Participants
In this study, we examined 31 individuals diagnosed with childhood apraxia of speech (CAS) as part of the Cleveland Family Speech and Reading Study[4, 27-31] (Supplemental Table 1). Children with CAS were identified from caseloads of speech-language pathologists in the Greater Cleveland area and referred to the study between 1991-2003. All participants met inclusion criteria based on information provided by a parent in an interview or via questionnaire including: normal hearing acuity; fewer than six episodes of otitis media prior to age 6; monolingual English speaker; absence of a history of neurological disorders other than CAS, such as cerebral palsy or autism spectrum disorder; and a diagnosis of a SSD or suspected CAS by a local speech-language pathologist or neurologist. The diagnosis of CAS was confirmed based on direct testing of motor speech and articulation by an experienced licensed speech-language pathologist upon enrollment into the study. Complete details on the diagnosis of CAS are provided in the Supplemental Methods. All children with CAS in this analysis were unrelated. For the cluster analysis described below, 8 additional individuals were randomly selected from those study participants who were unaffected for speech sound disorder and/or language impairment based on parent report and our independent assessment (Supplemental Table 2). Each child in the study was given a battery of tests to assess articulation, vocabulary, phonological memory, and reading as described below. As data were obtained as part of a larger longitudinal study, test scores were based on the initial administration of each measure. If a child could not complete a test due to age, we utilized an assessment from a later age (next visit) for that measure, and age-adjusted accordingly (see Statistical methods, described below). Socioeconomic status was determined at the initial assessment based on parent education levels and occupations using the Hollingshead Four Factor Index of Social Class[32]. In addition, parent interviews were conducted to collect information about the child’s medical and developmental history. Presence of ADHD was determined by parent report based on the diagnosis by a psychologist or neurologist. Reading disability (RD) was determined if the child was receiving reading services in the schools, and language impairment (LI) was determined by the diagnosis of a speech-language pathologist. This study was approved by the Institutional Review Board of Case Medical Center and University Hospitals and all parents provided informed consent and children provided written informed assent.
Communication and Cognitive Measures
We examined articulation using the Goldman-Fristoe Test of Articulation (GFTA)-Sounds in Words subtest [33, 34] and diadochokinetic rates using the Robbins and Klee Oral Speech Motor Control Protocol [35] or Fletcher Time-by-Count Test of Diadochokinetic Syllable Rate [36] . The Robbins and Klee was reverse scored prior to being merged with scores from the Fletcher Time-by-Count Test. For the merged variable, referred to as the Diadochokinetic Syllable Rate or DDK, higher scores reflect better performance. We excluded the DDK measure from the cluster analysis, because the scores were uniformly low among participants with CAS with little variability. Inclusion of such a variable within the multivariate analysis would have concealed any difference among children with CAS because they all had poor scores particularly in contrast with the normal children.
Expressive vocabulary was assessed with the Expressive One Word Picture Vocabulary Test-Revised (EOWPVT [37]) and receptive vocabulary with the Peabody Picture Vocabulary Test- Third Edition (PPVT [38]), and phonological memory with the Nonsense word repetition task (NWR [39]). Reading was assessed using the Woodcock Reading Mastery Test-Revised, Word Attack subtest (WRMT-AT [40]) and Word Identification Subtest (WRMT-ID [40]).
Performance IQ (PIQ) was assessed by the Wechsler Preschool and Primary Scale of Intelligence- Revised (WPPSI-R) or the Wechsler Intelligence Scale for Children- III (WISC-III; Wechsler, 1991)[41, 42]. These tests measure cognitive skills such as problem solving, spatial perception, working memory, and visual-motor co-ordination. Subtest scores were combined to form a PIQ score.
Children were not penalized for speech sound errors on the expressive vocabulary measure (EOWPVT) or the spoken reading measures (Word Attack or Word Identification). Rather, if they identified the picture correctly on the EOWPVT they received credit regardless of speech errors. Similarly, if they read the word aloud correctly they also received credit regardless of speech errors. Graphical illustration of NWR scores illustrates that children did not fail this task because of articulation issues associated with CAS (Supplemental Figure 1). (See Supplemental Methods for additional information on these measures.)
Clinical and family characteristics
Clinical characteristics of children with CAS, including reports of motor in-coordination, sensory processing issues, early feeding difficulties, little vocal play, babbling or imitation, limited repertoire of sounds, body dyspraxia, and dysarthria (see Table 1) were obtained in reviewing children’s medical and developmental history as part of parent interviews; these parental reports were not confirmed clinically. Family histories of SSD, language impairment (LI), and reading disorder (RD) were also obtained via parent interview.
Statistical methods
Age-adjusted standard scores for EOWPVT, GFTA, PPVT, WRMT-AT, WRMT-ID, and DDK tests, as provided with the tests, were transformed to z-scores (mean = 0, SD = 1). Because there are no normative data for the NWR, Z-scores for the NWR were created by regressing raw scores on age in the subsample of unaffected siblings of probands from the larger Cleveland Family Study cohort. The resulting regression equations were used to derive age-adjusted NWR scores, as in our previous work [29, 43, 44]. Because examination of clinical and family characteristics associated with the CAS severity subgroups was exploratory in nature, a nominal p-value less than 0.05 was regarded as significant.
All analyses were conducted using R software. For the cluster analysis we used hierarchical clustering (hclust). A small sample (N=8) of controls was selected because the goal was to differentiate among the children with CAS. Many clustering methods tend towards equal cluster sizing, so a larger sample of controls would have overwhelmed the analysis, leading to no differentiation among subgroups within the children with CAS. A multivariate matrix of 6 communication traits (EOWPVT, PPVT, NWR, GFTA, WRMT-AT, WRMT-ID) was constructed for all the subjects with CAS plus 8 controls, so that individuals with similar scores clustered together. Assignment of separate clusters was based on dissimilarity across the six test scores. Dissimilarity was determined using Euclidean distance and clustering was done using complete linkage. The number of clusters was determined by visualizing the dendrogram (cluster tree) and cluster size was not predetermined. After identification of clusters, the distribution of the various scores for the individuals within each group were compared using the Kruskal-Wallis test for overall difference in distributions across all groups and the Mann-Whitney test for pairwise differences, and the distribution of the presence of clinical and family characteristics with subgroup membership was examined using Fisher’s exact test. As a follow-up analysis, we compared PIQ scores across these clusters using pairwise Welch’s t-tests and ADHD prevalence across clusters using Fisher’s exact test. Lastly, to evaluate the stability of these severity groups with developmental trajectories on these tests, we compared the distribution of test scores across these groups with values taken at the last available assessment (when the children were teenage in most cases).