1.
World Organization for Animal Health (OIE): Aquatic Animal Health Code. 2017. www.oie.int
2.
Congleton JL: Getting in control of deadly IHN. Focus on Renewable Resources 1988, 14:18-19.
3.
Garver KA, Mahony AA, Stucchi D, Richard J, Van Woensel C, Foreman M: Estimation of parameters influencing waterborne transmission of infectious Hematopoietic
Necrosis Virus (IHNV) in Atlantic Salmon (Salmo salar). 2013.
4.
Amend DF, Yasutake WT, Mead RW: A hematopoietic virus disease of rainbow trout and sockeye salmon. Transactions of the American Fisheries Society 1969, 98(4):796-804.
5.
Schu H, Mundt E, Mettenleiter TC: Complete genomic sequence of viral hemorrhagic septicemia virus, a fish rhabdovirus. Virus genes 1999, 19(1):59-65.
6.
Thoulouze M-I, Bouguyon E, Carpentier C, Brémont M: Essential role of the NV protein of Novirhabdovirus for pathogenicity in rainbow trout. Journal of virology 2004, 78(8):4098-4107.
7.
Wu Y, Guo M, Hua X, Duan K, Lian G, Sun L, Tang L, Xu Y, Liu M, Li Y: The role of infectious hematopoietic necrosis virus (IHNV) proteins in the modulation
of NF-κB pathway during IHNV infection. Fish & shellfish immunology 2017, 63:500-506.
8.
Drolet B, Rohovec J, Leong J: The route of entry and progression of infectious haematopoietic necrosis virus in
Oncorhynchus mykiss (Walbaum): a sequential immunohistochemical study. Journal of Fish Diseases 1994, 17(4):337-344.
9.
Harmache A, LeBerre M, Droineau S, Giovannini M, Brémont M: Bioluminescence imaging of live infected salmonids reveals that the fin bases are
the major portal of entry for Novirhabdovirus. Journal of virology 2006, 80(7):3655-3659.
10.
Chilmonczyk S, Winton J: Involvement of rainbow trout leucocytes in the pathogenesis of infectious hematopoietic
necrosis. Diseases of Aquatic Organisms 1994:89-94.
11.
LaPatra S, Rohovec J, Fryer J: Detection of infectious hematopoietic necrosis virus in fish mucus. Fish Pathology 1989, 24(4):197-202.
12.
Wargo AR, Scott RJ, Kerr B, Kurath G: Replication and shedding kinetics of infectious hematopoietic necrosis virus in juvenile
rainbow trout. Virus research 2017, 227:200-211.
13.
Gende SM, Edwards RT, Willson MF, Wipfli MS: Pacific Salmon in Aquatic and Terrestrial Ecosystems: Pacific salmon subsidize freshwater
and terrestrial ecosystems through several pathways, which generates unique management
and conservation issues but also provides valuable research opportunities. AIBS Bulletin 2002, 52(10):917-928.
14.
Knapp G, Guettabi M, Goldsmith OS: The economic importance of the Bristol Bay salmon industry. In. Anchorage, AK: Institute of Social and Economic Research; 2013.
15.
Williams IV, Amend DF: A natural epizootic of infectious hematopoietic necrosis in fry of sockeye salmon
(Oncorhynchus nerka) at Chilko Lake, British Columbia. Journal of the Fisheries Board of Canada 1976, 33(7):1564-1567.
16.
Amend DF, Nelson JR: Variation in the susceptibility of sockeye salmon Oncorhynchus nerka to infectious
haemopoietic necrosis virus. Journal of Fish Biology 1977, 11(6):567-573.
17.
Garver KA, LaPatra SE, Kurath G: Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook
Oncorhynchus tshawytscha and sockeye O. nerka salmon. Diseases of Aquatic Organisms 2005, 64(1):13-22.
18.
Purcell M, Garver K, Conway C, Elliott D, Kurath G: Infectious haematopoietic necrosis virus genogroup‐specific virulence mechanisms in
sockeye salmon, Oncorhynchus nerka (Walbaum), from Redfish Lake, Idaho. Journal of Fish Diseases 2009, 32(7):619-631.
19.
Traxler G, Roome J, Kent M: Transmission of infectious hematopoietic necrosis virus in seawater. Diseases of Aquatic Organisms 1993, 16:111-111.
20.
Long A, Richard J, Hawley L, LaPatra SE, Garver KA: Transmission potential of infectious hematopoietic necrosis virus in APEX-IHN®-vaccinated
Atlantic salmon. Diseases of aquatic organisms 2017, 122(3):213-221.
21.
Traxler G, Roome J, Lauda K, LaPatra S: Appearance of infectious hematopoietic necrosis virus (IHNV) and neutralizing antibodies
in sockeye salmon Onchorynchus nerka during their migration and maturation period. Diseases of Aquatic Organisms 1997, 28(1):31-38.
22.
Müller A, Sutherland BJ, Koop BF, Johnson SC, Garver KA: Infectious hematopoietic necrosis virus (IHNV) persistence in Sockeye Salmon: influence
on brain transcriptome and subsequent response to the viral mimic poly (I: C). BMC genomics 2015, 16(1):634.
23.
Polinski MP, Bradshaw JC, Inkpen SM, Richard J, Fritsvold C, Poppe TT, Rise ML, Garver
KA, Johnson SC: De novo assembly of Sockeye salmon kidney transcriptomes reveal a limited early response
to piscine reovirus with or without infectious hematopoietic necrosis virus superinfection. BMC genomics 2016, 17(1):848.
24.
Purcell MK, LaPatra SE, Woodson JC, Kurath G, Winton JR: Early viral replication and induced or constitutive immunity in rainbow trout families
with differential resistance to Infectious hematopoietic necrosis virus (IHNV). Fish & shellfish immunology 2010, 28(1):98-105.
25.
Quillet E, Dorson M, Aubard G, Torhy C: In vitro assay to select rainbow trout with variable resistance/susceptibility to
viral haemorrhagic septicaemia virus. Diseases of Aquatic Organisms 2007, 76(1):7-16.
26.
Dorson M, Torhy C: Viral haemorrhagic septicaemia virus replication in external tissue excised from rainbow
trout, Oncorhynchus mykiss (Walbaum), and hybrids of different susceptibilities. Journal of Fish Diseases 1993, 16(4):403-408.
27.
Quillet E, Dorson M, Aubard G, Torhy C: In vitro viral haemorrhagic septicaemia virus replication in excised fins of rainbow
trout: correlation with resistance to waterborne challenge and genetic variation. Diseases of Aquatic Organisms 2001, 45(3):171-182.
28.
Quillet E, Dorson M, Le Guillou S, Benmansour A, Boudinot P: Wide range of susceptibility to rhabdoviruses in homozygous clones of rainbow trout. Fish & shellfish immunology 2007, 22(5):510-519.
29.
Eaton W: Anti-viral activity in four species of salmonids following exposure to poly inosinic:
cytidylic acid. Dis Aquat Organ 1990, 9(3):193-198.
30.
Saint-Jean SR, Pérez-Prieto SI: Interferon mediated antiviral activity against salmonid fish viruses in BF-2 and other
cell lines. Veterinary immunology and immunopathology 2006, 110(1):1-10.
31.
Langevin C, van der Aa L, Houel A, Torhy C, Briolat V, Lunazzi A, Harmache A, Bremont
M, Levraud J-P, Boudinot P: Zebrafish ISG15 exerts a strong antiviral activity against RNA and DNA viruses and
regulates the interferon response. Journal of virology 2013, 87(18):10025-10036.
32.
Purcell MK, Kurath G, Garver KA, Herwig RP, Winton JR: Quantitative expression profiling of immune response genes in rainbow trout following
infectious haematopoietic necrosis virus (IHNV) infection or DNA vaccination. Fish & shellfish immunology 2004, 17(5):447-462.
33.
Kim HJ, Oseko N, Nishizawa T, Yoshimizu M: Protection of rainbow trout from infectious hematopoietic necrosis (IHN) by injection
of infectious pancreatic necrosis virus (IPNV) or Poly (I: C). Diseases of Aquatic Organisms 2009, 83(2):105-113.
34.
Ooi EL, Verjan N, Haraguchi I, Oshima T, Kondo H, Hirono I, Aoki T, Kiyono H, Yuki
Y: Innate immunomodulation with recombinant interferon-α enhances resistance of rainbow
trout (Oncorhynchus mykiss) to infectious hematopoietic necrosis virus. Developmental & Comparative Immunology 2008, 32(10):1211-1220.
35.
Trobridge G, LaPatra S, Kim C, Leong J: Mx mRNA expression and RFLP analysis of rainbow trout Oncorhynchus mykiss genetic
crosses selected for susceptibility or resistance to IHNV. Diseases of Aquatic Organisms 2000, 40(1):1-7.
36.
Ng PC, Henikoff S: SIFT: Predicting amino acid changes that affect protein function. Nucleic acids research 2003, 31(13):3812-3814.
37.
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research 2011, 40(D1):D109-D114.
38.
Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z: GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene
lists. BMC Bioinformatics 2009, 10(1):48.
39.
Cain KD, Polinski MP: Infectious diseases of coldwater fish in fresh water. Diseases and disorders of finfish in cage culture 2014:60.
40.
Gomez D, Sunyer JO, Salinas I: The mucosal immune system of fish: the evolution of tolerating commensals while fighting
pathogens. Fish & shellfish immunology 2013, 35(6):1729-1739.
41.
Fritsch SD, Weichhart T: Effects of interferons and viruses on metabolism. Frontiers in immunology 2016, 7:630.
42.
Barber GN: Host defense, viruses and apoptosis. Cell death and differentiation 2001, 8(2):113.
43.
Dalton DK, Pitts-Meek S, Keshav S, Figari IS, Bradley A, Stewart TA: Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 1993, 259(5102):1739-1742.
44.
Cray C, Zaias J, Altman NH: Acute phase response in animals: a review. Comparative medicine 2009, 59(6):517-526.
45.
Ebersole JL, Cappelli D: Acute‐phase reactants in infections and inflammatory diseases. Periodontology 2000 2000, 23(1):19-49.
46.
Revathy KS, Umasuthan N, Whang I, Lee Y, Lee S, Oh M-J, Jung S-J, Choi CY, Park C-J,
Park H-C: A novel acute phase reactant, serum amyloid A-like 1, from Oplegnathus fasciatus:
genomic and molecular characterization and transcriptional expression analysis. Developmental & Comparative Immunology 2012, 37(2):294-305.
47.
Villarroel F, Casado A, Vásquez J, Matamala E, Araneda B, Amthauer R, Enriquez R,
Concha MI: Serum amyloid A: a typical acute-phase reactant in rainbow trout? Developmental & Comparative Immunology 2008, 32(10):1160-1169.
48.
Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T: Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase
protein. Blood 2003, 101(7):2461-2463.
49.
Rossi E: Hepcidin-the iron regulatory hormone. Clinical Biochemist Reviews 2005, 26(3):47.
50.
Talbot AT, Pottinger TG, Smith TJ, Cairns MT: Acute phase gene expression in rainbow trout (Oncorhynchus mykiss) after exposure
to a confinement stressor: a comparison of pooled and individual data. Fish & shellfish immunology 2009, 27(2):309-317.
51.
Aller S, Scott A, Sarkar-Tyson M, Soyer OS: Integrated human-virus metabolic stoichiometric modelling predicts host-based antiviral
targets against Chikungunya, Dengue and Zika viruses. Journal of The Royal Society Interface 2018, 15(146):20180125.
52.
Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP: Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiological reviews 2012, 92(1):273-366.
53.
Albertini AA, Baquero E, Ferlin A, Gaudin Y: Molecular and cellular aspects of rhabdovirus entry. Viruses 2012, 4(1):117-139.
54.
Reyes-López FE, Romeo JS, Vallejos-Vidal E, Reyes-Cerpa S, Sandino AM, Tort L, Mackenzie
S, Imarai M: Differential immune gene expression profiles in susceptible and resistant full-sibling
families of Atlantic salmon (Salmo salar) challenged with infectious pancreatic necrosis
virus (IPNV). Developmental & Comparative Immunology 2015, 53(1):210-221.
55.
Robledo D, Taggart JB, Ireland JH, McAndrew BJ, Starkey WG, Haley CS, Hamilton A,
Guy DR, Mota-Velasco JC, Gheyas AA: Gene expression comparison of resistant and susceptible Atlantic salmon fry challenged
with Infectious Pancreatic Necrosis virus reveals a marked contrast in immune response. BMC genomics 2016, 17(1):279.
56.
Cofre C, Gonzalez R, Moya J, Vidal R: Phenotype gene expression differences between resistant and susceptible salmon families
to IPNV. Fish physiology and biochemistry 2014, 40(3):887-896.
57.
LaPatra S, Lauda K, Jones G, Walker S, Shewmaker B, Morton A: Characterization of IHNV isolates associated with neurotropism. Veterinary research 1995, 26(5-6):433-437.
58.
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L,
Raychowdhury R, Zeng Q: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature biotechnology 2011, 29(7):644-652.
59.
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles
D, Li B, Lieber M: De novo transcript sequence reconstruction from RNA-seq using the Trinity platform
for reference generation and analysis. Nature protocols 2013, 8(8):1494-1512.
60.
Li B, Dewey CN: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference
genome. BMC Bioinformatics 2011, 12(1):323.
61.
Love MI, Huber W, Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014, 15(12):550.
62.
Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene
expression data. Bioinformatics 2010, 26.
63.
Love MI, Anders S, Kim V, Huber W: RNA-Seq workflow: gene-level exploratory analysis and differential expression. F1000Research 2015, 4.
64.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B,
Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction
networks. Genome Research 2003, 13(11):2498-2504.
65.
Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. In: Bioinformatics methods and protocols. Springer; 2000: 365-386.
66.
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper
A, Markowitz S, Duran C: Geneious Basic: an integrated and extendable desktop software platform for the organization
and analysis of sequence data. Bioinformatics 2012, 28(12):1647-1649.
67.
Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong
JH, Geer LY, Geer RC, Gonzales NR: CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Research 2010, 39(suppl_1):D225-D229.
68.
Carr AC, Moore SD: Robust quantification of polymerase chain reactions using global fitting. 2012.
69.
Ritz C, Spiess A-N: qpcR: an R package for sigmoidal model selection in quantitative real-time polymerase
chain reaction analysis. Bioinformatics 2008, 24(13):1549-1551.
70.
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F:
Accurate normalization of real-time quantitative RT-PCR data by geometric averaging
of multiple internal control genes. Genome Biol 2002, 3(7):18.
71.
Beal J: Biochemical complexity drives log-normal variation in genetic expression. Engineering Biology 2017, 1(1):55-60.