1. Camarena-Tello JC, Martínez-Flores HE, Garnica-Romo MG, Padilla-Ramírez JS, Saavedra-Molina A, Alvarez-Cortes O, et al. Quantification of phenolic compounds and in vitro radical scavenging abilities with leaf extracts from two varieties of Psidium guajava L. Antioxidants. 2018;7:1–12.
2. Shrestha A. Critical Appraisal of Management Practices in Nepalese Guava Orchards. J Inst Agric Anim Sci. 2005;26:127–33.
3. Bose T, Mitra S, Sanyal D. Fruits: tropical and subtropical. Volume 1. [Internet]. 2001 [cited 2021 Jun 28]. Available from: https://www.cabdirect.org/cabdirect/abstract/20013102347
4. Seo J, Lee S, Elam ML, Johnson SA, Kang J, Arjmandi BH. Study to find the best extraction solvent for use with guava leaves ( Psidium guajava L.) for high antioxidant efficacy . Food Sci Nutr. 2014;2:174–80.
5. Ara Farhana J. Antibacterial Effects of Guava (<i>Psidium guajava</i> L.) Extracts Against Food Borne Pathogens. Int J Nutr Food Sci. 2017;6:1.
6. Luo Y, Peng B, Wei W, Tian X, Wu Z. Antioxidant and anti-diabetic activities of polysaccharides from guava leaves. Molecules. 2019;24:1–14.
7. Jenkins W, Tucker ME, Grim J. Routledge handbook of religion and ecology. Routledge Handb. Relig. Ecol. 2016.
8. Joshi A. Don ’ t waste food. 2020;
9. Islam T, Afrin N, Parvin S, Dana NH, Rahman KS, Zzaman W, et al. The impact of chitosan and guava leaf extract as preservative to extend the shelf-life of fruits. Int Food Res J. 2018;25:2056–62.
10. Nations U. Food and Agriculture Organization of the United Nations.
11. Negi PS. Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. Int J Food Microbiol [Internet]. Elsevier B.V.; 2012;156:7–17. Available from: http://dx.doi.org/10.1016/j.ijfoodmicro.2012.03.006
12. Zam W. Effect of Alginate and Chitosan Edible Coating Enriched with Olive Leaves Extract on the Shelf Life of Sweet Cherries (Prunus avium L.). J Food Qual. 2019;2019.
13. Hosea ZY, Liamngee K, Owoicho AL, David T. Effect of Neem leaf powder on Post harvest shelf life and quality of tomato fruits in storage. Int J Dev Sustain. 2017;6:1334–49.
14. Rieger G, Müller M, Guttenberger H, Bucar F. Influence of altitudinal variation on the content of phenolic compounds in wild populations of Calluna vulgaris, Sambucus nigra, and Vaccinium myrtillus. J Agric Food Chem. 2008;56:9080–6.
15. Kishore G, Ranjan S, Pandey A, Gupta S. Influence of altitudinal variation on the antioxidant potential of tartar buckwheat of Western Himalaya. Food Sci Biotechnol. 2010;19:1355–63.
16. Chandra A, Bhattarai A, Yadav AK, Adhikari J, Singh M, Giri B. Green Synthesis of Silver Nanoparticles Using Tea Leaves from Three Different Elevations. ChemistrySelect. 2020;1–9.
17. Roy M, Dutta TK. Evaluation of Phytochemicals and Bioactive Properties in Mangrove Associate Suaeda monoica Forssk. ex J.F.Gmel. of Indian Sundarbans. Front Pharmacol. 2021;12:1–30.
18. Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants. 2017;6.
19. Regmi R, Shrestha M, Banjara MR, Khadka D. Antidiabetic and antimicrobial properties of some high altitude medicinal plants of Nepal. Proc Pakistan Acad Sci Part B. 2019;56:69–74.
20. Nn A. Medicinal & Aromatic Plants A Review on the Extraction Methods Use in Medicinal Plants , Principle , Strength and Limitation. 2015;4:3–8.
21. Zhang Y, Chen S, Huo J, Huang D. Deciphering the nutritive and antioxidant properties of Malay cherry (: Lepisanthes alata) fruit dominated by ripening effects. RSC Adv. Royal Society of Chemistry; 2019;9:38065–76.
22. Wang W, Li J, Zhang H, Wang X, Fan J. Phenolic compounds and bioactivity evaluation of aqueous and methanol extracts of Allium mongolicum Regel. 2019;779–87.
23. Chandra S, Khan S, Avula B, Lata H, Yang MH, Elsohly MA, et al. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evidence-based Complement Altern Med. Hindawi Publishing Corporation; 2014;2014.
24. Cheng Z, Moore J, Yu L. High-throughput relative DPPH radical scavenging capacity assay. J Agric Food Chem. 2006;54:7429–36.
25. Al-rifai A, Aqel A, Awaad A, Alothman ZA. Communications in Soil Science and Plant Analysis Analysis of Quercetin and Kaempferol in an Alcoholic Extract of Convolvulus pilosellifolius using HPLC. 2015;37–41.
26. Pandey J, Bastola T, Tripathi J, Tripathi M, Rokaya RK, Dhakal B, et al. Estimation of Total Quercetin and Rutin Content in Malus domestica of Nepalese Origin by HPLC Method and Determination of Their Antioxidative Activity. 2020;2020.
27. Procedures A. Guidance for Industry Q2B Validation of Analytical Procedures : Methodology Guidance for Industry Q2B Validation of Analytical Procedures : Methodology. 1996;
28. Method VA. Geographical Discrimination in Curcuminoids Content of Turmeric Assessed by Rapid UPLC-DAD Validated Analytical Method. 2019;
29. Hudzicki J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol Author Information. Am Soc Microbiol [Internet]. 2012;1–13. Available from: https://www.asm.org/Protocols/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Pro
30. Nordin MAF, Himratul-Aznita WH, Abdul Razak F. Antifungal susceptibility and growth inhibitory response of oral Candida species to Brucea javanica Linn. extract. BMC Complement Altern Med. 2013;13.
31. Rana S, Hasan SMR, Hossain M, Das N. CYTOTOXIC ( BRINE SHRIMP LETHALITY BIOASSAY ) AND ANTIOXIDANT INVESTIGATION OF BARRINGTONIA ACUTANGULA ( L .)”. 2015;6:1179–85.
32. Profile P, Bioactivities H. Guava ( Psidium guajava L .) Leaves : Nutritional Composition ,. 2021;1–20.
33. Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Med. 1982;45:31–4.
34. Kainama H, Fatmawati S, Santoso M, Papilaya PM, Ersam T. The Relationship of Free Radical Scavenging and Total Phenolic and Flavonoid Contents of Garcinia lasoar PAM. Pharm Chem J. 2020;53:1151–7.
35. Dhiman A, Nanda A, Ahmad S, Narasimhan B. In vitro antimicrobial activity of methanolic leaf extract of Psidium guajava L. J Pharm Bioallied Sci. 2011;3:226–9.
36. Kaur T, Bhat R, Vyas D. Effect of contrasting climates on antioxidant and bioactive constituents in five medicinal herbs in Western Himalayas. J Mt Sci. 2016;13:484–92.
37. Kowalczyk D, Świeca M, Cichocka J, Gawlik-Dziki U. The phenolic content and antioxidant activity of the aqueous and hydroalcoholic extracts of hops and their pellets. J Inst Brew. 2013;119:103–10.
38. Esmaeili AK, Taha RM, Mohajer S, Banisalam B. Antioxidant Activity and Total Phenolic and Flavonoid Content of Various Solvent Extracts from In Vivo and In Vitro Grown Trifolium pratense L . ( Red Clover ). 2015;2015.
39. Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S, et al. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J Food Drug Anal [Internet]. Elsevier Ltd; 2014;22:296–302. Available from: http://dx.doi.org/10.1016/j.jfda.2013.11.001
40. Naczk M, Shahidi F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J Pharm Biomed Anal. 2006;41:1523–42.
41. Suleiman MHA, ALaerjani WMA, Mohammed MEA. Influence of altitudinal variation on the total phenolic and flavonoid content of Acacia and Ziziphus honey. Int J Food Prop. 2020;23:2077–86.
42. Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N. Total Phenolic content, Flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants. 2019;8.
43. Phuyal N, Jha PK, Raturi PP, Rajbhandary S. In Vitro Antibacterial Activities of Methanolic Extracts of Fruits, Seeds, and Bark of Zanthoxylum armatum DC. J Trop Med. 2020;2020.
44. Liew SS, Ho WY, Yeap SK, Bin Sharifudin SA. Phytochemical composition and in vitro antioxidant activities of Citrus sinensis peel extracts. PeerJ. 2018;2018:1–16.
45. Zuorro A, Iannone A, Lavecchia R. Water-organic solvent extraction of phenolic antioxidants from brewers’ spent grain. Processes. 2019;7.
46. Venkatesan T, Choi YW, Kim YK. Impact of Different Extraction Solvents on Phenolic Content and Antioxidant Potential of Pinus densiflora Bark Extract. Biomed Res Int. 2019;2019.
47. Górniak I, Bartoszewski R, Króliczewski J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019.
48. Rodríguez De Luna SL, Ramírez-Garza RE, Serna Saldívar SO. Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. Sci World J. 2020;2020.
49. Wang T, Li Q, Bi K. Article type : Review Article Bioactive Flavonoids in Medicinal Plants : Structure , Activity and Biological fate. Asian J Pharm Sci [Internet]. Elsevier B.V.; 2017; Available from: http://dx.doi.org/10.1016/j.ajps.2017.08.004
50. Farsad A, Alizadeh M. Trends in Food Science & Technology Antioxidant properties of the fl avonoid fi setin : An updated review of in vivo and in vitro studies. 2017;70:34–44.
51. Oncho DA, Ejigu MC, Urgessa OE. Phytochemical constituent and antimicrobial properties of guava extracts of east Hararghe of Oromia, Ethiopia. Clin Phytoscience. Clinical Phytoscience; 2021;7.
52. Biswas B, Rogers K, McLaughlin F, Daniels D, Yadav A. Antimicrobial activities of leaf extracts of guava (psidium guajava L.) on two gram-negative and gram-positive bacteria. Int J Microbiol. 2013;2013.