[1] Jackson, R. A. & Chen, E. S. Synthetic lethal approaches for assessing combinatorial efficacy of chemotherapeutic drugs. Pharmacology & therapeutics162, 69-85 (2016).
[2] Van Duin, D. & Paterson, D. L. Multidrug-resistant bacteria in the community: trends and lessons learned. Infectious Disease Clinics30, 377-390 (2016).
[3] Xu, Z., Fang, X., Wood, T. K. & Huang, Z. J. A systems-level approach for investigating Pseudomonas aeruginosa biofilm formation. PloS one8, e57050 (2013).
[4] Silver, L. L. Multi-targeting by monotherapeutic antibacterials. Nat Rev Drug Discov6, 41-55, doi:10.1038/nrd2202 (2007).
[5] Heirendt, L. et al. Creation and analysis of biochemical constraint-based models: the COBRA Toolbox v3. 0. arXiv preprint arXiv:1710.04038 (2017).
[6] Dougherty, B. V., Moutinho Jr, T. J. & Papin, J. Accelerating the drug development pipeline with genome-scale metabolic network reconstructions. Systems Biology6 (2017).
[7] Singh, S., Malik, B. K. & Sharma, D. K. Choke point analysis of metabolic pathways in E. histolytica: a computational approach for drug target identification. Bioinformation2, 68 (2007).
[8] Kim, H. U., Kim, T. Y. & Lee, S. Y. Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE. Molecular BioSystems6, 339-348 (2010).
[9] Kim, H. U. et al. Integrative genome‐scale metabolic analysis of Vibrio vulnificus for drug targeting and discovery. Molecular systems biology7 (2011).
[10] Chavali, A. K., Whittemore, J. D., Eddy, J. A., Williams, K. T. & Papin, J. A. Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Molecular systems biology4 (2008).
[11] Thiele, I. et al. A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2. BMC systems biology5, 1-9 (2011).
[12] Chavali, A. K., D'Auria, K. M., Hewlett, E. L., Pearson, R. D. & Papin, J. A. A metabolic network approach for the identification and prioritization of antimicrobial drug targets. Trends Microbiol20, 113-123, doi:10.1016/j.tim.2011.12.004 (2012).
[13] Hartman, H. B. et al. Identification of potential drug targets in Salmonella enterica sv. Typhimurium using metabolic modelling and experimental validation. Microbiology160, 1252-1266 (2014).
[14] Sigurdsson, G., Fleming, R. M., Heinken, A. & Thiele, I. A systems biology approach to drug targets in Pseudomonas aeruginosa biofilm. PLoS One7, e34337, doi:10.1371/journal.pone.0034337 (2012).
[15] Suthers, P. F., Zomorrodi, A. & Maranas, C. D. Genome-scale gene/reaction essentiality and synthetic lethality analysis. Mol Syst Biol5, 301, doi:10.1038/msb.2009.56 (2009).
[16] Tymoshenko, S. et al. Metabolic needs and capabilities of Toxoplasma gondii through combined computational and experimental analysis. PLoS computational biology11, e1004261 (2015).
[17] Burgard, A. P., Nikolaev, E. V., Schilling, C. H. & Maranas, C. D. Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res14, 301-312, doi:10.1101/gr.1926504 (2004).
[18] Feist, A. M. et al. A genome‐scale metabolic reconstruction for Escherichia coli K‐12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Molecular systems biology3, 121 (2007).
[19] Ballerstein, K., von Kamp, A., Klamt, S. & Haus, U.-U. Minimal cut sets in a metabolic network are elementary modes in a dual network. Bioinformatics28, 381-387 (2012).
[20] von Kamp, A. & Klamt, S. Enumeration of smallest intervention strategies in genome-scale metabolic networks. PLoS computational biology10 (2014).
[21] Schneider, P., von Kamp, A. & Klamt, S. An extended and generalized framework for the calculation of metabolic intervention strategies based on minimal cut sets. PLoS computational biology16, e1008110 (2020).
[22] Klamt, S., Mahadevan, R. & von Kamp, A. Speeding up the core algorithm for the dual calculation of minimal cut sets in large metabolic networks. Bmc Bioinformatics21, 1-21 (2020).
[23] Miraskarshahi, R., Zabeti, H., Stephen, T. & Chindelevitch, L. MCS2: minimal coordinated supports for fast enumeration of minimal cut sets in metabolic networks. Bioinformatics35, i615-i623 (2019).
[24] Pratapa, A., Balachandran, S. & Raman, K. Fast-SL: an efficient algorithm to identify synthetic lethal sets in metabolic networks. Bioinformatics31, 3299-3305 (2015).
[25] Zhang, C., Ji, B., Mardinoglu, A., Nielsen, J. & Hua, Q. Logical transformation of genome-scale metabolic models for gene level applications and analysis. Bioinformatics31, 2324-2331 (2015).
[26] Tarjan, R. Depth-first search and linear graph algorithms. SIAM journal on computing1, 146-160 (1972).
[27] Herlihy, M. & Shavit, N. The Art of Multiprocessor Programming, revised first edition. (Morgan Kaufmann, 2012).
[28] Orth, J. D., Thiele, I. & Palsson, B. Ø. What is flux balance analysis? Nature biotechnology28, 245 (2010).
[29] Gudmundsson, S. & Thiele, I. Computationally efficient flux variability analysis. BMC bioinformatics11, 1-3 (2010).
[30] Bundy, A. & Wallen, L. in Catalogue of artificial intelligence tools 13-13 (Springer, 1984).
[31] Vempaty, N. R., Kumar, V. & Korf, R. E. in AAAI. 434-440.
[32] Apaolaza, I., Valcarcel, L. V. & Planes, F. J. gMCS: fast computation of genetic minimal cut sets in large networks. Bioinformatics35, 535-537 (2019).
[33] Jamshidi, N. & Palsson, B. Ø. Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC systems biology1, 26 (2007).
[34] Hädicke, O. & Klamt, S. EColiCore2: a reference network model of the central metabolism of Escherichia coli and relationships to its genome-scale parent model. Scientific reports7, 39647 (2017).
[35] Orth, J. D. et al. A comprehensive genome‐scale reconstruction of Escherichia coli metabolism—2011. Molecular systems biology7, 535 (2011).
[36] Liao, Y.-C. et al. An experimentally validated genome-scale metabolic reconstruction of Klebsiella pneumoniae MGH 78578, i YL1228. Journal of bacteriology193, 1710-1717 (2011).