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Abstract
Arsenic toxicity is an important worldwide health problem of humans and animals due to environmental
and occupational exposure through arsenic polluted water, air, soil and food items. It has a multifaceted
health impact on animals, human beings, and the environment. Therefore, various experimental and
clinical studies were undertaken and had been undergoing to understand its pathogenesis, identify the
key biomarkers, medical and economic impact on the affected populations, timely detection and
amelioration. However, despite these long-investigated studies, no conclusive information is available for
prevention and control of arsenic toxicity, mainly due to complex epidemiology, scattered approach, and
repetitive work. Hence, there is a need for literature that exclusively brings information on epidemiology,
pathogenesis, and ameliorative measures of arsenic toxicity, which can help researchers and
policymakers for effective future planning research and community control programs. In the above view,
this article presents an extensive review on the current understanding of arsenic toxicity, detection
methodologies, epidemiology, and remedial measures for the benefits of researchers, academicians, and
policy makers in controlling arsenic eco-toxicology and direction for direction futuristic research.

1. Introduction:
The presence of inorganic arsenic (As) from geological sources is very common in water drawn from very
deep wells in plain, hilly and mountain areas and even shallow wells from endemic regions. Arsenic is
present in three common forms, e.g., inorganic salt, organic salt (monomethyl arsenic, common in
aquatic food sources), and gaseous form (arsine) (Kuivenhoven et al., 2021). So, human exposure is very
common through the soil, air, water, and food in different parts of the world, leading to arsenic toxicity
(Sanyal et al., 2020). The global arsenic pollution scenario has changed with the discovery of new
locations and more and more people being affected. Further, exposure to other metal and environmental
toxicants along with arsenic is also an important public concern due to strong interaction and complex
pathogenicity, especially with fluoride and lead in polluted groundwater (Kumar et al., 2020; Mondal and
Chattopadhyay 2020).

The other important source of arsenic exposure is the anthropogenic origin, like agrochemicals, wood
preservatives, mineral processing, acid mine drainage, burning of fossil fuels, etc. (Kumari et al., 2017;
Bundschuh et al., 2021). A recent report revealed that natural exposure to arsenic from groundwater is
one of the foremost concerns human and animal health in more than 103 countries, including
Bangladesh, India, Vietnam, Taiwan, China, Thailand, Pakistan, Iran, Australia, Argentina, Brazil, Chile,
Bulgaria, Canada, Czech Republic, Egypt, parts of USA, etc. (Sanya et al., 2020; Shaji et al., 2021).
Moreover, arsenic presence in drinking water is imperceptible, tasteless and odorless (Viscusi et al., 2015).
Therefore, excessive prolonged exposure of inorganic arsenic from drinking water and food is inevitable
to a large population consuming untreated water, causing endemic arsenicosis (Sanyal et al., 2020; Oza
et al., 2021).
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A range of studies revealed that human and animal exposure to different levels of arsenic causing acute,
sub-acute and chronic toxicity in animals (Bharti and Srivastava 2009; Bharti et al 2012a; b) and humans
and affects their body physiology and health (Tchounwou et al., 2019; Alvarado-Flores et al., 2019). The
latest global number of people infected with arsenicosis, which exceeds the World Health Organization’s
(WHO's) safe standard for drinking water by 10 ppb, is around 230 million, which has increased
dramatically in a decade (Shaji et al., 2021). Arsenic toxicity affects animals and humans differently,
depending on their species, age, geographical region, the form of arsenic, feeding habits, etc. (Sanyal et
al., 2020). So, the environmental toxicology of arsenic is not just applied science, focusing only on
toxicity testing; it is an experimental science that includes basic cell and developmental biology targeting
the molecular mechanisms by which arsenic interact with cells and other physiological systems. Recent
reports revealed that continued exposure to arsenic also significantly increases the risk of illness and
death from cancer and heart, lung, kidney, and liver disease (Rahman et al., 2019). The association
between arsenic exposure and abnormal obstetric effects like spontaneous abortion, stillbirths,
embryonic death, pregnancy hypertension, and gestational diabetes has also been observed in many
developing countries (Amadi et al., 2017). Further, chronic arsenic exposure may affect adult cognitive
function in a dose-dependent manner (Wang et al., 2021a). In addition, it is an independent risk factor for
cognitive impairment. Therefore, there is a need to establish a proper epidemiological database for
effective preventive and control measures of arsenic toxicity.

Literatures are available on arsenic toxicity, pathogenesis in various species, and ameliorative measures;
however, specific epidemiology of arsenic exposures, detection mechanism, and remediation are poorly
understood (Sage et al., 2017). Therefore, in this review paper, the current state of sources of arsenic
exposure, health effects, pathogenesis, modern techniques of arsenic removal, therapeutic agents, and
critical areas for future research are comprehensively reviewed.

2. Abiotic Sources Of Environmental Exposure To Arsenicals:
Arsenic (As) is a toxic metalloid element of the earth’s crust and is present abundantly in the air, water,
and soil in different valence states viz. As(0), As(III), As(V) and arsine gas (-3 oxidative state). The abiotic
sources of arsenic in the environment include geogenic (underground water, minerals and geothermal
processes) and anthropogenic like mining operations, industrial processes, agricultural activities, etc.
(Nadiri et al., 2018; Sanyal et al., 2020; Palma-Lara et al., 2020; Nadiri et al., 2021). Arsenic contaminated
soil is a major source of arsenic exposure in humans by consuming plant-based food cultivated on these
soils (Dahlawi et al., 2018). These contaminated soils also contribute arsenic to groundwater and surface
water resources through leaching and runoff mixed with the river, pond, etc. The geogenic contamination
can be further extended by unintended human and industrial activities (Nadiri et al., 2018, 2021). So,
polluted groundwater for drinking and other household activities is a major source of arsenic exposure to
humans.

High arsenic level equal to or greater than 50 µg/L in groundwater has been reported, especially in
Southeast Asia and parts of India and Bangladesh, which is alarming for society (Chakraborti et al.,
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2018). Other studies indicated that the outside Asia population is also affected by arsenic exposure
through groundwater (Shahid et al., 2020; Shaji et al., 2021). Interestingly, Bharti et al. (2017), Giri et al.
(2017, 2019, 2020) reported that water from high-altitude is also contaminated with arsenic along with
other heavy metals. River sediment is another important source of arsenic to the ground and river water
(Shaji et al., 2021). These reports indicate widespread arsenic contamination in water resources from
high-mountain to plain areas, irrespective of industrialization and other anthropogenic sources.

To regulate water arsenic levels, earlier, the WHO has set 50 parts per billion (ppb) arsenic levels in
drinking water throughout the exposure period but has been revised in 1993 to a lower level when it is
considered to pose an unacceptably high risk of cancer death. The current WHO guideline value is
temporarily set at 10 ppb due to arsenic detection and removal limits (Cheng et al., 2016), although this is
still considered an unacceptably high health risk. So, every country should establish their own
recommended level of arsenic in drinking water; so far, various countries have set from 50 ppb to less
than 10 ppb (Altowayti et al., 2021).

The gaseous form of arsenic (arsine) is the most toxic form, and inhalation of over 10 ppm to 25 ppm is
lethal even in less than an hour. The mining activities and burning of contaminated charcoal are causing
air pollution with arsenic (Zhao et al., 2019a). Arsenic does not cause tissue irritation and is odorless,
hence exposure to this arsine is unrecognizable. Hence, there should be regular monitoring of arsenic in
different abiotic sources for better epidemiological study and control measures of arsenic toxicity and
associated health hazards.

3. Arsenic Exposure Through Aquatic Food Animals:
The high concentrations of arsenic in fish, crabs, shrimps, bivalves and other seafood have also been
reported (Liu et al., 2019). These food animals’ products are the main sources of organic arsenic for
humans (Feng et al., 2020). Several arsenic-based chemicals are used in the agricultural field, wood
industry, pharmaceutical industry etc. which goes into the river, pond, lake, etc., and are exposed to
aquatic animals (Kumari et al., 2017; Tuteja et al., 2021). These aquatic contaminations by arsenicals are
further increased due to the high disposal of untreated sewage, posing widespread arsenic toxicity in
aquatic organisms and bioaccumulation into their bodies. According to the international water quality
standards, arsenic levels above 0.010 mg/L exposure result in bioaccumulation, mainly in the muscles,
liver and kidney of freshwater organisms, including fish (Cui et al., 2021). One recent report observed very
high biomagnifications up to 2.05 ± 0.30 mg Kg − 1 in freshwater fish, although water contained very low
arsenic concentration 0.001 to 0.003 ppm (Alvarado-Flores et al., 2019). These findings indicate that
aquatic animal-based food should be regularly monitored for arsenic concentration irrespective of
harvesting or culture sources.

The presence of aquatic algal and flora biomass is another important source of arsenic to aquatic
animals, as it retains arsenic, and so consumption of these algae and plants further magnify the arsenic
bioaccumulation in aquatic foods (Hussain et al., 2021). Hence, increased algal biomass in ponds, lakes,
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etc., is directly related to increased arsenic content in the aquatic animal. The other factors are the
metabolic role of organs and their relationships with arsenic, which affect the concentration of arsenic in
aquatic organisms (Juncos et al., 2019). Therefore, aquatic animals’ products obtained from the arsenic-
contaminated pond, river, etc., are an important source of arsenic to human consumers.

However, Juncos et al. (2019) reported that despite high arsenic levels in fish do not represent any health
risk to consumers. Similarly, Liu et al. (2020) found less arsenic in Chinese mitten crab collected from
different locations of China and said that intake of Chinese mitten crabs had not posed any appreciable
danger to human health. These findings could be due to specific food habits of those human populations
around the study areas and other dietary factors. Hence, more studies are required to correlate arsenic
exposure to humans through aquatic animal origin food.

4. Arsenic Exposure Through Plant Origin Food:
Other routes of arsenic exposure include food from those crops irrigated with arsenic-contaminated water,
as more arsenic is absorbed to plants irrigated with arsenic-contaminated water (Kaur et al., 2017;
Allevato et al., 2019). So, plants are considered one of the most vulnerable matrices of short- and long-
term exposure to arsenic (Navazas et al., 2020). The top layer of soil irrigated with arsenic-contaminated
water acts as an arsenic reservoir which can affect plants for longer periods even after irrigation has
stopped (Rehman et al., 2021). The contamination of vegetables and edible grains is considered a major
exposure pathway by which this metaloid enters into the food chain of livestock and human beings
(Kumar et al., 2019). So, agricultural fields should not be irrigated with polluted water to avoid entering
arsenic into the food cycle through soil-water-plant interactions.

Now, it has been well known that arsenic is also toxic to plants (plant toxin) and higher soil arsenic level
affects crop yield (Dahlawi et al., 2018). Zeng et al. (2021) investigated 157 crop varieties, including rice,
vegetables, and corn, and their risk of arsenic accumulation in edible parts with the help of pot and field
experiments. They found that rice has greater accumulation even in low concentrations of arsenic in soil
(56.7mg/kg) but, green tender, cabbage, rapeseed and amaranth appeared with the risk of exceeding the
limit for arsenic when the arsenic from the soil reached 238.3 mg/kg (serious contamination). However,
he reported that corn and tubers or fruit vegetables had the lowest arsenic content in their edible parts,
and sweet potatoes, peanuts, peppers, and potatoes had less variation in arsenic accumulation among
varieties of the same crop. Paddy plant (Oryza sativa L.) is particularly effective in absorbing arsenic
from the soil due to its unique mineral utilizing mechanism. So, flooded paddy fields may cause an
increased accumulation of arsenic in rice and could become a new catastrophe for the population of
Southeast Asia (Thielecke and Nugent 2018; Yan et al., 2021). Rasheed et al. (2018) found very high
inorganic arsenic concentrations in Pakistan, which were 92.5 ± 41.88µgkg− 1, 79.21 ± 76.42µgkg− 1, and
116.38 ± 51.38µgkg− 1 for raw rice, cooked rice and wheat, respectively. Thus, in addition to rice, many
crops can also absorb arsenic and transport it to different ranges using similar transporters.
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There are many reports on algae aggravated arsenic exposure to aquatic animals (Milan et al., 2021;
Byeon et al., 2021), since algae additively acting with arsenic to increase arsenic uptake and assimilation
in aquatic animals. Hence, water systems having high algae and arsenic are posing more
bioaccumulation in aquatic animals.

5. Arsenic Exposure Through Livestock Origin Food:
Large amounts of arsenic have been reported in poultry and livestock origin foods such as milk, boiled
egg yolks, egg whites, liver and meat (Das et al., 2021). Generally, animals are exposed to arsenic through
drinking water, feed, grass, vegetables and other contaminated foliage. In endemic arsenic areas,
irrigation with arsenic-contaminated water leads to soil contamination and subsequent transport of
arsenic to forage grown on it and then to livestock, resulting in excessive bioaccumulation of arsenic in
livestock products (Zubair et al., 2018; Das et al., 2021). A recent report revealed that bio-concentration of
arsenic occurs more rapidly in water compared to rice straw, and when used as fodder, it manifests itself
mainly in the excreta and tail hair of cattle (Das et al., 2021). Cow dung and tail hair are other obvious
pathways for the biotransformation of arsenic in the environment (Rehman et al., 2021). So, arsenic-
contaminated edible vegetables and grains are believed to be the main route of arsenic exposure into the
food chain of livestock and humans (Kumar et al., 2019). Giri et al. (2016, 2020) studies on blood
minerals status in dairy cattle and water quality at high-altitude have revealed the arsenic presence in
blood, which could be due to high arsenic levels in fodder and water sources in that region. Therefore,
contaminated fodder, grains, and drinking water are considered important sources of arsenic exposure to
livestock population and livestock origin food, e.g. meat, milk, and eggs.

Various reports indicated higher estimated daily intakes from the recommended safe limits of arsenic
from consumption of livestock origin food (Bala et al., 2018). Though chronic exposure to low levels of
arsenic in livestock often shows no external signs or symptoms, although the concentration of arsenic (or
its metabolites) in the blood, fur, hooves and urine of animals from contaminated areas remains high
(Mondal 2017). Importantly, due to phosphoserine units in milk casein, arsenic in milk is mainly
concentrated in casein (83%) (Das et al., 2021). The severity-adjusted margin of exposure (SAMOE) risk
thermometer was calculated by Das et al. (2021) for the most commonly eaten foods in the region. It
displayed human health risks in clear order: drinking water > rice grains > milk > chicken > eggs > lamb,
from level 5 to level 1. Njoga et al. (2021) reported high level of arsenic (0.53 ± 0.10 mg/kg kidney, 0.57 ± 
0.09 mg/kg liver and 0.45 ± 0.08 mg/kg muscle) in goat meat collected from Enuga state of Nigeria. The
United States Environmental Protection Agency (USEPA) health risk assessment model shows that adults
face a higher risk than children (Sheng et al., 2021) because eating animal protein foods that cannot be
ignored in children has a continuing risk of serious health hazards. This arsenic-contaminated meat, milk,
and eggs pose a threat to humans through the ingestion. Hence, livestock animals need to be provided
with arsenic-free drinking water and nutritional supplements to affected populations to overcome the
severe arsenic crisis in the human community.
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6. Pathogenesis Of Arsenic Toxicity:
Investigating pathogenicity mechanisms is important in understanding arsenic-induced diseases and
carcinogenesis, including identification of early diagnostic markers and drug development. As evident
from the review of the previous section, arsenic is omnipresent in soil, water, air, and food chain and is
considered a high-risk priority pollutant in various parts of the world, even at low concentrations. The
Environmental Protection Agency (EPA) and the WHO has established less than 0.010mg/L the safe limit
of arsenic in drinking water. In contrast, the National Institute for Occupational Safety Health (NIOSH) has
recommended 2 µg/m3 of air for no more than 15 minutes as a safe exposure limit (Marcotte et al.,
2017). Therefore, a higher arsenic concentration than the recommended limit in drinking water and food
leads to acute and chronic arsenic poisoning and adverse cellular metabolism changes in humans and
animals (Sanyal et al., 2020). Various toxicologists, biochemists, cell biologists and other related
scientists have been observing changes in physiological function and imprecise signaling pathways in
response to arsenic (Wang et. al., 2019; Palma-Lara et. al., 2020; Cardoso et. al., 2020). Due to high
arsenic exposure, these physio-pathological changes affect our body metabolism, reproductive health,
embryonic development, cancer incidence, cognitive function, aging, immunity, and our symbiotic
microbiome, summarized in an illustrative manner (Fig. 1).

Many toxicokinetic reports revealed that arsenic is highly toxic in its inorganic form than the organic
form, especially the trioxide form (arsenite) than the pentoxide (arsenate). In contrast, inorganic (arsenite)
and organic (monomethyl arsenic) forms are more toxic than the pentavalent compounds (arsenate).
Aquatic animals, including fish, are the important source of organic arsenic exposure, whereas inorganic
arsenic mainly enters through drinking water (Polak-Juszczak and Szlinder-Richert 2021; Raman et al.,
2021). Total two-thirds absorption of ingested inorganic arsenic occurs through the gastrointestinal tract
and is distributed in hepatic, kidney, muscle, skin, brain, and other parts of the body (Cui et al., 2020;
Arbam et al., 2021). However, particulate form of arsenic is absorbed through respiratory routes and later
mixed with blood, causing hemolysis and affecting oxygen transport to cells (Fig. 1). While dermal
absorption is very less and not causing toxicity, however, caution should be maintained to avoid dermal
exposure as it may pose chronic toxicity (Sohrabi et al., 2021).

Arsenic excretion from the body is very slow and primarily occurs through the renal system and depends
upon valence state, the form of arsenic and body fat deposition. Arsenite is poorly excreted than arsenate
and organic arsenic; therefore, arsenite is causing more toxicity (Sharma et al., 2020). Furthermore, the
elimination of inorganic arsenic in urine can be monitored up to the first week of possible exposure, an
important tool for epidemiology and clinical studies (Srivastava and Flora 2020). Serum arsenic
concentration is not an effective or reliable indicator of arsenic toxicity due to the rapid removal of
arsenic from the blood to tissues (Kuivenhoven and Mason 2021). Interestingly, arsenic is little excreted
during breastfeeding, and studies have shown that breastfeeding exclusively reduces the risk of arsenic
exposure in infants in pandemic regions. (Kuivenhoven and Mason 2021). However, arsenic is teratogenic
and can cross the placenta and affects fetal development (Gangopadhyay et al., 2019).
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All the absorbed arsenic are distributed to various tissues. After that, binding with the iron part of
hemoglobin, interacting with serum and cellular minerals, sulphydryl moieties of protein, phosphate
molecules, and transcriptional factors. The metabolism of inorganic arsenic progress mainly through a
sequence of repetitive reduction and oxidative methylation (Thomas 2021), the latter mediated by arsenic
methyltransferase (CYT19) (Hayakawa et al., 2005). Arsenic-glutathione complexes are substrates for
human CYT19. These cellular and molecular changes lead to cascades of various pathological changes,
like impairment of cellular respiration, energy metabolism, protein synthesis, enzyme function, the
oxygen-carrying ability of erythrocytes, aerobic respiration, DNA repair, cell cycle, etc. (Fig. 1). These
above arsenic-induced pathological changes are flared up with other disease conditions, oxidative stress
and deficiency of antioxidant system (Prabu and Sumedha 2014).

These pathological changes ultimately lead to increased cellular and tissue damage reported in various
studies on arsenic toxicity. There may be relevant environmental co-exposures of arsenic with other
inorganic compounds leading to a combined effect, with questions about the mechanisms involved.
Therefore, the epidemiology of arsenic toxicity and its clinical signs is complex, which needs a
multidimensional collection of information on disease history, food habits, environment, clinical
laboratory reports, etc. This will help correct and timely diagnose arsenic toxicity, excluding other similar
clinical conditions and proper control and preventive measures.

7. Experimental Advancement In Detection Of Arsenic Toxicity:
The animal models used in studying human disease by toxicants are often chosen because they are
genetically, anatomically and physiologically similar to humans. Therefore, bio-medical research using
laboratory animals like mice, guinea pigs, zebrafish and fruit flies has contributed greatly to many
important scientific and medical advances (Norberg-King et al., 2018). Short-term in-vitro tests have been
useful in screening for a wide variety of potentially toxic compounds of arsenic, safety assessment, and
carcinogenicity testing (Tsuji et al., 2019). Additionally, animal models are generally preferred for research
work for toxicology due to their ease of handling and test hypotheses about how a disease develops;
however, an appropriate number of subjects should be used to test the experiment's outcome statistically
(Smith 2020). These animal models have currently used in arsenic toxicological studies as indicators of
human health problems and environmental monitoring. Hence, in this section, recent studies are reviewed
to provide experimental advancement in detection of arsenic toxicity and mechanistic information to
validate other alternative testing methods in a wide range of studies.

7.1. Aquatic animal model using fish:
Although it is widely recognized that aquatic ecosystems serve as the ultimate reservoir for many
chemicals, including arsenic (Kumari et al., 2011b; Rand et al., 2020), water serves as the ultimate vehicle
for exposure to many toxic substances. Fish is currently a well-known biological model for toxicological
research (Denizeau 2018; Boudou and Ribeyre 2018) and can be used as a study model for arsenic
toxicity to elucidate the molecular mechanism. Indeed, the establishment of zebrafish, medaka fish and
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other schools of fish is probably at the forefront of biomedical research (Hirata and Lida 2018). Zebrafish
have great potential for mechanistic study for arsenic and could be used more in the future.

Many biochemical processes have been studied in fish, including heterologous metabolism, DNA damage
and repair induction, membrane transport, disruption of ion homeostasis, oxidative stress,
metallothionein expression, and protein stress (Hugget 2018). The effect of foreign bodies on specific
cellular functions, particularly those of immune cells and their response to estrogenic compounds, has
also received some attention. This review has summarized the various studies on the effect of arsenic on
different fish species, and how this information can be utilized for toxicological studies is presented in
Table 1.

Arsenic has a high metabolic action in accumulation in various tissues and organs of different fish
species such as O. mykiss, S. trutta and Danio rerio (Juncos et al., 2019; Wang et al., 2020). The toxic
effects are dose-dependent and through various mechanisms (Mekkawi et al., 2020; Tuteja et al., 2021),
being chronic exposures at low doses to the higher doses for acute exposure. Arsenic has a good effect
at the extremely low amount (1-5ppb) (Kumari and Ghosh 2012a), while the same concentrations are
lethal in other fish species. Acute arsenic exposure causes symptoms like increased mucus secretion,
defects in gill epithelial and asphyxiation. In contrast, chronic exposure led to bioaccumulation and
various histopathological changes, e.g. renal and hepatic degeneration, focal hepatic necrosis, bile duct
obstruction, proliferation in parenchymal hepatocytes (Muneeb et al., 2020). Furthermore, the increased
arsenic accumulation induces hyperglycemia, adverse changes in other biochemical and hematological
parameters, down-regulation of antioxidant defense, inhibition of enzymatic activities, immune system
dysfunction, and reduced breeding ability in fish (Kumari and Ahsan 2011b; Han et al., 2019; Prakash and
Verma 2020; Mekkawi et al., 2020; Tuteja et al., 2021). Later it causes poor growth, behavioral changes
and death in fish and other aquatic organisms. The other pathological markers of arsenic toxicity in fish
are apoptosis of brain cells (Wang et al., 2021b), an indicator of arsenic as a neurotoxin.

Milan et al. (2021) observed that arsenic toxicity adversely affected the quality of rainbow trout (O.
mykiss) fillets by inducing oxidative stress and affecting the level of antioxidant enzymes. In another
study on Clarias batrachus, high blood glucose, and tissue glycogen levels low in muscles, liver and brain
were observed (Kumari and Ahsan 2011a, 2011b; Kumari et al., 2012, 2015). The recent research by Han
et al. (2019) and Mekkawi et al. (2020) also supported these findings that arsenic affects glucose levels.
Effect of arsenic on fish’s skin and their pigmentation has been noticed by Kumari et al (2013) when fish
was exposed by arsenic for a week. Han et al. (2019; 2019a) reported the toxic effects of arsenic on
Platichthys stellatus (P. stellatus), which were higher at the highest temperature. They observed a
decrease in hematological and growth parameters with increasing arsenic concentration, while higher
concentrations of the plasma components were detected. Kumari and Ghosh (2012b) observed the
cellular damage in erythrocytes of fresh water fish. These results indicate that exposure to arsenic in
water at high water temperatures may exert more toxic effects on growth, hematological parameters and
plasma components
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The arsenic contained in bottom sediments is biologically available to benthic fish and their food, and
causing bioaccumulation. The body level of arsenic is positively correlated with the concentration of
arsenic in sediment but not significantly related to water-soluble arsenic (Zhang et al., 2017b; Zhang et
al., 2018). Although nutrition is an important means of uptake of arsenic in benthic fish, most studies of
the toxicity and metabolism of arsenic in benthic fish have investigated how the absorption of arsenic
contained in water through gills and consequences on their health (Hua et. al., 2017; Juncos et al., 2019).
The above review advocates that additional experiments are needed to study the toxicological effects
and metabolism of arsenic in fish to identify vital signs that can be used as reliable and sensitive
biomarkers of arsenic toxicity in environmental monitoring programs.

7.2. Small animal model using rodents:
Biologically, rats and mice are very similar to humans and undergo many similar physiological disorders
and genetic expressions, so they can be genetically engineered to mimic any disease or human condition
(Perlman et al., 2016). Rats and mice can be bred to produce genetically identical lines, and this
uniformity allows us for more accurate and repeatable experiments (Zhang et al., 2019b). Hence, rodent
species (rats and mice) are ideal animal models for experimental toxicology, including arsenic toxicity
(Raydel-Tormanen et al., 2019; Smith 2020).

Arsenic's toxicity is partly due to its electrophilic nature, so when absorbed, it readily binds to the
electronic sulfhydryl groups of proteins and then modulates the activity of the protein (Patel et al., 2020).
There are various reports that observed a positive correlation between arsenic exposure level with arsenic
accumulation in liver and kidney tissue (Patel et al., 2020; Garla et al., 2021). Arsenic exposure lowers the
reduced glutathione (GSH), increasing kidney and liver function test parameters and histological
abnormalities (Dkhil et al., 2020). The various histopathological changes are necrosis, the appearance of
vacuoles, and degenerative nuclear changes in the experimental animals. So, the pathology of
metabolically active organs like renal and hepatic tissues is a good experimental tool to study arsenic
toxicity. Furthermore, arsenic is also responsible for damaging the male reproductive function in rats and
mice and, after that, causing reduced spermatogenesis, sperm counts and motility (Liu et al., 2021; Souza
et al., 2021). It also inhibits testosterone release, the function of the testicular enzyme and atrophy of
male genital organs. Several experimental studies have been performed on arsenic exposure. Its effects
on various parameters, such as physiology, biochemistry, genotoxicity, histopathology, etc. are presented
in Table 2, which could be useful in designing experiments on arsenic toxicity for more data on regulatory
and exploratory toxicology.

8. Recent Trends In Arsenic Toxicity In Humans:
Millions of people worldwide are exposed to arsenic from various sources regularly, mainly through
drinking water. The human health risk comes from the (i) anthropogenic activities caused by
unprecedented population growth, urbanization and industrialization (Zhai et al., 2017; Wang et al., 2019)
and (ii) geogenic processes often resulting from long-term hydro-geochemical reactions (Beiyuan et al.,
2017; Singh et al., 2018). Sarret et al. (2019) reported that in Latin America, millions of people are
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chronically exposed to the high concentration of arsenic (> 50 µg/L drinking water), with extremes up to
2000 µg/L. Humans are primarily exposed to arsenic via contaminated drinking water, while inhalation
and dermal absorption are secondary routes of exposure (Shih et al., 2019). The human health risks were
also caused by eating plant origin food grown over soil irrigated with arsenic-contaminated water (Fig. 2).

There is a very rapid recent development in the diagnosis of arsenic toxicity and research into human
environmental exposures and related arsenic induced diseases, which are highly relevant to public health
in many countries. The various health effects of arsenic poisoning are keratosis, hyperkeratosis,
melanosis, black foot disease, peripheral vascular disease, leuco-melanosis, dorsum, nonpetting edema,
and gangrene (Altowayti et al., 2021). Keratosis and melanosis are the most common manifestations in
affected people (Singh et al., 2021). Now a day, arsenic toxicity has become a global public health
problem because of its association with various cancers and other pathological effects of vital organs
through cytotoxicity and genotoxicity mechanism (Bjorklund et al., 2018; Zhao et al., 2018; Tchounwou et
al., 2019; Tsuji et al., 2021). Exposure to arsenic can lead to various systemic diseases. The various
experimental and clinical studies brought considerable evidence, which indicates that arsenic adversely
affects the antioxidant defense system, apoptosis, and other physio-biochemical changes (Flora 2011;
Giri et al., 2016) however, its specific mechanism is poorly understood. Recently, arsenic exposure has
been implicated in the incidence of various skin cancer, gall-bladder, lung, and hepatocellular carcinoma
(Fuijoka et al., 2020; Abdollahzade et al., 2021). The estimated lethal dose of inorganic arsenic for
humans is 0.6 mg/kg, which leads to death within 1–4 days of ingestion (Kuivenhoven and Mason
2021).

However, long-term exposure to inorganic arsenic can cause various dysfunctions of vital organ systems
such as the digestive system, respiratory system, cardiovascular system, hematopoietic system,
endocrine system, kidney system, nervous system and reproductive system, and eventually lead to cancer
(Palma- Lara et al., 2020). The various experimental and clinical researches brought numerous pieces of
evidence and are presented in Table 3. Despite the magnitude of this potentially fatal toxicity, there is no
effective treatment for the disease, so affected patients may not recover even after the restoration of
arsenic-contaminated water. There is peripheral neuropathy which may disappear with the cessation of
exposure (Kuivenhoven and Mason 2021). However, research data on absorption, distribution,
metabolism and excretion (ADME) of arsenic species/compounds are lacking. Therefore, more studies
are required on how age, sex, food habits, co-morbidity, etc., are affecting arsenic toxicity in humans.

9. Modern Technological Intervention In Arsenic Removal:
Arsenic contamination in drinking water is more important as compared to other sources, and their
associated side effects are becoming more and more harmful with an increasing number of affected
people and new sites being reported around the world. Hence, many analytical methods for arsenic
detection have been developed in different samples to combat arsenic pollution and obtain a healthy
environment and an ecosystem.   In recent decades, many chemical methods and instrumental
techniques have been identified for arsenic analysis. Basically, chemical approaches allow the
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identification of arsenic in simple matrices. However, their low sensitivity and detection limit can satisfy
the quantitative requirements of low-level analytes in many practical models (Xu et al., 2020). Therefore,
arsenic removal studies using biotechnological and nanotechnological tools are gaining pace in arsenic
removal. With the rise of nanotechnology development, many nanostructured materials have been
investigated and used to detect inorganic arsenic.  The introduction of nanomaterials not only enables
the development of new sensors and biosensors but can also significantly improve detection
performance.

            For this reason, there has been active research on nanomaterial-based sensors/biosensors in
recent years to determine inorganic arsenic (Table 4). Of these strategies, biosensors contain a major
promise for the rapid detection of arsenic (Mao et al., 2020), especially the nanomaterial-based aptamer
sensors that have drawn considerable attention due to their simplicity, high sensitivity and speedy action.
According to Rosales et al. (2020), few-layer Mxene nano-sheets layers are capable of efficiently oxidizing
the highly toxic As (III) to the less harmful As (V) and at the same time have remarkable absorption
capacity for both species [approximately 44% for (III) and 50% for (V)]. In particular, few-layer Mxene
nano-sheets layers are a promising candidate for effective arsenic suppression due to this toxic
pollutant's unprecedented dual adsorption / photo-oxidation effect. 

            Biological treatment of arsenic-contaminated water with aquatic algae should be carried out,
considering the effects on the entire ecosystem since algae enhance arsenic bioaccumulation in aquatic
animals (Hussain et al., 2021). Some of the research findings have described the mechanisms of arsenic
detoxification in microalgae, including cell surface absorption, intracellular As (III) oxidation, As (V)
reduction and thiol (-SH) complexation, and vacuole sequestration (Huang et al., 2021). The role of
microorganisms in the degradation and detoxification of arsenic-contaminated lands and water areas
has become important in recent years under the process of bioremediation (Patel et al., 2021). Therefore,
a multidisciplinary approach should be considered for bioremediation considering cross-taxon integrating
behavioural and other effects of arsenic toxicity and after that restoration of aquatic and terrestrial
ecosystems.  

10. New Therapeutic Agents For Controlling Arsenic Toxicity:
In recent years, most in-vivo and in-vitro studies have shown that ROS generation, oxidative stress, DNA
damage, mutations, and cytotoxicity are the important molecular changes in arsenic toxicity (Firdaus et
al., 2018; Perker et al., 2019; Wu et al., 2019; Rahaman et al., 2020).  This means that arsenic induces
oxidative stresses and cytotoxicity in different cell lines through ROS generation, which triggers NADPH
oxidation and leads to adverse cellular changes. Glutathione is an important antioxidant that maintains
the antioxidant / pro-oxidizing balance and plays a vital role in protecting cells in oxidative stress (Rao et
al., 2017). Hence, controlling oxidative stress and up-regulation of body antioxidant defense is an
important strategy for controlling and treating arsenic toxicity. 
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            Plant extract is rich in antioxidant content due to the presence of various flavonoids, alkaloids,
trace minerals, etc., and so could be useful antioxidant based therapeutic agents in arsenic toxicity.
Mohajeri et al. (2017) reported curcumin has beneficial effects against arsenic-induced toxicity without
any side effects. Another study on the extract of Ginkgo biloba (GBE), obtained from leaves contains
ginkgo flavone glycosides, terpene lactones, and other active components, which has shown beneficial
effects through modulating antioxidant functions, anti-inflammatory effects, inhibition of platelet
aggregation, and immune regulation (Xeng et al., 2021). Xia et al. (2020) observed that GBE has
consequences for arsenicosis through the law of balance of pro-inflammatory and anti-inflammatory T
cells, whereas the pathogenesis of arsenicosis induces an imbalance of pro-inflammatory and anti-
inflammatory T cells. Yao et al. (2017) found that GBE can reduce the accumulation of arsenic in the liver
and liver injury through ameliorating lipid peroxidation in rats. Recently, several reports (Rahman et al.,
2018; Perker et al., 2019; Susan et al., 2019; Rahaman et al., 2020;) showed that Natural bioactive
compounds exhibit antioxidant properties and effectively mitigate arsenic-induced toxicity by modulating
the antioxidant defense system. These studies advocate that antioxidant treatment is comparatively safe
and cost-efficient preventive therapeutics in arsenic toxicity and other human diseases and disorders.
Numerous studies on different therapeutic materials to control arsenic toxicity are reviewed in detail and
summarized in Table 5.

            Although chelating therapy is also considered an effective and well-known treatment of arsenic's
toxicity, however, it has shown several unwanted effects due to the limited safety of chelating agents
(Nurchi et al., 2020). Further, it is suggested that arsenic is incorporated by cells in mammals and other
organisms, after which it can be bio-transformed, and its metabolites also exert toxic effects (Hirano
2020). Thus, the inhibition of biotransformation of arsenic should be considered a prime pathway for
arsenic bio-inactivation and reduction of arsenic toxicity in the body. This would be a vital point for the
development of many future therapeutic agents. 

            Recently, nano metal oxides have been increasingly used to solve this global problem in various
biomedical applications. The nanomaterials like liposomes, polymeric micelles, and phospholipid
complexes have emerged as few promising therapeutic tools for reducing arsenic toxicity (Edis et al.,
2021). These materials have a large surface area, specificity for their custom substrates and different
shapes. Several metal oxide nanoparticles (NPs) such as iron (hydro) oxides, aluminium oxide, titanium
dioxide, zinc oxides, and copper oxide have been used as nano adsorbents to remove heavy metals from
various sources (Pillai and Dharaskar 2020). Naqvi et al. (2020) reported a better protective effect of solid
lipid nanoparticles loaded with monoisoamyl-2,3-dimercaptosuccinic acid (NanoMiADMSA) compared to
its volume of MiADMSA in the treatment of neurological and other biochemical abnormalities induced by
arsenic. The results suggested that the size of NanoMiADMSA ranged between 100 and 120 nm has
better chelating properties than MiADMSA in bulk. These findings encourage future investigation on
identifying effective nanomedicine in arsenic toxicity having higher efficacy and safety. 
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11. Future Research And Policy Guidelines For Effective Control Of
Arsenic Toxicity:
Arsenic toxicity requires multifaceted research interventions for development of sustainable technology
and framing policy guidelines, following are the some important priority areas: i) Experimental
pathogenesis studies in different species considering various developmental stages, age, sex, habitats,
climates, and fat-muscle body mass index; ii) Histopathology of metabolic active organs like liver, kidney,
skin, brain, lungs, and gonads for ascertaining tissues and cellular toxicities, metabolomics; iii)
Identification of biochemical and molecular biomarkers of acute, sub-acute, and chronic toxicity; iv)
Immunohistochemistry and initiation, promotion and progression of arsenic-induced cancer; v)
Ameliorative measures targeting various sources of arsenic e.g. water arsenic removal, food fortification,
chelating and neutralization techniques, nutraceuticals for animals and human, and specific community
health preventive measures in endemic areas; vi) Intervention of biotechnology and nanotechnology tools
for arsenic removal from various sources; vii) Epidemiological studies in-country and regional level along
with other health program; viii) Evaluation of genetic and epigenetic factors affecting arsenic-induced
health hazards; ix) Studies on the association of reproductive, embryonic developmental, and metabolic
diseases in endemic arsenic areas; x) Regulatory studies and monitoring arsenic and other metals in
water, soil, air, and food system at the community level. These are some important research areas where
immediate interventions are required to develop better control and prevention strategies for arsenic
toxicity.

Summary
The increase of arsenic in human bodies poses a serious global health risk to the human population. It is
concluded that arsenic exposure has become common in the food chain, and therefore widespread
toxicity is reported in various species of animals, including human beings. Since arsenic is a known
human carcinogen and interacts with various cellular molecules, extensive epidemiological studies on
arsenic-induced toxicity are extremely important. The experimental research on arsenic toxicokinetics,
toxicodynamics, and mode of toxic action are high priority areas to address this issue. Nanotechnology
and biotechnology-based ameliorative measures have proven good and promising in control measures of
arsenic toxicity. So, arsenic epidemiology should focus on the dominance of different direct and indirect
sources in the affected areas and then only control measures and implementation of public health policy
could be successful.  
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Tables
Tables 

Table-1 : Arsenic toxicological research works on Fish (arranged in chronological order). As indicating
Arsenic; iAs –inorganic Arsenic; As III- Trivalent Arsenic; AsV- pentavalent Arsenic, As2O3- Arsenic tri-
oxide; NaAsO2- Sodium arsenite; Cu- copper

___________________________________________________________________________



Page 36/45

SN Sp. Of Fish Arsenic/
compound

Parameters References

1 Cyprinus carpio As Hematological, biochemical and
histomorphological

Tuteja et al
2021

 

2 Danio rerio As Alteration in stress marker and
apoptotic gene

Mondal et al
2021

 

3 Onchorhincus
mykiss

As Oxidative stress Milan et al
2021

 

4 Gambusia affinis As III Nucleotide polymorphism Park et al
2021

 

5 Clarias batrachus As2O3 Behaviour and Morphology Sahu & Kumar
2021

 

6 Curassius auratus iAs Biotransformation and
bioaccumulation in muscles

Cui et al 2021  

7 Twelve fish As Bioaccumulation Raman et al
2021

 

8 Scyliorhinus
canicula

As  Accumulation Marques et al
2021

 

9 Morone saxatilis +
Esox lucius

As Lipid and protein level of muscles Charette et al
2021

 

10 Cyprinus carpio As Apoptosis pathway Wang et al
2021

 

11 C. harengus,+S.
fuegensis +P.
dentatus

As As speciation Polak
 Juszczak and

 Richart 2021

 

12 Group of fishes In- vitro Bio accessibility  Lin et al 2021  

13 Mystus vittatus As Serum Biochemicals Prakash &
Verma 2020

 

14 Curassius auratus i As Biotransformation Cui et al 2020  

15 Clarias garipenus As Hemato- Biochemical  Mekkawi et al
2020

 

16 Oryzias melastigma As Physiological based
pharmacokinetics model

Zhang et al
2020c

 

17 Pangasianodon
hypophthalmus

As III Stress biomarker Kumar et al
2020

 

18 Danio rerio As III & As
V

Bioaccumulation and
Biotransformation

Wang et al
2020

 

19 Salmo trutta As As in muscles tissue Shakeri et al  
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2020

20 Clarias garipenus As Hepatopathology Muneeb et al
2020

 

21 Clarias batrachus As2O3 Biochemical Pichhode &
Gaherwal
2020

 

22 Platichthys
stellatus

As Growth and hematology Han et al 2019  

23 O. mykiss & S. trutta As Bioaccumulation Juncos et al
2019

 

24 C. carpio As Bioconcentration Ghadersarbazi
et al 2019

 

25 O. mykiss As As speciation and accumulation Erickson et al
2019

 

26 Six fish As As accumulation Quintela et al
2019

 

27 O. melastigma As Bioaccumulation and antioxidant
responses

Chen et al
2019

 

28 Oryzias latipes As Cytotoxic and genotoxic Sayed et al
2019

 

29 C. carpio As Cardiotoxicity Zhao et al
2019b

 

30 Channa punctatus As Genotoxicity Singh et al
2019

 

31 Mystus vittatus As Lipid metabolism Prakash &
Verma 2019

 

32 Anabas testidunes As Digestive enzymes Kole et al
2018

 

33 D. rerio As Neurobehavioral alteration Dipp et al
2018

 

34 O. mykiss As Oxidative  stress response Kopp et al
2018

 

35 Mugilogobius
chulae

As Bioaccumulation of As in benthic
fish

Zhang et al.,
2017a

 

36 Callionymus
richardsonii

As Bioaccumulation & transformation Zhang et al.,
2017b

 

37 Heteropneustes
fossilis

As + Cu Hepatosomatic and
Gonadosomatic index

Singh &
Srivastava
 2017

 

38 Channa punctatus NaAsO2 Hematology Amsath et al  
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2017

39 Labeo rohita As Biomarker of Hepatoroxicity Banerjee et al
2017

 

40 S. trutta As Bioaccumulation, oxidative stress
and Antioxidant enzymatic defence

Greani et al
2017

 

41 Heteropneustes
fossilis

As + Cu Hepatosomatic and
Gonadosomatic index

Singh &
Srivastava
 2017

 

42 Heteropneustes
fossilis

As + Cu Hepatosomatic and
Gonadosomatic index

Singh &
Srivastava
 2017

 

43 Oreochromis sp. As Cortisol level Thang et al
2017

 

44 Channa punctatus NaAsO2 Hematology Amsath et al
2017

 

45 S. trutta  As Bioaccumulation, oxidative stress
and Antioxidant enzymatic defense

Greani et al
2017

 

___________________________________________________________________________

Table:2   :  Arsenic toxicological works on Rat/mice. As indicating Arsenic; As III- Trivalent Arsenic;AsV-
pentavalent Arsenic, As2O3- Arsenic tri-oxide; Na3AsO4- Sodium arsenate;

_____________________________________________________________________________

Table:3:    Arsenic toxicity to Human. As indicating Arsenic; As2O3- arsenic tri-oxide; NRF2- Nuclear related
Factor-2; DNA- Deoxyribonucleic acid; DNMTs-DNA methyltransferases; miRNA- Micro Ribonucleic acid;
mRNA- Messenger RNA;  KRAS- Kirsten rat sarcoma virus; ROS- Reactive oxygen species; NF-kB-nuclear
kappa- light- chain- enhancer of activated B cells; PBMC- Peripheral mononuclear blood cells; ROR-
Regulator of reprogramming.
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S.N. Affected organs Analytical methods Reference

1 Bladder/ Kidney cancer DNA damage Tsai et al 2021

2 Cancer risk assessment Soil water analysis Orosun 2021

3 Dermal / Oral hazards As concentration in ground water Patel et al 2021

4 Carcinogenesis NRF2- mediated transcription and
epigenetic regulator

Bi et al 2021

5 Skin Modification of DNMTs gene Chanda et al
2021

6 Breast cancer cell Cell proliferation and gene expression Kim et al 2021

7 Skin cancer mi RNA and mRNA expression profile Banerjee et al
2021

8 Gall bladder cancer Immunological     marker Singh et al 2021

9 Lung cancer cell In vivo & In Vitro Cell cycle genes Sun et al 2021

10 Prostate cancer KRAS-retroviral fusion transcripts and
gene amplification

Merrik et al 2020

11 Bladder cancer As level in drinking water & mortality
rate

Lopez et al 2020

12 Bladder cancer Clinico-pathological characteristics Fernandez et al
2020

13 Lung cancer As induced transformation Chang et al
2020

14 Prostate cancer ROS  in  the cytotoxicity of As2O3. Dorosow and
gaur 2020

15 Breast cancer Attenuation of NF-kB signaling
pathway

Nasrollahzadeh
et al 2020

16 Skin cancer immunological dysfunction  and
Histopathological analysis

Zeng and Zang
2020

17 Carcinogenesis PBMC gene expression profile Chen et al 2020

18 Growth factor, cancer related
disease pathways

Transcriptome responses in blood Rehman et al
2020

19 Liver cancer cell Resistance of As2O3 by Long non
coding RNA ROR

Li et al 2020

20 Breast cancer Immuno-histo-chemical Lopez- Carillo et
al 2020
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___________________________________________________________________________________

Table: 4: Detection of Arsenic through nano-particles. Au indicates Gold; Nps- Nanoparticles; AgNPs-
Silver nanoparticles; Cu: Copper; SNPs- Silica nanoparticles; Pbs- Lead;  SERS- surface-enhanced Raman
spectroscopy
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SN Nano Particle Detection methods Reference

1 Au NPs  SERS Li et al 2021

2 Au NPs Colorimetric assay Pu et al 2021

3 Au NPs Rapid colorimetric Zheng et al 2021

4 Au NPs Voltammetric detection Sullivan et al 2021

5 Au NPs Electrochemical detection Sedki et al 2021

6 Au NPs Ultra-sensitive Electrochemical
detection

Jijana et al 2021

7 Au NPs Selective and sensitive colorimetric Harisha et al 2021

8 Au NPs Absorption based detection Karakuzu et al 2021

9 Au NPS Voltammetric analysis Salunke et al 2021

10 Cu2O-Ag NPs Chemometric SERS sensor Barimah et al 2021

11 Prussian Blue
NPs

Fluorescence Sensing Pandey et al 2021

12 Au-Cu Nps Electrochemical sensing Fuletra et al 2021

13 Mn3O4 NPS Colorimetric chemosensor Wang et al 2021

14 AuNPs Voltammetric analysis Bu et al 2020

15 Au NPs Colorimetric Shrivas et al 2020

16 Zirconia NPs Absorption based detection Tokuyama et al 2020

17 Au-Cu NPs Electrochemical aptanser Mushiana et al 2019

18 Ag NPs Colorimetric detection Boruah et al 2019

19 Au NPs Electrochemical Gu et al 2018

20 Au NPs Colorimetric detection Yang et al 2018

21 Ag NPs Electrochemical detection Sonkoue and Tachekwajep
2018

22 S NPs Sensor based Taghdisi et al 2018

23 Ag Nps Multimodal assay Wen et al 2018

24 Pbs Nps Absorption based Priyanka et al 2017

25 AuNPs Electrochemical detection Idris et al 2017

__________________________________________________________________________________
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Table: 5:  Various therapeutic agents of arsenic toxicity.  DNA- Deoxyribosenucleic acid  ; MiADMSA –
Monoisoamyl 2,3 dimercaptosuccinic acid ; Chk1– Checkpoint kinase 1; p53 - 53 Kilodalpton protein
product-; H3K18- acetylation of histone H3 at the lysine-18 residue ;  JHDM2A- JmjC-domain-containing
histone demethylase 2A; ERCC1 -- Excision repair cross complementation group 1) and ERCC2- Excision
repair cross complementation group 2) 
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SN Treatment agent Methods References

1 N-Acetylcysteine (NAC) Density Functional     theory Das et al
2021

2 Antibiotic   cefoperazone Blood chemistry Roggenbeck
et al 2021

3 Ginkgo biloba extract DNA damage assay Ding et al
2021

4 Rosa roxburghii Tratt (RRT) hepatic oxidative damage assay Xu et al 2021

5 Ginkgo biloba extract Skin damage assay Zheng et al
2021

6 melatonin DNA damage, inflammation and
apoptosis assay

Abdollahzade
et al 2021

7 Lycopene Kidney marker damage assay Ramadan et
al 2021

8 Epididymal vascular endothelial
growth factor (VEGF)

Gene therapy Dai and Gao
et al 2021

9 Selenium Assessment of     oxidative damage
and neurotransmitter-related
parameters

Ren et al
2021

10 Ginkgo biloba extract Chk1-p53 pathway assessment Yang et al
2021

11 Spirulina  and vitamin E   haematological parameters Khatun et al
2020

12 acetylated histone H3K18 Chromatin immunoprecipitation
(ChIP-qPCR) analysis

Zhang et al
2020a

13 Histone demethylase JHDM2A DNA damage repair pathway Zhang et al
2020b

14 Monoisoamyl dimercaptosuccinic
acid (MiADMSA)

Chelation therapy Sau et al
2020

15 BAL (dimercaptopropanol),    
DMPS (dimercapto-propane
sulfonate)

Chelation therapy Nurchi et al
2020

16 Turmeric and Passiflora foetida
powder

Biochemical, haematological,
antioxidant parameters

Maji et al
2020

17 Nano curcumin & nano MiADMSA Chelation therapy Kushwaha et
al 2018

18 Gingko biloba Liver function indices Yao et al
2017

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/cefoperazone
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19 Hypermethylation of ERCC1 and
ERCC2 

Methylight and bisulfite sequencing
(BSP) assays

Zhang et al
2017

20 2,3-dimercaptopropane -1-
sulphonate (DMPS)

Chelation therapy Lu et al 2017

Figures

Figure 1

Schematic representation of pathogenesis of arsenic toxicity
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Figure 2

Various routes of exposure of Arsenic to Human


