgr3a and cd53
were related to the regulation of microglia polarization and can detect out neuropathic pain early (Yu et al., 2020). On the other hand, PM, 5 has
been confirmed in the population to cause neurodegenerative diseases such as Parkinson's syndrome, even if the concentration is lower than
the current American national standard (Liu et al.,, 2016); animal experiments have shown that PM, 5 may aggravates Parkinson's disease via

inhibition of autophagy and mitophagy pathway (Wang et al.,, 2021). It has also showed that ctss, cd53, igsf6, ptprc and laptm5 may be
potential pathological target gene for the Parkinson’s syndrome, which is highly similar to our darkslateblue module (Cui et al., 2015). We can
infer that darkslateblue module can be used as biomarker for neurodegenerative diseases such as Parkinson's disease. It is important that the
genes in darkslateblue module increase after PM, 5 exposure, but decrease with metformin. These potential biomarkers might be helpful for
the prediction and early screening of these related diseases.

5. Conclusion

This study investigated the disturbance of transcriptome level in ob/ob mice liver induced by concentrated PM, 5 exposure through small
animal whole-body dynamic exposure system, and meanwhile preliminarily explored the effects of metformin intervention in this process. The
results showed that PM, 5 could affect thyroid function, insulin resistance, glucose and lipid metabolism in obese fatty liver, which may be
related to the mechanism of PM, s-induced liver diseases such as NAFLD and HCC. The screened 12 hub genes might be used as potential
biomarkers for air pollution health risk assessment. And the expression of 5 genes in darkslateblue module (cd53, fcer1g, cd68, ctss, laptm5)
increased after PM, 5 exposure, and decreased after metformin intervention, which could provide clues for the related mechanism and the
protective effect of metformin in the detrimental effects in the obesity fatty liver caused by PM, . But further research is still needed to explore
the unequivocal mechanism involved in above-mentioned process.

Declarations
Ethical Approval

This work has received approval for research ethics from the Animal Care and Use Committee of Capital Medical University, which ethical
approval number is AEEI-22019-161.

Consent to Participate

Not applicable.

Consent to Publish

All listed authors have approved the manuscript before submission, including the names and order of authors.
Authors Contributions

Lisen Lin: Writing- first draft, Software, Visualization, Investigation; Li Tian: Writing- first draft, Conceptualization, Methodology; Tianyu Li:
Visualization, Investigation; Menggqi Sun: Data curation, Investigation; Junchao Duan: Investigation, Writing- Reviewing and Editing; Yang Yu:
Supervision, Writing- Reviewing and Editing; Zhiwei Sun: Writing- Reviewing and Editing.

Funding

This work was supported by the National Natural Science Foundation of China (91943301, 92043301). The authors would like to thank
Weiping Tang of Cnkingbio biotechnology Co. Ltd. for bioinformatics assistance.

Competing Interests
The authors declare no conflict of interests at personal and/or organization level.
Availability of data and materials

All microarray data is MIAME compliant and the raw data has been deposited in NCBIs Gene Expression Omnibus (NCBIs GEO ID: GSE186900,
https://www.ncbi.nIm.nih.gov/geo/query/acc.cgi?acc=GSE186900).

Page 15/18



References

—_

10.

11.
12.

13.

14

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

. Atangwho 1J, Yin KB, Umar Ml et al (2014) Vernonia amygdalina simultaneously suppresses gluconeogenesis and potentiates glucose
oxidation via the pentose phosphate pathway in streptozotocin-induced diabetic rats. BMC Complement Altern Med [J] 14:426

. Bano A, Chaker L, Muka T et al (2020) Thyroid Function and the Risk of Fibrosis of the Liver, Heart, and Lung in Humans: A Systematic
Review and Meta-Analysis. Thyroid [J] 30:806—820

. Carvalho H (2021) New WHO global air quality guidelines: more pressure on nations to reduce air pollution levels. Lancet Planet Health [J]
5:e760-e761

.Cui S, Sun H, Gu X et al (2015) Gene expression profiling analysis of locus coeruleus in idiopathic Parkinson's disease by bioinformatics.
Neurol Sci [J] 36:97-102

. Ehses JA, Lacraz G, Giroix MH et al (2009) IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat.
Proc Natl Acad Sci US A[J] 106:13998-14003

. Fabbrini E, Sullivan S, Klein S (2010) Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications.
Hepatol [J] 51:679-689

.Fan Q, Yang L, Zhang X et al (2018) Autophagy promotes metastasis and glycolysis by upregulating MCT1 expression and Wnt/B-catenin
signaling pathway activation in hepatocellular carcinoma cells. J Exp Clin Cancer Res [J] 37:9

. Ghassabian A, Pierotti L, Basterrechea M et al (2019) Association of Exposure to Ambient Air Pollution With Thyroid Function During
Pregnancy. JAMA Netw Open [J] 2:€1912902

. Haberzettl B Mccracken JPB, Bhatnagar A et al (2016) Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance
and changes in endothelial progenitor cell homeostasis. Am J Physiol Heart Circ Physiol [J] 310:H1423-1438

Hajduch E, Heyes RR, Watt PW et al (2000) Lactate transport in rat adipocytes: identification of monocarboxylate transporter 1 (MCT1)
and its modulation during streptozotocin-induced diabetes. FEBS Lett [J] 479:89-92

Han HS, Kang G, Kim JS et al (2016) Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med [J] 48:€218

He L, Sabet A, Djedjos S et al (2009) Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding
protein. Cell [J] 137:635-646

Hei (2020) Health Effects Institute. 2020. State of Global Air 2020. Special Report, Boston

. Hsieh S, Leaderer BP, Feldstein AE et al (2018) Traffic-related air pollution associations with cytokeratin-18, a marker of hepatocellular
apoptosis, in an overweight and obese paediatric population. Pediatr Obes [J] 13:342-347

Huang DQ, El-Serag HB, Loomba R (2021) Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat
Rev Gastroenterol Hepatol [J] 18:223-238

Huang F, Li X, Wang C et al (2015) PM2.5 Spatiotemporal Variations and the Relationship with Meteorological Factors during 2013-2014
in Beijing, China. Plos One [J] 10:e0141642

JiaZ, Wei Y, Li X et al (2018) Exposure to Ambient Air Particles Increases the Risk of Mental Disorder: Findings from a Natural Experiment
in Beijing.Int J Environ Res Public Health [J],15

Karagianni P, Talianidis | (2015) Transcription factor networks regulating hepatic fatty acid metabolism. Biochim Biophys Acta [J] 1851:2—
8

Kim HJ, Kwon H, Yun JM et al (2020) Association Between Exposure to Ambient Air Pollution and Thyroid Function in Korean Adults.d Clin
Endocrinol Metab [J],105

Langfelder P Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinf [J] 9:559

Liang S, Zhao T, Hu H et al (2019) Repeat dose exposure of PM2.5 triggers the disseminated intravascular coagulation (DIC) in SD rats.
Sci Total Environ [J] 663:245-253

Liu J, Liang S, Du Z et al (2019) PM(2.5) aggravates the lipid accumulation, mitochondrial damage and apoptosis in macrophage foam
cells. Environ Pollut [J] 249:482-490

Liu R, Young MT, Chen JC et al (2016) Ambient Air Pollution Exposures and Risk of Parkinson Disease. Environ Health Perspect [J]
124:1759-1765

Luo T, Nocon A, Fry J et al (2016) AMPK Activation by Metformin Suppresses Abnormal Extracellular Matrix Remodeling in Adipose Tissue
and Ameliorates Insulin Resistance in Obesity. Diabetes [J] 65:2295-2310

Madiraju AK, Qiu Y, Perry RJ et al (2018) Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat Med [J]
24:1384-1394

Page 16/18



26.

27.

28.

29.
30.

Martinez-Sanchez N, Seoane-Collazo P, Contreras C et al (2017) Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of
Thyroid Hormones on Energy Balance. Cell Metab [J] 26:212-229e212

Mukherjee A, Agrawal M (2018) A Global Perspective of Fine Particulate Matter Pollution and Its Health Effects. Rev Environ Contam
Toxicol [J] 244:5-51

Reyes-Caballero H, Rao X, Sun Q et al (2019) Air pollution-derived particulate matter dysregulates hepatic Krebs cycle, glucose and lipid
metabolism in mice. Sci Rep [J] 9:17423

Ritter MJ, Amano |, Hollenberg AN (2020) Thyroid Hormone Signaling and the Liver. Hepatol [J] 72:742-752

Romangque P, Cornejo P, Valdés S et al (2011) Thyroid hormone administration induces rat liver Nrf2 activation: suppression by N-
acetylcysteine pretreatment. Thyroid [J] 21:655-662

31. ShiQ, Zhao L, Xu C et al (2019) High Molecular Weight Hyaluronan Suppresses Macrophage M1 Polarization and Enhances IL-10
Production in PM(2.5)-Induced Lung Inflammation.Molecules [J],24

32. Simon TG, Roelstraete B, Khalili H et al (2021) Mortality in biopsy-confirmed nonalcoholic fatty liver disease: results from a nationwide
cohort. Gut [J] 70:1375-1382

33. Sinha RA, Singh BK, Yen PM (2018) Direct effects of thyroid hormones on hepatic lipid metabolism. Nat Rev Endocrinol [J] 14:259-269

34.Sun S, Yang Q, Zhou Q et al (2021) Long-term exposure to fine particulate matter and non-alcoholic fatty liver disease: a prospective
cohort study. Gut [J]

35. Tian Z, He W, Tang J et al (2020) Identification of Important Modules and Biomarkers in Breast Cancer Based on WGCNA. Onco Targets
Ther [J] 13:6805-6817

36. Verbeeck RK (2008) Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur J Clin Pharmacol [J] 64:1147-
1161

37. Vopham T, Bertrand KA, Tamimi RM et al (2018) Ambient PM(2.5) air pollution exposure and hepatocellular carcinoma incidence in the
United States. Cancer Causes Control [J] 29:563-572

38. Wang Y, Li C, Zhang X et al (2021) Exposure to PM2.5 aggravates Parkinson's disease via inhibition of autophagy and mitophagy
pathway. Toxicol [J] 456:152770

39. Weichenthal S, Hoppin JA, Reeves F (2014) Obesity and the cardiovascular health effects of fine particulate air pollution. Obes (Silver
Spring) [J] 22:1580-1589

40. Who (2018) WHO Regional Office for Europe

41. Who (2021a) Ambient (outdoor) air pollution [M]. World Health Organization

42. Who (2021b) WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon
monoxide. World Health Organization. https://apps.who.int/iris/handle/10665/345329. License: CC BY-NC-SA 3.0 IGO.

43. Wu J, Shi Y, Asweto CO et al (2017) Fine particle matters induce DNA damage and G2/M cell cycle arrest in human bronchial epithelial
BEAS-2B cells. Environ Sci Pollut Res Int [J] 24:25071-25081

44. Xu MX, Ge CX, Qin YT et al (2019) Prolonged PM2.5 exposure elevates risk of oxidative stress-driven nonalcoholic fatty liver disease by
triggering increase of dyslipidemia. Free Radic Biol Med [J] 130:542—-556

45.Yan R, Ku T, Yue H et al (2020) PM(2.5) exposure induces age-dependent hepatic lipid metabolism disorder in female mice. J Environ Sci
(China) [J] 89:227-237

46.Yu H, Liu Y, Li C et al (2020) Bioinformatic Analysis of Neuroimmune Mechanism of Neuropathic Pain. Biomed Res Int [J], 2020: 4516349

47. Zaitsev AV, Martinov MV, Vitvitsky VM et al (2019) Rat liver folate metabolism can provide an independent functioning of associated
metabolic pathways. Sci Rep [J] 9:7657

48. Zheng Z, Xu X, Zhang X et al (2013) Exposure to ambient particulate matter induces a NASH-like phenotype and impairs hepatic glucose
metabolism in an animal model. J Hepatol [J] 58:148-154

49. Zheng Z, Zhang X, Wang J et al (2015) Exposure to fine airborne particulate matters induces hepatic fibrosis in murine models. J Hepatol
[J] 63:1397-1404

50. Zhou Y, Zhou B, Pache L et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat
Commun [J] 10:1523

Figures

Figure 1

Page 17/18



Legend not included with this version.

Figure 2

Legend not included with this version.

Figure 3

Legend not included with this version.

Figure 4

Legend not included with this version.

Figure 5

Legend not included with this version.

Figure 6

Legend not included with this version.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

e TOC.tif

e Supplementarymaterial.pdf

Page 18/18


https://assets.researchsquare.com/files/rs-1334980/v1/2753b46358cba4f57b3703bc.tif
https://assets.researchsquare.com/files/rs-1334980/v1/6052011c156fbe0fa22e40c7.pdf

