1. Holmberg, K. & Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 5, 263-284 (2017).
2. Dowson, D. History of tribology (Professional Engineering Publishing, London, 1998).
3. Li, H. et al. Superlubricity between MoS2 Monolayers. Adv. Mater. 29, 1701474 (2017).
4. Lee, C. et al. Frictional characteristics of atomically thin sheets. Science 328, 76-80 (2010).
5. Vazirisereshk, M. R., Martini, A., Strubbe, D. A. & Baykara, M. Z. Solid lubrication with MoS2: A Review. Lubricants 7, 57 (2019).
6. Martin, J. M., Donnet, C., Le Mogne, T. & Epicier, T. Superlubricity of molybdenum disulphide. Phys. Rev. B 48, 10583-10586 (1993).
7. Hirano, M. & Shinjo, K. Atomistic locking and friction. Phys. Rev. B 41, 11837-11851 (1990).
8. Donnet, C., Martin, J. M., Le Mogne, T. & Belin, M. Super-low friction of MoS2 coatings in various environments. Tribol. Int. 29, 123-128 (1996).
9. Vellore, A. et al. Ni-doped MoS2 dry film lubricant life. Adv. Mater. Interfaces 7, 2001109 (2020).
10. Ren, S., Li, H., Cui, M., Wang, L. & Pu, J. Functional regulation of Pb-Ti/MoS2 composite coatings for environmentally adaptive solid lubrication. Appl. Surf. Sci. 401, 362-372 (2017).
11. Xu, J. et al. Growth and characteristics of self-assembled MoS2/Mo-S-C nanoperiod multilayers for enhanced tribological performance. Sci. Rep. 6, 25378 (2016).
12. Scharf, T. W., Kotula, P. G. & Prasad, S. V. Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings. Acta Mater. 58, 4100-4109 (2010).
13. Duan, Z. et al. MoS2 nanocomposite films with high irradiation tolerance and self-adaptive lubrication. ACS Appl. Mater. Interfaces 13, 20435-20447 (2021).
14. Hod, O., Meyer, E., Zheng, Q. & Urbakh, M. Structural superlubricity and ultralow friction across the length scales. Nature 563, 485-492 (2018).
15. Zhang, S., Ma, T., Erdemir, A. & Li, Q. Tribology of two-dimensional materials: From mechanisms to modulating strategies. Mater. Today 26, 67-86 (2019).
16. Zhang, R. et al. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat. Nanotechnol. 8, 912-916 (2013).
17. Liu, Z. et al. Observation of microscale superlubricity in graphite. Phys. Rev. Lett. 108, 205503 (2012).
18. Berman, D., Deshmukh, S. A., Sankaranarayanan, S. K. R. S., Erdemir, A. & Sumant, A. V. Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348, 1118-1122 (2015).
19. Berman, D. et al. Operando tribochemical formation of onion-like-carbon leads to macroscale superlubricity. Nat. Commun. 9, 1164 (2018).
20. Kawai, S. et al. Superlubricity of graphene nanoribbons on gold surfaces. Science 351, 957-961 (2016).
21. Koren, E., Lörtscher, E., Rawlings, C., Knoll, A. W. & Duerig, U. Adhesion and friction in mesoscopic graphite contacts. Science 348, 679-683 (2015).
22. Li, P. et al. Toward robust macroscale superlubricity on engineering steel substrate. Adv. Mater. 32, 2002039 (2020).
23. Song, Y. et al. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nat. Mater. 17, 894-899 (2018).
24. Liu, S. W. et al. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere. Nat. Commun. 8, 14029 (2017).
25. Song, Y., Qu, C., Ma, M. & Zheng, Q. Structural superlubricity based on crystalline materials. Small 16, e1903018 (2020).
26. Wu, Y. et al. A long-lifetime MoS2/a-C:H nanoscale multilayer film with extremely low internal stress. Surf. Coat. Technol. 236, 438-443 (2013).
27. Gao, X. et al. Constructing WS2/MoS2 nano-scale multilayer film and understanding its positive response to space environment. Surf. Coat. Technol. 353, 8-17 (2018).
28. Yin, X., Jin, J., Chen, X., Ma, T. & Zhang, C. A new pathway for superlubricity in a multilayered MoS2-Ag film under cryogenic environment. Nano Lett. 21, 10165-10171 (2021).
29. Li, H. et al. From bulk to monolayer MoS2: Evolution of raman scattering. Adv. Funct. Mater. 22, 1385-1390 (2012).
30. Fan, X. et al. MoS2/WS2 nanosheet-based composite films irradiated by atomic oxygen: Implications for lubrication in space. ACS Appl. Nano Mater. 4, 10307-10320 (2021).
31. Deepthi, B. et al. Mechanical and tribological properties of sputter deposited nanostructured Cr-WS2 solid lubricant coatings. Surf. Coat. Technol. 205, 1937-1946 (2010).
32. Chen, X. et al. Atomic-scale insights into the interfacial instability of superlubricity in hydrogenated amorphous carbon films. Sci. Adv. 6, eaay1272 (2020).
33. Chen, X. et al. Evolution of tribo-induced interfacial nanostructures governing superlubricity in a-C:H and a-C:H:Si films. Nat. Commun. 8, 1675 (2017).
34. Wang, F., Wang, L. & Xue, Q. Fluorine and sulfur co-doped amorphous carbon films to achieve ultra-low friction under high vacuum. Carbon 96, 411-420 (2016).
35. Dieterle, M., Weinberg, G. & Mestl, G. Raman spectroscopy of molybdenum oxides. Phys. Chem. Chem. Phys. 4, 812-821 (2002).
36. Sheehan, P. E. & Lieber, C. M. Nanotribology and nanofabrication of MoO3 structures by atomic force microscopy. Science 272, 1158-1161 (1996).
37. Liang, T., Sawyer, W. G., Perry, S. S., Sinnott, S. B. & Phillpot, S. R. First-principles determination of static potential energy surfaces for atomic friction in MoS2 and MoO3. Phys. Rev. B 77, 104105 (2008).
38. Wang, M., Chen, Y., Gao, B. & Lei, H. Electrochromic properties of nanostructured WO3 thin films deposited by glancing-angle magnetron sputtering. Adv. Electron. Mater. 5, 1800713 (2019).
39. Chen, X. et al. Vertical 2D MoO2/MoSe2 core-shell nanosheet arrays as high-performance electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 26, 8537-8544 (2016).