1. HNN. Leading causes of neonatal deaths in Uganda [Internet]. 2018 [cited 2021 Jan 12]. Available from: https://www.healthynewbornnetwork.org/country/uganda/
2. Hug L, Sharrow D, Sun Y, Marcusanu A, You D, Mathers C, et al. Levels and Trends in Child Mortality Report 2017 | UNICEF [Internet]. 2017 [cited 2021 Jan 11]. Available from: https://www.unicef.org/reports/levels-and-trends-child-mortality-report-2017
3. WHO. Newborns: improving survival and well-being [Internet]. 2020 [cited 2021 Jan 11]. Available from: https://www.who.int/news-room/fact-sheets/detail/newborns-reducing-mortality#
4. UN-IGME. CME Info - Child Mortality Estimates [Internet]. 2018 [cited 2021 Jan 11]. Available from: https://childmortality.org/data/Uganda
5. Goldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med [Internet]. 2005 Jan [cited 2021 Jan 11];6(1). Available from: https://journals.lww.com/pccmjournal/Fulltext/2005/01000/International_pediatric_sepsis_consensus.2.aspx
6. Reinhart K, Bauer M, Riedemann NC, Hartog CS. New approaches to sepsis: Molecular diagnostics and biomarkers. Clin Microbiol Rev. 2012;25(4):609–34.
7. Balamuth F, Alpern ER, Abbadessa MK, Hayes K, Schast A, Lavelle J, et al. Improving Recognition of Pediatric Severe Sepsis in the Emergency Department: Contributions of a Vital Sign Based Electronic Alert and Bedside Clinician Identification. Ann Emerg Med [Internet]. 2017 Dec 1 [cited 2021 Jan 11];70(6):759. Available from: /pmc/articles/PMC5698118/
8. Smyth MA, Brace-Mcdonnell SJ, Perkins GD. Identification of adults with sepsis in the prehospital environment: a systematic review. BMJ Open [Internet]. 2016 Aug 1 [cited 2021 Jan 11];6(8). Available from: /pmc/articles/PMC4985978/
9. Olvera L, Dutra D. Early Recognition and Management of Maternal Sepsis. Nurs Womens Health [Internet]. 2016 Apr 1 [cited 2021 Jan 11];20(2):182–96. Available from: http://www.nwhjournal.org/article/S1751485116000738/fulltext
10. Jones SL, Ashton CM, Kiehne L, Gigliotti E, Bell-Gordon C, Disbot M, et al. Reductions in Sepsis Mortality and Costs After Design and Implementation of a Nurse-Based Early Recognition and Response Program. Jt Comm J Qual Patient Saf [Internet]. 2015 Nov 1 [cited 2021 Jan 11];41(11):483. Available from: /pmc/articles/PMC4880050/
11. Fell DB, Hawken S, Wong CA, Wilson LA, Malia SQ, Chakraborty P, et al. Using newborn screening analytes to identify cases of neonatal sepsis. 2017;(December):1–10.
12. Bonet M, Souza JP, Abalos E, Fawole B, Knight M, Kouanda S, et al. The global maternal sepsis study and awareness campaign (GLOSS): study protocol. Reprod Health [Internet]. 2018 Jan 30 [cited 2021 Jan 11];15(1). Available from: /pmc/articles/PMC5791346/
13. Sarkar AP, Dhar G, Das Sarkar M, Ghosh TK, Ghosh S. Early diagnosis of neonatal sepsis in primary health care unit. Bangladesh J Med Sci [Internet]. 2015 Apr 18 [cited 2021 Jan 12];14(2):169–72. Available from: https://www.banglajol.info/index.php/BJMS/article/view/21806
14. Liu L, Oza S, Hogan D, Perin J, Rudan I, Lawn JE, et al. Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet [Internet]. 2015 Jan 31 [cited 2021 Jan 12];385(9966):430–40. Available from: http://www.thelancet.com/article/S0140673614616986/fulltext
15. Voller SMB, Myers PJ. Neonatal Sepsis. Clin Pediatr Emerg Med. 2016 Jun 1;17(2):129–33.
16. Zea-Vera A, Ochoa TJ. Challenges in the diagnosis and management of neonatal sepsis. J Trop Pediatr. 2015;61(1):1–13.
17. Shane AL, Sánchez PJ, Stoll BJ. Neonatal sepsis. Lancet [Internet]. 2017 Oct 14 [cited 2021 Jan 12];390(10104):1770–80. Available from: http://www.thelancet.com/article/S0140673617310024/fulltext
18. Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics [Internet]. 2010;126(3):443–56. Available from: http://www.pediatrics.org/misc/reprints.shtml
19. Stephens BE, Vohr BR. Neurodevelopmental outcome of the premature infant. Pediatr Clin North Am [Internet]. 2009 Jun [cited 2021 Jan 12];56(3):631–46. Available from: https://pubmed.ncbi.nlm.nih.gov/19501696/
20. Stoll BJ, Hansen NI, Adams-Chapman I, Fanaroff AA, Hintz SR, Vohr B, et al. Neurodevelopmental and Growth Impairment Among Extremely Low-Birth-Weight Infants With Neonatal Infection. JAMA [Internet]. 2004 Nov 17 [cited 2021 Jan 12];292(19):2357–65. Available from: https://jamanetwork.com/journals/jama/fullarticle/199811
21. Masino AJ, Harris MC, Forsyth D, Ostapenko S, Srinivasan L, Bonafide CP, et al. Machine learning models for early sepsis recognition in the neonatal intensive care unit using readily available electronic health record data. PLoS One. 2019;14(2):1–23.
22. Hajj J, Blaine N, Salavaci J, Jacoby D. The “Centrality of Sepsis”: A Review on Incidence, Mortality, and Cost of Care. Healthcare [Internet]. 2018 Sep 1 [cited 2021 Jan 12];6(3). Available from: /pmc/articles/PMC6164723/
23. Gyang E, Shieh L, Forsey L, Maggio P. A Nurse-Driven Screening Tool for the Early Identification of Sepsis in an Intermediate Care Unit Setting. J Hosp Med [Internet]. 2015 Feb 1 [cited 2021 Jan 12];10(2):97. Available from: /pmc/articles/PMC4816455/
24. Cohen J, Vincent JL, Adhikari NKJ, Machado FR, Angus DC, Calandra T, et al. Sepsis: A roadmap for future research. Lancet Infect Dis [Internet]. 2015;15(5):581–614. Available from: http://dx.doi.org/10.1016/S1473-3099(15)70112-X
25. Paoli CJ, Reynolds MA, Sinha M, Gitlin M, Crouser E. Epidemiology and Costs of Sepsis in the United States-An Analysis Based on Timing of Diagnosis and Severity Level. Crit Care Med [Internet]. 2018 [cited 2021 Jan 12];46(12):1889–97. Available from: https://pubmed.ncbi.nlm.nih.gov/30048332/
26. Oeser C, Lutsar I, Metsvaht T, Turner MA, Heath PT, Sharland M. Clinical trials in neonatal sepsis. J Antimicrob Chemother. 2013;68(12):2733–45.
27. James.L.Wynn. Defining neonatal sepsis. Curr Opin paediatr. 2016;28(2):135–40.
28. Weiss SL, Fitzgerald JC, Balamuth F, Alpern ER, Lavelle J, Chilutti M, et al. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis. Crit Care Med. 2014;42(11):2409–17.
29. Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA [Internet]. 2016 Feb 23 [cited 2021 Jan 12];315(8):762–74. Available from: https://jamanetwork.com/journals/jama/fullarticle/2492875
30. Shah BA, Padbury JF. Neonatal sepsis: An old problem with new insights. Virulence [Internet]. 2014 [cited 2021 Jan 13];5(1):170. Available from: /pmc/articles/PMC3916371/
31. Klingenberg C, Kornelisse RF, Buonocore G, Maier RF, Stocker M. Culture-Negative Early-Onset Neonatal Sepsis — At the Crossroad Between Efficient Sepsis Care and Antimicrobial Stewardship. Front Pediatr [Internet]. 2018 [cited 2021 Jan 13];6:285. Available from: /pmc/articles/PMC6189301/
32. Fuchs A, Bielicki J, Mathur S, Sharland M, Van Den Anker JN. Antibiotic Use for Sepsis in Neonates and Children: 2016 Evidence Update WHO-Reviews. 2016.
33. Deleon C, Shattuck K, Jain SK. Biomarkers of neonatal sepsis. Neoreviews [Internet]. 2015 [cited 2021 Jan 13];16(5):e297–308. Available from: https://researchexperts.utmb.edu/en/publications/biomarkers-of-neonatal-sepsis
34. Tank PJ, Omar A, Musoke R. Audit of Antibiotic Prescribing Practices for Neonatal Sepsis and Measurement of Outcome in New Born Unit at Kenyatta National Hospital. Int J Pediatr (United Kingdom). 2019;2019.
35. R. K, Manjunath S, Doddabasappa P, J. M. Evaluation of screening of neonatal sepsis. Int J Contemp Pediatr [Internet]. 2018 Feb 22 [cited 2021 Jan 13];5(2):580–3. Available from: https://www.ijpediatrics.com/index.php/ijcp/article/view/1378
36. Taylor RA, Pare JR, Venkatesh AK, Mowafi H, Melnick ER, Fleischman W, et al. Prediction of In-hospital Mortality in Emergency Department Patients with Sepsis: A Local Big Data-Driven, Machine Learning Approach. Acad Emerg Med. 2016;23(3):269–78.
37. Desautels T, Calvert J, Hoffman J, Jay M, Kerem Y, Shieh L, et al. Prediction of sepsis in the intensive care unit with minimal electronic health record data: A machine learning approach. JMIR Med Informatics. 2016;4(3):1–15.
38. Henry KE, Hager DN, Pronovost PJ, Saria S. A targeted real-time early warning score (TREWScore) for septic shock. Sci Transl Med. 2015;7(299).
39. Kam HJ, Kim HY. Learning representations for the early detection of sepsis with deep neural networks. Comput Biol Med [Internet]. 2017;89:248–55. Available from: http://dx.doi.org/10.1016/j.compbiomed.2017.08.015
40. Mayhew MB, Petersen BK, Sales AP, Greene JD, Liu VX, Wasson TS. Flexible, cluster-based analysis of the electronic medical record of sepsis with composite mixture models. J Biomed Inform [Internet]. 2018;78:33–42. Available from: https://doi.org/10.1016/j.jbi.2017.11.015
41. Gultepe E, Green JP, Nguyen H, Adams J, Albertson T, Tagkopoulos I. From vital signs to clinical outcomes for patients with sepsis: A machine learning basis for a clinical decision support system. J Am Med Informatics Assoc. 2014;21(2):315–25.
42. Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG. An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU. Crit Care Med. 2018;46(4):547–53.
43. Fairchild KD, Aschner JL. HeRO monitoring to reduce mortality in NICU patients. Res Reports Neonatol [Internet]. 2012 Aug 15 [cited 2021 Jan 14];2:65–76. Available from: https://www.dovepress.com/hero-monitoring-to-reduce-mortality-in-nicu-patients-peer-reviewed-fulltext-article-RRN
44. Coggins SA, Weitkamp JH, Grunwald L, Stark AR, Reese J, Walsh W, et al. Heart Rate Characteristic index monitoring for blood stream infection in an NICU: A 3-year experience. Arch Dis Child Fetal Neonatal Ed [Internet]. 2016 Jul 1 [cited 2021 Jan 15];101(4):F329. Available from: /pmc/articles/PMC4851911/
45. Li L, Walter SR, Rathnayake K, Westbrook JI. Evaluation and optimisation of risk identification tools for the early detection of sepsis in adult inpatients. G. Balint, Antala B, Carty C, Mabieme J-MA, Amar IB, Kaplanova A, editors. Uniw śląski [Internet]. 2018 [cited 2021 Jan 14];343–54. Available from: https://researchers.mq.edu.au/en/publications/evaluation-and-optimisation-of-risk-identification-tools-for-the-
46. Leventhal B. An introduction to data mining and other techniques for advanced analytics. J Direct, Data Digit Mark Pract. 2010;12(2):137–53.
47. Fernando KES, Mcgregor C, James AG. CRISP-TDM0 for standardized knowledge discovery from physiological data streams: Retinopathy of prematurity and blood oxygen saturation case study. 2017 IEEE Life Sci Conf LSC 2017. 2018 Jan 23;2018-Janua:226–9.
48. Scikit-learn. scikit-learn: machine learning in Python — scikit-learn 1.0.2 documentation [Internet]. [cited 2021 Jan 14]. Available from: https://scikit-learn.org/stable/
49. Rohit Walimbe. Handling imbalanced dataset in supervised learning using family of SMOTE algorithm. - DataScienceCentral.com [Internet]. 2017 [cited 2021 Jan 14]. Available from: https://www.datasciencecentral.com/handling-imbalanced-data-sets-in-supervised-learning-using-family/
50. Boser BE, Guyon IM, Vapnik VN. Training algorithm for optimal margin classifiers. Proc Fifth Annu ACM Work Comput Learn Theory. 1992;144–52.
51. Verplancke T, Van Looy S, Benoit D, Vansteelandt S, Depuydt P, De Turck F, et al. Support vector machine versus logistic regression modeling for prediction of hospital mortality in critically ill patients with haematological malignancies. BMC Med Inform Decis Mak [Internet]. 2008 [cited 2021 Jan 14];8. Available from: https://pubmed.ncbi.nlm.nih.gov/19061509/
52. Wu J, Roy J, Stewart WF. Prediction modeling using EHR data: Challenges, strategies, and a comparison of machine learning approaches. Med Care [Internet]. 2010 Jun [cited 2021 Jan 14];48(6 SUPPL.). Available from: https://journals.lww.com/lww-medicalcare/Fulltext/2010/06001/Prediction_Modeling_Using_EHR_Data__Challenges,.17.aspx
53. Mithal LB, Yogev R, Palac HL, Kaminsky D, Gur I, Mestan KK. Vital signs analysis algorithm detects inflammatory response in premature infants with late onset sepsis and necrotizing enterocolitis. Early Hum Dev [Internet]. 2018 Feb 1 [cited 2021 Jan 16];117:83. Available from: /pmc/articles/PMC5983899/
54. Mani S, Ozdas A, Aliferis C, Varol HA, Chen Q, Carnevale R, et al. Medical decision support using machine learning for early detection of late-onset neonatal sepsis. J Am Med Informatics Assoc [Internet]. 2014 [cited 2021 Jan 16];21(2):326–36. Available from: /pmc/articles/PMC3932458/
55. Gur I, Riskin A, Markel G, Bader D, Nave Y, Barzilay B, et al. Pilot study of a new mathematical algorithm for early detection of late-onset sepsis in very low-birth-weight infants. Am J Perinatol [Internet]. 2015 Jul 31 [cited 2021 Jan 16];32(4):321–30. Available from: http://www.thieme-connect.com/products/ejournals/html/10.1055/s-0034-1384645