1- Apovian CM. Obesity: definition, comorbidities, causes, and burden. Am J Manag Care. 2016;22:S176-85.
2- Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019; 15:288-98.
3- Krishnan S, Cooper JA. Effect of dietary fatty acid composition on substrate utilization and body weight maintenance in human. Eur J Nutr. 2013; 53:691-710.
4- Shahidi F, Ambigaipalan P. Omega-3 polyunsaturated fatty acid and their health benefits. Annu Rev Food Sci Technol. 2018;9:345-81.
5- Pimentel GD, Lira FS, Rosa JC, Nascimento CMO, Oyama LM, Watanabe RLH, Ribeiro EB. High-fat fish oil diets prevents hypothalamic inflammatory profile in rats. ISRN Inflammation. 2013;419823:1-7.
6- Watanabe RLH, Andrade IS, Zemdegs JCS, Albuquerque KT, Nascimento CMO, Oyama LM, Carmo MGT, Nogueira MI, Ribeiro EB. Prolonged consuption of soy or fish-oil-enriched diets differentially affects the pattern of hypothalamic neuronal activation induced by refeeding in rats. Nutr Neurosc. 2009;12(6):242 – 48.
7- Dornellas APS, Boldarine VT, Pedroso AP, Carvalho LOT, Andrade IS, Vulcani-Freitas TM, Santos CCC, Nascimento CMPO, Oyama LM, Ribeiro EB. High-fat feeding improves anxiety-type behavior induced by ovarietomy in rats. Front Neurosci. 2018;12:557.
8- Sousa IF, Souza AP, Andrade IS, Boldarine VT, Nascimento CMO, Oyama LM, Telles MM, Ribeiro EB. Effect of fish oil intake on glucose levels in rat prefrontal cortex, as measured by microdialysis. Lipids Health Dis. 2013;12:188.
9- Watanabe RLH, Andrade IS, Telles MM, Albuquerque KT, Nascimento CMO, Oyama LM, Casarini DE, Ribeiro EB. Long-term consumption of fish oil enriched diet impairs serotonin hypophagia in rats. Cell Mol Neurobiol. 2010; 30:1025–33.
10- Challet E. The circadian regulation of food intake. Nat Rev Endocrinol. 2019;15(7):393-405.
11- McLean FH, Campbell FM, Langston RF, Sergi D, Resch C, Grant C, Morris AC, Mayer CD, Williams LM. A high-fat diet induces rapid changes in the mouse hypothalamic proteome. Nutr Metab (London). 2019;16:26.
12- Pedroso AP, Souza AP, Dornellas APS, Oyama LM, Nascimento CMO, Santos GMS, Rosa JC, Bertolla RP, Klawitter J, Christians U, Tashima AK, Ribeiro EB. Intrauterine growth restriction programs the hypothalamus of the adult male rats: integrated analysis of proteomic and metabolomics data. J Proteome Res. 2017;16:1515-25.
13- Pedroso AP, Dornellas APS, Souza AP, Pagotto JF, Oyama LM, Nascimento CMO, Klawitter J, Christians U, Tashima AK, Ribeiro EB. A proteomics-metabolomics approach indicates changes in hypothalamic glutamate-GABA metabolism of adult female rats submitted to intrauterine growth restriction. Eur J Nutr. 2019;58:3059–68.
14- Iwasa T, Matsuzaki T, Yano K, Irahara M. The effects of ovariectomy and lifelong high-fat diet consumption on body weight. appetite, and lifespan in female rat. Horm Behav. 2018; 97:25–30.
15- Silva JC, Gorenstein MV, Li G, Vissers JPC, Geromanos SJ. Absolute quantification of proteins by LCMSE: a virtue of parellel MS acquisition. Mol Cell Proteomics. 2006; 5:144-56.
16- Mi H, Muruganujan A, Huang X, Ebert D, Mills C, Guo X, Thomas PD. Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat Protoc. 2019; 14:703-21.
17- Dai Y, Zhou N, Yang F, Zhou S, Sha L, Wang J, Li X. Effect of postnatal overfeeding and fish oil diet on energy expenditure in rats. Pediatric Res. 2018; 83:156-63.
18- Klockars A, Levine AS, Olszewski PK. Hypothalamic integration of the endocrine signaling related to food intake. Curr Topics Behav Neurosci. 2019;43:239-69.
19- Dragano NRV, Haddad-Tovolli R, Velloso LA. Leptin, neuroinflammation and obesity. Savino, W.; Guaraldi, F., eds.: Endocrine Immunology. Front Horm Res. Basel, Karger, 2017, vol 48, p. 84–96.
20- Sung J-H, Shah F-A, Gim S-A, Koh P-O. Identification of proteins in hyperglycemia and stroke animal models. J Surg Res. 2016;200(1):365-73.
21- Romagnoli A, Oliverio S, Evangelisti C, Iannicola C, Ippolito G, Piacentini M. Neurolekin inhibition sensitises neuronal cells to caspase-dependent apoptosis. Biochem Biophys Res Commun. 2003;302(3):448-53.
22- Xu Z, Gong J, Wang C, Wang Y, Song Y, Xu W, Liu Z, Liu Y. The diagnostic value and functional roles of phosphoglycerate mutase 1 in glioma. Oncol Rep. 2016;36:2236-44.
23- Liu Z-G, Ding J, Du C, Xu N, Wang E-L, Li J-Y, Wang Y-Y, Yu J-M. Phosphoglycerate mutase 1 is highly expressed in C6 glyoma cells and human astrocytoma. Oncology Letter. 2018;15:8935-40.
24- Gill KS, Fernandes P, O’Donovan TR, McKenna SL, Doddakula KK, Power DG, Soden DM, Forde PF. Glycolysis inhibition as a cancer treatment and its role in an anti-tumor immune response. Biochim Biophys Acta. 2016; 1866:87-105.
25- Jung HY, Kwon HJ, Kim W, Nam SM, Kim JW, Hahn KR, Yoo DY, Won M-H, Yoon YS, Kim DW, Hwang IK. Phosphoglycerate mutase 1 promotes cell proliferation and neuroblast differentiation in the dentate gyrus by facilitating the phosphorylation of cAMP response element-biding protein. Neurochem Res. 2018;44:323-32.
26- Kim W, Kwon HJ, Jung HY, Yoo DY, Kim DW, Hwang K. Phosphoglycerate mutase 1 reduces neuronal damage in the hippocampus following ischemia/reperfusion through the facilitation of energy utilization. Neurochem Int. 2020;133:104631.
27- Liu Z, Lin Y, Zhang S, Wang D, Liang Q, Luo G. Comparative proteomic analysis using 2DE-LC-MS/MS reveals the mechanism of Fuzhuan brick tea extract against hepatic fat accumulation in rats with nonalcoholic fatty liver disease. Electrophoresis. 2015; 36(17):2002-16.
28- Schmechel DE, Marangos PJ, Martin BM, Winfield S, Burkhart DS, Roses AD, Ginns EI. Localization of neuron-specific enolase (NSE) mRNA in human brain. Neurosci Lett. 1987;76:233-8.
29-Schonberger SJ, Edgar PF, Kydd R, Faull RLM, Cooper GJS. Proteomic analysis of the brain in Alzheimer’s disease: molecular phenotype of a complex disease process. Proteomics. 2001;1:1519–28.
30- Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, a-enolase and heat shock cognate 71. J Neurochem. 2002;82:1524-32.
31- Messier C, Gagnon M. Glucose regulation and cognitive function: relation to Alzheimer’s disease and diabetes. Behav Brain Res. 1996;75:1-11.
32- Morris MC, Evans DA, Bienias JL, Tangney CC, Bennet DA, Wilson RS, Aggarwal N, Schneider J. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol. 2003;60:940-6.
33- Datta A, Akatsu H, Heese K, Sze SK. Quantitative Clinical Proteomic Study of Autopsied Human Infarcted Brain Specimens to Elucidate the Deregulated Pathways in Ischemic Stroke Pathology. J Proteomics. 2013;91:556-68.
34- Chen H, Wang C, Wei X, Ding X, Ying W. Malate-aspartate shuttle inhibitor aminooxyacetate acid induces apoptosis and impairs energy metabolism of both resting microglia and LPS-activated microglia. Neurochem Res. 2015;40:1311-8.
35- Chen X, Chen C, Hao J, Qin R, Qian B, Yang K, Zhang J, Zhang F. Akr1b1 upregulation contributes to neuroinflammation and astrocytes proliferation by regulating energy metabolism in rat spinal cord injury. Neurochem Res. 2018;43:1491-9.
36- Khayami R, Hashemi SR, Kerachian MA. Role of aldo-keto reductase family 1 member B1 (AKR1B1) in the cancer process and its therapeutic potential. J Cell Mol Med. 2020;24:8890-902.
37- Srivastava SK, Yadav UCS, Reddy ABM, Saxena A, Tammali R, Mohammad S, Ansari NH, Bhatnagar A, Petrash MJ, Srivastava S, Ramana KV. Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders. Chem Biol Interact. 2011;191:330-8.
38- Tretter L, Adam-Vizi V. Inhibition of Krebs cycle enzymes by hydrogen peroxide: a key role of α-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J Neurosci. 2000;20(24):8972–9.
39- Shi Q, Gibson GE. Up-regulation of the mitochondrial malate dehydrogenase by oxidative stress is mediated by miR-743a. J Neurochem 2011, 118(3), 440-8.
40- Tan BL, Norhaizan ME. Effect of high-fat diets on oxidative stress, cellular inflammatory response and cognitive function. Nutrients. 2019;11:2579.
41- Lam TKT, Gutierrez-Juarez R, Pocai A, Rosseti L. Regulation of blood glucose by hypothalamic pyruvate metabolism. Science. 2005;309:943-7.
42- Magistretti PJ, Allaman I. Lactate in brain: from metabolic end-product to signaling molecule. Neuroscience. 2018;19:235-49.
43- Lam CKL, Chari M, Wang PYT, Lam TKT. Central lactate metabolism regulates food intake. Am J Physiol Endocrinol Metab. 2008;295:E491–6.
44- Cha SH, Lane MD. Central lactate metabolism suppresses food intake via the hypothalamic AMP kinase/malonyl-CoA signaling pathway. Biochem Biophys Res Commun. 2009;386:212–16.
45- Tang M, Huang H, Li S, Zhou M, Huang R, Liao W, Xie P, Zhou J. Hippocampal proteomic changes of susceptibility and resilience to depression or anxiety in a rat model of chronic mild stress. Transl Psychiatry. 2019;9:260.
46- Lazzarino G, Amorini AM, Signoretti S, Musumeci G, Lazzarino G, Caruso G, Pastore FS, Di Pietro V, Tavazzi B, Belli A. Pyruvate dehydrogenase and tricarboxylic acid cycle enzymes are sensitive targets of traumatic brain injury induced metabolic derangement. Int J Mol Sci. 2019;20:5774.
47- Barja G. Updating the Mitochondrial Free Radical Theory of Aging: An Integrated View, Key Aspects, and Confounding Concepts. Antioxid Redox Signal. 2013;19(12):1420–45.
48- Mota-Martorell N, Jove M, Pradas I, Sanchez I, Gómez J, Naudi A, Barja G, Pamplona R. Low abundance of NDUFV2 and NDUFS4 subunits of the hydrophilic complex I domain and VDAC1 predicts mammalian longevity. Redox Biol. 2020;34:101539.
49- Stroud DA, Formosa LE, Wijeyeratne XW, Nguyen TN, Ryan M. Gene Knockout Using Transcription Activator-like Effector Nucleases (TALENs) Reveals That Human NDUFA9 Protein Is Essential for Stabilizing the Junction between Membrane and Matrix Arms of Complex I. J Biol Chem. 2013;288(3):1685–90.
50- Adav SS, Park JE, Sze SK. Quantitative profiling brain proteomes revealed mitochondrial dysfunction in Alzheimer’s disease. Mol Brain. 2019;12:8.