1. Osman K, Alvarez-Ordóñez A, Ruiz L, Badr J, ElHofy F, Al-Maary KS, et al. Antimicrobial resistance and virulence characterization of Staphylococcus aureus and coagulase-negative staphylococci from imported beef meat. Annals of clinical microbiology and antimicrobials. 2017;16(1):35.
2. Wang Y-T, Lin Y-T, Wan T-W, Wang D-Y, Lin H-Y, Lin C-Y, et al. Distribution of antibiotic resistance genes among Staphylococcus species isolated from ready-to-eat foods. journal of food and drug analysis. 2019;27(4):841-8.
3. Xu Z, Shah HN, Misra R, Chen J, Zhang W, Liu Y, et al. The prevalence, antibiotic resistance and mecA characterization of coagulase negative staphylococci recovered from non-healthcare settings in London, UK. Antimicrobial Resistance & Infection Control. 2018;7(1):73.
4. Xie Y, He Y, Gehring A, Hu Y, Li Q, Tu S-I, et al. Genotypes and toxin gene profiles of Staphylococcus aureus clinical isolates from China. PLoS One. 2011;6(12).
5. Lyra DG, Sousa FG, Borges MF, Givisiez PE, Queiroga RC, Souza EL, et al. Enterotoxin-encoding genes in Staphylococcus from bulk goat milk. Foodborne pathogens and disease. 2013;10(2):126-30.
6. Bianchi DM, Gallina S, Bellio A, Chiesa F, Civera T, Decastelli L. Enterotoxin gene profiles of Staphylococcus aureus isolated from milk and dairy products in Italy. Letters in applied microbiology. 2014;58(2):190-6.
7. Nazari R, Godarzi H, Baghi FR, Moeinrad M. Enterotoxin gene profiles among Staphylococcus aureus isolated from raw milk. Iranian journal of veterinary research. 2014;15(4):409.
8. Leke A, Goudjil S, Mullie C, Grognet S, Biendo M. PCR detection of staphylococcal enterotoxin genes and exfoliative toxin genes in methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains from raw human breast milk. Clinical Nutrition Experimental. 2017;14:26-35.
9. Mansour AS, Wagih GE-S, Morgan SD, Elhariri M, El-Shabrawy MA, Abuelnaga AS, et al. Detection of Staphylococcus aureus enterotoxigenic strains in bovine raw milk by reversed passive latex agglutination and multiplex polymerase chain reaction. Veterinary world. 2017;10(8):843.
10. Chen Q, Xie S. Genotypes, Enterotoxin Gene Profiles, and Antimicrobial Resistance of Staphylococcus aureus Associated with Foodborne Outbreaks in Hangzhou, China. Toxins. 2019;11(6):307.
11. Bertelloni F, Fratini F, Ebani VV, Galiero A, Turchi B, Cerri D. Detection of genes encoding for enterotoxins, TSST-1, and biofilm production in coagulase-negative staphylococci from bovine bulk tank milk. Dairy science & technology. 2015;95(3):341-52.
12. Bora P, Datta P, Gupta V, Singhal L, Chander J. Characterization and antimicrobial susceptibility of coagulase-negative staphylococci isolated from clinical samples. Journal of laboratory physicians. 2018;10(4):414.
13. Redgrave LS, Sutton SB, Webber MA, Piddock LJ. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends in microbiology. 2014;22(8):438-45.
14. Hooper DC. Fluoroquinolone resistance among Gram-positive cocci. The Lancet infectious diseases. 2002;2(9):530-8.
15. Yamada M, Yoshida J, Hatou S, Yoshida T, Minagawa Y. Mutations in the quinolone resistance determining region in Staphylococcus epidermidis recovered from conjunctiva and their association with susceptibility to various fluoroquinolones. British journal of ophthalmology. 2008;92(6):848-51.
16. Chessa D, Ganau G, Spiga L, Bulla A, Mazzarello V, Campus GV, et al. Staphylococcus aureus and Staphylococcus epidermidis virulence strains as causative agents of persistent infections in breast implants. PLoS One. 2016;11(1).
17. Hecht DW, Citron DM, Cox M, Jacobus N, Jenkins S, Onderdonk A, et al. Methods for Antimicrobial Susceptibiluty Testing of Anaerobic Bacteria: Approved Standard: Clinical and Laboratory Standards Institute Wayne, PA; 2007.
18. Blaiotta G, Ercolini D, Pennacchia C, Fusco V, Casaburi A, Pepe O, et al. PCR detection of staphylococcal enterotoxin genes in Staphylococcus strains isolated from meat and dairy products. Evidence for new variants of seG and seI in S. aureus AB‐8802. Journal of applied microbiology. 2004;97(4):719-30.
19. Omoe K, Hu D-L, Takahashi-Omoe H, Nakane A, Shinagawa K. Comprehensive analysis of classical and newly described staphylococcal superantigenic toxin genes in Staphylococcus aureus FEMS microbiology letters. 2005;246(2):191-8.
20. Nunes RSC, de Souza CP, Pereira KS, Del Aguila EM, Paschoalin VMF. Identification and molecular phylogeny of coagulase-negative staphylococci isolates from Minas Frescal cheese in southeastern Brazil: Superantigenic toxin production and antibiotic resistance. Journal of dairy science. 2016;99(4):2641-53.
21. Osman K, Badr J, Al-Maary KS, Moussa IM, Hessain AM, Girah Z, et al. Prevalence of the antibiotic resistance genes in coagulase-positive-and negative-Staphylococcus in chicken meat retailed to consumers. Frontiers in microbiology. 2016;7:1846.
Linde H-J, Schmidt M, Fuchs E, Reischl U, Niller H-H, Lehn N. In vitro activities of six quinolones and mechanisms of resistance in Staphylococcus aureus and coagulase-negative staphylococci. Antimicrobial agents and chemotherapy. 2001;45(5):1553-7.
Nemati M, Hermans K, Vancraeynest D, De Vliegher S, Sampimon O, Baele M, et al. Screening of bovine coagulase-negative staphylococci from milk for superantigen-encoding genes. Veterinary Record. 2008;163(25):740-3.
24. Park JY, Fox LK, Seo KS, McGuire MA, Park YH, Rurangirwa FR, et al. Detection of classical and newly described staphylococcal superantigen genes in coagulase-negative staphylococci isolated from bovine intramammary infections. Veterinary microbiology. 2011;147(1-2):149-54.
25. Carfora V, Caprioli A, Marri N, Sagrafoli D, Boselli C, Giacinti G, et al. Enterotoxin genes, enterotoxin production, and methicillin resistance in Staphylococcus aureus isolated from milk and dairy products in Central Italy. International Dairy Journal. 2015;42:12-5.
26. Pinheiro L, Brito CI, De Oliveira A, Martins PYF, Pereira VC, Da Cunha MDLR. Staphylococcus epidermidis and Staphylococcus haemolyticus: molecular detection of cytotoxin and enterotoxin genes. Toxins. 2015;7(9):3688-99.
27. Mello PL, Moraes Riboli DF, Pinheiro L, de Almeida Martins L, Vasconcelos Paiva Brito MA, da Cunha RdS, et al. Detection of enterotoxigenic potential and determination of clonal profile in Staphylococcus aureus and coagulase-negative staphylococci isolated from bovine subclinical mastitis in different Brazilian states. Toxins. 2016;8(4):104.
28. Veras JF, do Carmo LS, Tong LC, Shupp JW, Cummings C, dos Santos DA, et A study of the enterotoxigenicity of coagulase-negative and coagulase-positive staphylococcal isolates from food poisoning outbreaks in Minas Gerais, Brazil. International Journal of Infectious Diseases. 2008;12(4):410-5.
29. ANDRADE AD, BORGES M, DE FIGUEIREDO EAT, Arcuri EF. Diversity of Staphylococcus coagulase: positive and negative strains of coalho cheese and detection of enterotoxin encoding genes. Embrapa Agroindústria Tropical-Artigo em periódico indexado (ALICE). 2019.
30. de Lourdes RS da Cunha M, Calsolari RA, Júnior JPA. Detection of enterotoxin and toxic shock syndrome toxin 1 genes in Staphylococcus, with emphasis on coagulase‐negative staphylococci. Microbiology and immunology. 2007;51(4):381-90.
31. Schroeder M, Brooks BD, Brooks AE. The complex relationship between virulence and antibiotic resistance. Genes. 2017;8(1):39.
32. Motamedi H, Asghari B, Tahmasebi H, Arabestani MR. Identification of hemolysine genes and their association with antimicrobial resistance pattern among clinical isolates of Staphylococcus aureus in West of Iran. Advanced biomedical research. 2018;7.
33. Cafiso V, Messina C, Santagati M, Campanile F, Bonfiglio G, Stefani S. In vitro activity of levofloxacin against coagulase-positive and-negative staphylococci. Drugs under experimental and clinical research. 2001;27(3):107-12.
34. Osman KM, Amer AM, Badr JM, Helmy NM, Elhelw RA, Orabi A, et al. Antimicrobial resistance, biofilm formation and mecA characterization of methicillin-susceptible aureus and non-S. aureus of beef meat origin in Egypt. Frontiers in microbiology. 2016;7:222.
35. Diemond-Hernández B, Solórzano-Santos F, Leaños-Miranda B, Peregrino-Bejarano L, Miranda-Novales G. Production of icaADBC-encoded polysaccharide intercellular adhesin and therapeutic failure in pediatric patients with staphylococcal device-related infections. BMC infectious diseases. 2010;10(1):68.
36. Rahimi F, Karimi S. Biofilm Producing Staphylococcus epidermidis strains isolated from clinical samples in Tehran, Iran. Archives of Clinical Infectious Diseases. 2016;11(3).
37. Koskela A, Nilsdotter-Augustinsson Å, Persson L, Söderquist B. Prevalence of the ica operon and insertion sequence IS256 among Staphylococcus epidermidis prosthetic joint infection isolates. European journal of clinical microbiology & infectious diseases. 2009;28(6):655-60.
38. Kozitskaya S, Cho S-H, Dietrich K, Marre R, Naber K, Ziebuhr W. The bacterial insertion sequence element IS256 occurs preferentially in nosocomial Staphylococcus epidermidis isolates: association with biofilm formation and resistance to aminoglycosides. Infection and immunity. 2004;72(2):1210-5.
39. Dyke K, Aubert S, El Solh N. Multiple copies of IS256 in staphylococci. Plasmid. 1992;28(3):235-46.
40. Rice LB, Thorisdottir AS. The prevalence of sequences homologous to IS256 in clinical enterococcal Plasmid. 1994;32(3):344-9.
41. Dutta TK, Chakraborty S, Das M, Mandakini R. Multidrug-resistant Staphylococcus pettenkoferi isolated from cat in India. Veterinary world. 2018;11(10):1380.
42. Tuchscherr LP, Gomez M, Buzzola FR, Calvinho LF, Lee J, Sordelli DO. Characterization of a new variant of IS257 that has displaced the capsule genes within bovine isolates of Staphylococcus aureus. Infection and immunity. 2007;75(11):5483-8.
43. Montanaro L, Campoccia D, Pirini V, Ravaioli S, Otto M, Arciola CR. Antibiotic multiresistance strictly associated with IS256 and ica genes in Staphylococcus epidermidis strains from implant orthopedic infections. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2007;83(3):813-8.