[1].Zhang Y, Chen H, Mo H, et al. .Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell. 2021 Oct 5:S1535-6108(21)00499-2.
[2].Sato K, Padgaonkar AA, Baker SJ, et al. .Simultaneous CK2/TNIK/DYRK1 inhibition by 108600 suppresses triple negative breast cancer stem cells and chemotherapy-resistant disease. Nat Commun. 2021 Aug 3;12(1):4671.
[3].Garrido-Castro A.C., Lin N.U., Polyak K. Insights Into Molecular Classifications of Triple-Negative Breast Cancer: Improving Patient Selection for Treatment. Cancer Discov. 2019;9:176–198.
[4].Calderwood SK, Khaleque MA, Sawyer DB, et al. .Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci. 2006;31:164–72.
[5].Urquhart KR, Zhao Y, Baker JA, et al. .A novel heat shock protein alpha 8 (Hspa8) molecular network mediating responses to stress- and ethanol-related behaviors. Neurogenetics. 2016;17:91–105.
[6].Nirdé P, Derocq D, Maynadier M, et al. .Heat shock cognate 70 protein secretion as a new growth arrest signal for cancer cells. Oncogene. 2010;29:117–27.
[7].Robert G, Jacquel A, Auberger P. Chaperone-Mediated Autophagy and Its Emerging Role in Hematological Malignancies. Cells. 2019 Oct 16;8(10):1260.
[8].Yang F, Xie HY, Yang LF, et al. .Stabilization of MORC2 by estrogen and antiestrogens through GPER1- PRKACA-CMA pathway contributes to estrogen-induced proliferation and endocrine resistance of breast cancer cells. Autophagy. 2020 Jun;16(6):1061-1076.
[9].Rhodes DR, Yu J, Shanker K, et al. .ONCOMINE: A Cancer Microarray Database and Integrated Data-Mining Platform. Neoplasia (New York NY) (2004) 6(1):1–6.
[10].Ghandi M, Huang FW, Jané-Valbuena J, et al. . 3rd Next-Generation Characterization of the Cancer Cell Line Encyclopedia. Nature (2019) 569(7757):503–8.
[11].Asplund A, Edqvist PH, Schwenk JM, et al.. Antibodies for Profiling the Human Proteome-The Human Protein Atlas as a Resource for Cancer Research. Proteomics (2012) 12(13):2067–77.
[12].Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. . UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia (New York NY) (2017) 19(8):649–58.
[13].Györffy B, Lanczky A, Eklund AC, et al. . An Online Survival Analysis Tool to Rapidly Assess the Effect of 22,277 Genes on Breast Cancer Prognosis Using Microarray Data of 1,809 Patients. Breast Cancer Res Treat (2010) 123(3):725–31.
[14].Gyorffy B, Lánczky A, Szállási Z. Implementing an Online Tool for Genome-Wide Validation of Survival-Associated Biomarkers in Ovarian-Cancer Using Microarray Data From 1287 Patients. Endocr-Related Cancer (2012) 19(2):197–208.
[15].Love MI, Huber W, Anders S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data With Deseq2. Genome Biol (2014) 15(12):550.
[16].Yu G, Wang LG, Han Y, et al.. Clusterprofiler: An R Package for Comparing Biological Themes Among Gene Clusters. Omics J Integr Biol (2012) 16(5):284–7.
[17].Szklarczyk D, Gable AL, Lyon D, et al. . STRING V11: Protein-Protein Association Networks With Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res (2019) 47(D1):D607–d13.
[18].Li B, Severson E, Pignon JC, et al. Comprehensive Analyses of Tumor Immunity: Implications for Cancer Immunotherapy. Genome Biol (2016) 17:174.
[19].Li T., Fan J., Wang B., et al. (2017). TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer Res. 77 e108–e110. 10.1158/0008-5472.CAN-17-0307.
[20].Siemers NO, Holloway JL, Chang H, et al. Genome-Wide Association Analysis Identifies Genetic Correlates of Immune Infiltrates in Solid Tumors. PloS One (2017) 12:e0179726.
[21].Danaher P, Warren S, Dennis L, et al. Gene Expression Markers of Tumor Infiltrating Leukocytes. J Immunother Cancer (2017) 5:18.
[22].Robin X, Turck N, Hainard A, et al. . pROC: An Open-Source Package for R and S+ to Analyze and Compare ROC Curves. BMC Bioinf (2011) 12:77.
[23].Yu S, Wang G, Shi Y, et al.. MCMs in Cancer: Prognostic Potential and Mechanisms. Analytical Cell Pathol (Amsterdam) (2020) 2020:3750294.
[24].Xiong Y, Wang K, Zhou H, et al.. Profiles of Immune Infiltration in Colorectal Cancer and Their Clinical Significant: A Gene Expression-Based Study. Cancer Med (2018) 7(9):4496–508.
[25].Copeland RL, Kanaan Y. New targets in triple-negative breast cancer. Nat Rev Cancer. 2021 Oct 7.
[26].Nirdé P, Derocq D, Maynadier M, et al. Heat shock cognate 70 protein secretion as a new growth arrest signal for cancer cells. Oncogene. 2010;29:117–27.
[27].Xiang X, You X-M, Li L-Q. Expression of HSP90AA1/HSPA8 in hepatocellular carcinoma patients with depression. Onco Targets Ther. 2018;11:3013–23.
[28].Shan N, Zhou W, Zhang S, et al.. Identification of HSPA8 as a candidate biomarker for endometrial carcinoma by using iTRAQ-based proteomic analysis. Onco Targets Ther. 2016;9:2169–79.
[29].Tian Y, Xu H, Farooq AA, et al. Maslinic acid induces autophagy by down-regulating HSPA8 in pancreatic cancer cells. Phytother Res. 2018;32(7):1320–31.
[30].Wang B, Lan T, Xiao H, et al.. The expression profiles and prognostic values of HSP70s in hepatocellular carcinoma. Cancer Cell Int. 2021 May 31;21(1):286.
[31].Fan Y, Hou T, Gao Y, et al.. Acetylation-dependent regulation of TPD52 isoform 1 modulates chaperone-mediated autophagy in prostate cancer. Autophagy. 2021 May 26:1-15.
[32].Shan N, Zhou W, Zhang S, et al.. Identification of HSPA8 as a candidate biomarker for endometrial carcinoma by using iTRAQ-based proteomic analysis. Onco Targets Ther. 2016 Apr 13;9:2169-79.
[33].Yang Z, Zhuang L, Szatmary P, et al.. Upregulation of heat shock proteins (HSPA12A, HSP90B1, HSPA4, HSPA5 and HSPA6) in tumour tissues is associated with poor outcomes from HBV-related early-stage hepatocellular carcinoma. Int J Med Sci. 2015 Feb 15;12(3):256-63.
[34].Park S, Chapuis N, Tamburini J, et al. Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia. Haematologica. 2010;95(5):819–28.
[35].Martelli AM, Evangelisti C, Chiarini F, et al.. Targeting the PI3K/AKT/mTOR signaling network in acute myelogenous leukemia. Expert Opin Investig Drugs. 2009;18(9):1333–49.
[36].Chen Y-F, Chen Y-T, Chiu W-T, et al.. Remodeling of calcium signaling in tumor progression. J Biomed Sci. 2013;20(1):23.
[37].Graupera M, Guillermet-Guibert J, Foukas LC, et al. Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature. 2008;453(7195):662–666.
[38].Pandey P, Saleh A, Nakazawa A, et al. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J. 2000;19(16):4310–4322.
[39].Domchek S.M., Postel-Vinay S., Im S.A., , et al. Abstract PD5-04: An open-label, phase II basket study of olaparib and durvalumab (MEDIOLA): Updated results in patients with germline BRCA-mutated (gBRCAm) metastatic breast cancer (MBC) Cancer Res. 2019;79:PD5-04.
[40].Wein L, Loi S. Mechanisms of resistance of chemotherapy in early-stage triple negative breast cancer (TNBC). Breast 2017;34 Suppl 1:S27-30. 10.1016/j.breast.2017.06.023.
[41].Pascual J, Turner NC. Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann Oncol 2019;30:1051-60. 10.1093/annonc/mdz133.
[42].Schneider JL, Villarroya J, Diaz-Carretero A, et al.. Loss of hepatic chaperone-mediated autophagy accelerates proteostasis failure in aging. Aging Cell 2015; 14:249-64.
[43].Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res 2014; 24:92-104.
[44].Kon M, Kiffin R, Koga H, et al.. Chaperone-mediated autophagy is required for tumor growth. Sci Transl Med 2011; 3:109ra17.
[45].Bonam SR, Ruff M, Muller S. HSPA8/HSC70 in Immune Disorders: A Molecular Rheostat that Adjusts Chaperone-Mediated Autophagy Substrates. Cells. 2019 Aug 7;8(8):849.
[46].Wing S.S., Chiang H.L., Goldberg A.L., et al.. Proteins containing peptide sequences related to Lys-Phe-Glu-Arg-Gln are selectively depleted in liver and heart, but not skeletal muscle, of fasted rats. Pt 1Biochem. J. 1991;275:165–169.
[47].Kiffin R., Christian C., Knecht E., et al.. Activation of chaperone-mediated autophagy during oxidative stress. Mol. Biol. Cell. 2004;15:4829–4840.
[48].Saha T. LAMP2A overexpression in breast tumors promotes cancer cell survival via chaperone-mediated autophagy. Autophagy. 2012;8:1643–1656.
[49].Saha T. LAMP2A overexpression in breast tumors promotes cancer cell survival via chaperone-mediated autophagy. Autophagy. 2012 Nov;8(11):1643-56.
[50].Cocco S., Piezzo M., Calabrese A., et al.. Biomarkers in Triple-Negative Breast Cancer: State-of-the-Art and Future Perspectives. Int. J. Mol. Sci. 2020;21.
[51].Cotzomi-Ortega I., Rosas-Cruz A., Ramírez-Ramírez D., et al.. Autophagy Inhibition Induces the Secretion of Macrophage Migration Inhibitory Factor (MIF) with Autocrine and Paracrine Effects on the Promotion of Malignancy in Breast Cancer. Biology. 2020;9:20.
[52].O’Reilly E.A., Gubbins L., Sharma S., et al. The Fate of Chemoresistance in Triple Negative Breast Cancer (TNBC) BBA Clin. 2015;3:257–275.
[53].Li B, Severson E, Pignon JC, Zhao H,et al. . Comprehensive Analyses of Tumor Immunity: Implications for Cancer Immunotherapy. Genome Biol (2016) 17(1):174.
[54].Radons J. The human HSP70 family of chaperones: Where do we stand? Cell Stress Chaperones. 2016;21:379–404.
[55].Kaushik S., Cuervo A.M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 2018;19:365–381.
[56].Bauer P.O., Goswami A., Wong H.K., et al. Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nat. Biotechnol. 2010;28:256–263.
[57].Qu B., Jia Y., Liu Y., et al.. The detection and role of heat shock protein 70 in various nondisease conditions and disease conditions: A literature review. Cell Stress Chaperones. 2015;20:885–892.
[58].Milani A., Basirnejad M., Bolhassani A. Heat-shock proteins in diagnosis and treatment: An overview of different biochemical and immunological functions. Immunotherapy. 2019;11:215–239.
[59].Page N., Gros F., Schall N., et al.. HSC70 blockade by the therapeutic peptide P140 affects autophagic processes and endogenous MHCII presentation in murine lupus. Ann. Rheum. Dis. 2011;70:837–843.
[60].Wang F., Muller S. Manipulating autophagic processes in autoimmune diseases: A special focus on modulating chaperone-mediated autophagy, an emerging therapeutic target. Front. Immunol. 2015;6:252.
[61].Auger I., Escola J.M., Gorvel J.P., et al.. HLA–DR4 and HLA–DR10 motifs that carry susceptibility to rheumatoid arthritis bind 70–KD heat shock proteins. Nat. Med. 1996;2:306–310.
[62].Panjwani N., Akbari O., Garcia S., et al.. The HSC73 molecular chaperone: Involvement in MHC class II antigen presentation. J. Immunol. 1999;163:1936–1942.
[63].Dengjel J., Schoor O., Fischer R., et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc. Natl. Acad. Sci. USA. 2005;102:7922–7927.
[64].Aichinger M., Wu C., Nedjic J., et al.. Macroautophagy substrates are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance. J. Exp. Med. 2013;210:287–300.
[65].Deffit S.N., Blum J.S. Macronutrient deprivation modulates antigen trafficking and immune recognition through HSC70 accessibility. J. Immunol. 2015;194:1446–1453.
[66].Crotzer V.L., Blum J.S. Autophagy and intracellular surveillance: Modulating MHC class II antigen presentation with stress. Proc. Natl. Acad. Sci. USA. 2005;102:7779–7780.
[67].Kettern N., Rogon C., Limmer A., et al.. The Hsc/Hsp70 co-chaperone network controls antigen aggregation and presentation during maturation of professional antigen presenting cells. PLoS ONE. 2011;6:e16398.
[68].Deffit S.N., Blum J.S. A central role for HSC70 in regulating antigen trafficking and MHC class II presentation. Mol. Immunol. 2015;68:85–88.
[69].Udono H, Srivastava PK. Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med. 1993;178(4):1391–1396.
[70].Lee TK, Han JS, Fan ST, et al. Gene delivery using a receptor-mediated gene transfer system targeted to hepatocellular carcinoma cells. Int J Cancer. 2001;93(3):393–400.
[71]. Levy E.M., Roberti M.P., Mordoh J. Natural killer cells in human cancer: From biological functions to clinical applications. J. Biomed. Biotechnol. 2011;2011:676198.
[72].Liu X., Ran R., Shao B., et al. Combined peripheral natural killer cell and circulating tumor cell enumeration enhance prognostic efficiency in patients with metastatic triple-negative breast cancer. Chin. J. Cancer Res. 2018;30:315–326.
[73].Hu Z. Tissue factor as a new target for CAR-NK cell immunotherapy of triple-negative breast cancer. Sci. Rep. 2020;10:2815.
[74].Juliá E.P., Amante A., Pampena M.B., et al.. Avelumab, an IgG1 anti-PD-L1 Immune Checkpoint Inhibitor, Triggers NK Cell-Mediated Cytotoxicity and Cytokine Production Against Triple Negative Breast Cancer Cells. Front. Immunol. 2018;9:2140.
[75].E. Azizi, A.J. Carr, G. Plitas, et al.Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell.174 (2018), pp. 1293-1308.e1236.
[76].Y. Lavin, S. Kobayashi, A. Leader,et al.Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses . Cell. 169 (2017), pp. 750-765.