[1]. Bray F, J Ferlay, I Soerjomataram, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2018, 68(6): p. 394-424.
[2]. Warburg O. On the origin of cancer cells [J]. Science, 1956, 123(3191): p. 309-314.
[3]. DeBerardinis R J, J J Lum, G Hatzivassiliou, et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation [J]. Cell Metab, 2008, 7(1): p. 11-20.
[4]. Brizel D M, T Schroeder, R L Scher, et al. Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer [J]. Int J Radiat Oncol Biol Phys, 2001, 51(2): p. 349-353.
[5]. Li Q, Y Qin, P Wei, et al. Gas1 Inhibits Metastatic and Metabolic Phenotypes in Colorectal Carcinoma [J]. Mol Cancer Res, 2016.
[6]. Zhang Y,J M Yang. Altered energy metabolism in cancer: a unique opportunity for therapeutic intervention [J]. Cancer Biol Ther, 2013, 14(2): p. 81-89.
[7]. Wong K K L, J Z Liao,E M Verheyen. A positive feedback loop between Myc and aerobic glycolysis sustains tumor growth in a Drosophila tumor model [J]. Elife, 2019, 8.
[8]. Li Q, P Wei, J Wu, et al. The FOXC1/FBP1 signaling axis promotes colorectal cancer proliferation by enhancing the Warburg effect [J]. Oncogene, 2018.
[9]. Cui J, M Shi, D Xie, et al. FOXM1 promotes the warburg effect and pancreatic cancer progression via transactivation of LDHA expression [J]. Clin Cancer Res, 2014, 20(10): p. 2595-2606.
[10]. Garrett S C, K M Varney, D J Weber, et al. S100A4, a mediator of metastasis [J]. J Biol Chem, 2006, 281(2): p. 677-680.
[11]. Emberley E D, L C Murphy,P H Watson. S100 proteins and their influence on pro-survival pathways in cancer [J]. Biochem Cell Biol, 2004, 82(4): p. 508-515.
[12]. Hou S, T Tian, D Qi, et al. S100A4 promotes lung tumor development through beta-catenin pathway-mediated autophagy inhibition [J]. Cell Death Dis, 2018, 9(3): p. 277.
[13]. Boye K, H Jacob, K A Frikstad, et al. Prognostic significance of S100A4 expression in stage II and III colorectal cancer: results from a population-based series and a randomized phase III study on adjuvant chemotherapy [J]. Cancer Med, 2016, 5(8): p. 1840-1849.
[14]. Egeland E V, K Boye, D Park, et al. Prognostic significance of S100A4-expression and subcellular localization in early-stage breast cancer [J]. Breast Cancer Res Treat, 2017, 162(1): p. 127-137.
[15]. Ruma I M W, R Kinoshita, N Tomonobu, et al. Embigin Promotes Prostate Cancer Progression by S100A4-Dependent and-Independent Mechanisms [J]. Cancers (Basel), 2018, 10(7).
[16]. Herwig N, B Belter, S Wolf, et al. Interaction of extracellular S100A4 with RAGE prompts prometastatic activation of A375 melanoma cells [J]. J Cell Mol Med, 2016, 20(5): p. 825-835.
[17]. Liu L, L Qi, T Knifley, et al. S100A4 alters metabolism and promotes invasion of lung cancer cells by up-regulating mitochondrial complex I protein NDUFS2 [J]. J Biol Chem, 2019, 294(18): p. 7516-7527.
[18]. Li Q, J Wu, P Wei, et al. Overexpression of forkhead Box C2 promotes tumor metastasis and indicates poor prognosis in colon cancer via regulating epithelial-mesenchymal transition [J]. Am J Cancer Res, 2015, 5(6): p. 2022-2034.
[19]. Fan Y, Z Ding, Z Yang, et al. Expression and clinical significance of FOXE1 in papillary thyroid carcinoma [J]. Mol Med Rep, 2013, 8(1): p. 123-127.
[20]. Li Q, Y Li, L Liang, et al. Klotho negatively regulated aerobic glycolysis in colorectal cancer via ERK/HIF1alpha axis [J]. Cell Commun Signal, 2018, 16(1): p. 26.
[21]. Marin-Hernandez A, J C Gallardo-Perez, S J Ralph, et al. HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms [J]. Mini Rev Med Chem, 2009, 9(9): p. 1084-1101.
[22]. Zhu Y, Y Zhou, X Zhou, et al. S100A4 suppresses cancer stem cell proliferation via interaction with the IKK/NF-kappaB signaling pathway [J]. BMC Cancer, 2018, 18(1): p. 763.
[23]. Li F, J Shi, Z Xu, et al. S100A4-MYH9 Axis Promote Migration and Invasion of Gastric Cancer Cells by Inducing TGF-beta-Mediated Epithelial-Mesenchymal Transition [J]. J Cancer, 2018, 9(21): p. 3839-3849.
[24]. Vander Heiden M G, L C Cantley,C B Thompson. Understanding the Warburg effect: the metabolic requirements of cell proliferation [J]. Science, 2009, 324(5930): p. 1029-1033.
[25]. Zhang W, X Shi, Y Peng, et al. HIF-1alpha Promotes Epithelial-Mesenchymal Transition and Metastasis through Direct Regulation of ZEB1 in Colorectal Cancer [J]. PLoS One, 2015, 10(6): p. e0129603.
[26]. Zhang L, G Huang, X Li, et al. Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor -1alpha in hepatocellular carcinoma [J]. BMC Cancer, 2013, 13: p. 108.
[27]. Robey I F, A D Lien, S J Welsh, et al. Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors [J]. Neoplasia, 2005, 7(4): p. 324-330.