1 Wu, J. G., Huang, J. H., Han, X. G., Xie, Z. Q. & Gao, X. M. Three Gorges Dam - Experiment in habitat fragmentation? Science 300, 1239-1240, doi:10.1126/science.1083312 (2003).
2 Stone, R. Three Gorges Dam: into the unknown. Science 321, 628-632, doi:10.1126/science.321.5889.628 (2008).
3 Nilsson, C., Reidy, C. A., Dynesius, M. & Revenga, C. Fragmentation and flow regulation of the world's large river systems. Science 308, 405-408, doi:10.1126/science.1107887 (2005).
4 Xu, X. B., Tan, Y. & Yang, G. S. Environmental impact assessments of the Three Gorges Project in China: Issues and interventions. Earth-Science Review. 124, 115-125, doi:10.1016/j.earscirev.2013.05.007 (2013).
5 Yin, D. L. et al. Production and migration of methylmercury in water-level-fluctuating zone of the Three Gorges Reservoir, China: Dual roles of flooding-tolerant perennial herb. Journal of Hazardous Materials. 381, 9, doi:10.1016/j.jhazmat.2019.120962 (2020).
6 Wang, C. L. et al. Rapid changes in organochlorine pesticides in sediments from the East China sea and their response to human-induced catchment changes. Water Research 169, 11, doi:10.1016/j.watres.2019.115225 (2020).
7 Huang, Z. L. & Wu, B. F. Three Gorges Dam Environmental Monitoring Network and Practice. 1-335 (Science Press, 2019).
8 Degu, A. M. et al. The influence of large dams on surrounding climate and precipitation patterns. Geophysical Research Letters 38, doi:10.1029/2010gl046482 (2011).
9 Miller, N. L., Jin, J. M. & Tsang, C. F. Local climate sensitivity of the Three Gorges Dam. Geophysical Research Letters 32, doi:10.1029/2005gl022821 (2005).
10 Gyau-Boakye, P. Environmental Impacts of the Akosombo Dam and Effects of Climate Change on the Lake Levels. Environment, Development and Sustainability 3, 17-29 (2001).
11 Wang, S. et al. Dam construction as an important anthropogenic activity disturbing soil organic carbon in affected watersheds. Environmental Science & Technology 54, 7932-7941, doi:10.1021/acs.est.9b06304 (2020).
12 Zhang, K. et al. Occurrence and characteristics of microplastic pollution in Xiangxi Bay of Three Gorges Reservoir, China. Environmental Science & Technology 51, 3794-3801, doi:10.1021/acs.est.7b00369 (2017).
13 Holbach, A. et al. Three Gorges Reservoir: density pump amplification of pollutant transport into tributaries. Environmental Science & Technology 48, 7798-7806, doi:10.1021/es501132k (2014).
14 Liu, M. et al. Sources and transport of methylmercury in the Yangtze River and the impact of the Three Gorges Dam. Water Research 166, 115042, doi:https://doi.org/10.1016/j.watres.2019.115042 (2019).
15 Maavara, T., Lauerwald, R., Regnier, P. & Van Cappellen, P. Global perturbation of organic carbon cycling by river damming. Nature Communications 8, 15347, doi:10.1038/ncomms15347 (2017).
16 Waldman, J., Sharma, S., Afshari, S. & Fekete, B. Solar-power replacement as a solution for hydropower foregone in US dam removals. Nature Sustainability 2, 872-878, doi:10.1038/s41893-019-0362-7 (2019).
17 Nadon, M. J., Metcalfe, R. A., Williams, C. J., Somers, K. M. & Xenopoulos, M. A. Assessing the effects of dams and waterpower facilities on riverine dissolved organic matter composition. Hydrobiologia 744, 145-164, doi:10.1007/s10750-014-2069-0 (2015).
18 Janku, A. China: A hydrological history. Nature 536, 28-29, doi:10.1038/536028a (2016).
19 Deng, K. et al. Three Gorges Dam alters the Changjiang (Yangtze) river water cycle in the dry seasons: Evidence from H-O isotopes. Science of The Total Environment 562, 89-97, doi:https://doi.org/10.1016/j.scitotenv.2016.03.213 (2016).
20 Geng, M. et al. Spatiotemporal water quality variations and their relationship with hydrological conditions in Dongting Lake after the operation of the Three Gorges Dam, China. Journal of Cleaner Production, 124644, doi:https://doi.org/10.1016/j.jclepro.2020.124644 (2020).
21 Ban, X. et al. Impact of Three Gorges Dam operation on the spawning success of four major Chinese carps. Ecological Engineering 127, 268-275, doi:https://doi.org/10.1016/j.ecoleng.2018.12.004 (2019).
22 Zhang, Q. & Lou, Z. The environmental changes and mitigation actions in the Three Gorges Reservoir region, China. Environmental Science & Policy 14, 1132-1138, doi:https://doi.org/10.1016/j.envsci.2011.07.008 (2011).
23 Abdulaha-Al Baquy, M. et al. Critical pH and exchangeable Al of four acidic soils derived from different parent materials for maize crops. Journal of Soils and Sediments 18, 1490-1499, doi:10.1007/s11368-017-1887-x (2018).
24 Vonuexkull, H. R. & Mutert, E. Global extent, development and economic impact of acid soils Plant and Soil 171, 1-15, doi:10.1007/bf00009558 (1995).
25 Guo, J. H. et al. Significant acidification in major chinese croplands. Science 327, 1008-1010, doi:10.1126/science.1182570 (2010).
26 Hogberg, P., Fan, H. B., Quist, M., Binkley, D. & Tamm, C. O. Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Global Change Biology 12, 489-499, doi:10.1111/j.1365-2486.2005.01102.x (2006).
27 Gandois, L., Perrin, A.-S. & Probst, A. Impact of nitrogenous fertiliser-induced proton release on cultivated soils with contrasting carbonate contents: A column experiment. Geochimica Et Cosmochimica Acta 75, 1185-1198, doi:10.1016/j.gca.2010.11.025 (2011).
28 Fujii, K. et al. Acidification of tropical forest soils derived from serpentine and sedimentary rocks in East Kalimantan, Indonesia. Geoderma 160, 311-323, doi:10.1016/j.geoderma.2010.09.027 (2011).
29 Moreno-Jiménez, E. et al. Aridity and reduced soil micronutrient availability in global drylands. Nature Sustainability 2, 371-377, doi:10.1038/s41893-019-0262-x (2019).
30 Bonten, L. T. C., Reinds, G. J. & Posch, M. A model to calculate effects of atmospheric deposition on soil acidification, eutrophication and carbon sequestration. Environmental Modelling & Software 79, 75-84, doi:10.1016/j.envsoft.2016.01.009 (2016).
31 Stieglmeier, M. et al. Nitrososphaera viennensis gen. nov., sp nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. International Journal of Systematic and Evolutionary Microbiology 64, 2738-2752, doi:10.1099/ijs.0.063172-0 (2014).
32 Pelissari, C. et al. Unraveling the active microbial populations involved in nitrogen utilization in a vertical subsurface flow constructed wetland treating urban wastewater. Science of the Total Environment 584, 642-650, doi:10.1016/j.scitotenv.2017.01.091 (2017).
33 He, J.-Z., Hu, H.-W. & Zhang, L.-M. Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biology & Biochemistry 55, 146-154, doi:10.1016/j.soilbio.2012.06.006 (2012).
34 Shah, F. et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytologist 209, 1705-1719, doi:10.1111/nph.13722 (2016).
35 Guo, L., Zheng, S., Cao, C. & Li, C. Tillage practices and straw-returning methods affect topsoil bacterial community and organic C under a rice-wheat cropping system in central China. Scientific Reports 6, doi:10.1038/srep33155 (2016).
36 de Gonzalo, G., Colpa, D. I., Habib, M. H. M. & Fraaije, M. W. Bacterial enzymes involved in lignin degradation. J. Biotechnol. 236, 110-119, doi:10.1016/j.jbiotec.2016.08.011 (2016).
37 Costa de Araujo, C. K. et al. Enhancing enzymatic hydrolysis of coconut husk through Pseudomonas aeruginosa AP 029/GLVIIA rhamnolipid preparation. Bioresource Technology 237, 20-26, doi:10.1016/j.biortech.2017.03.178 (2017).
38 Lieb, A. M., Darrouzet-Nardi, A. & Bowman, W. D. Nitrogen deposition decreases acid buffering capacity of alpine soils in the southern Rocky Mountains. Geoderma 164, 220-224, doi:10.1016/j.geoderma.2011.06.013 (2011).
39 Zhou, Z., Wang, C. & Luo, Y. Response of soil microbial communities to altered precipitation: A global synthesis. Global Ecology and Biogeography 27, 1121-1136, doi:10.1111/geb.12761 (2018).
40 Chen, X., Chen, H. Y. H., Searle, E. B., Chen, C. & Reich, P. B. Negative to positive shifts in diversity effects on soil nitrogen over time. Nature Sustainability, doi:10.1038/s41893-020-00641-y (2020).
41 Li, C. B., Friedman, S. P. & Zhao, A. Z. Interactions of cations with elect rodialyzed clay fraction of soils as inferred from Wien effect in soil suspensions. Pedosphere 13, 59-66 (2003).
42 Blaser, W. J. et al. Climate-smart sustainable agriculture in low-to-intermediate shade agroforests. Nature Sustainability 1, 234-239, doi:10.1038/s41893-018-0062-8 (2018).
43 Li, H. et al. Dual benefits of long-termecological agricultural engineering: Mitigation of nutrient losses and improvement of soil quality. Science of the Total Environment 721, doi:10.1016/j.scitotenv.2020.137848 (2020).