[1] Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. Magnetic bistability in a metal-ion cluster. Nature 365, 141–143 (1993)
[2] Gatteschi, D, Sessoli, R. & Villain, J. Molecular nanomagnets. Oxford University Press, New York (2006)
[3] Westerström, R. et al. An Endohedral Single-Molecule Magnet with Long Relaxation Times: [email protected] J. Am. Chem. Soc. 134, 9840-9843 (2012)
[4] Huang, T. et al. A Molecular Switch Based on Current-Driven Rotation of an Encapsulated Cluster within a Fullerene Cage. Nano Letters 11, 5327-5332 (2011)
[5] Peller, D. et al. Sub-cycle atomic-scale forces coherently control a single-molecule switch. Nature 585, 58–62 (2020)
[6] Gross, L. Recent advances in submolecular resolution with scanning probe microscopy. Nature Chem. 3, 273-278 (2011)
[7] Gomer, R. Field Emission and Field Ionization. (American Institute of Physics, New York, 1993).
[8] Rose, D. J. On the Magnification and Resolution of the Field Emission Electron Microscope. J. App. Phys. 27, 215 (1956)
[9] Müller, E. W., Z. Die Sichtbarmachung einzelner Atome und Moleküle im Feldelektronenmikroskop. Naturforsch. 5a, 473 (1950)
[10] Becker, J. A. & Brandes, R. G. On the Adsorption of Oxygen on Tungsten as Revealed in the Field Emission Electron Microscope. J. Chem. Phys. 23, 1323 (1955)
[11] Melmed, A. J. & Müller, E. W. Study of Molecular Patterns in the Field Emission Microscope. J. Chem. Phys. 29, 1037 (1958)
[12] Neo, Y., Matsumoto, T., Tominita, M., Sasaki, M. & Mimura, H. Necessary Conditions for Two-Lobe Patterns in Field Emission Microscopy. J. J. App. Phys. 51, 115601 (2012)
[13] Matsumoto, T., Nakamura, T., Neo, Y., Mimura, H. & Tomita, M. Graphene Simulation (InTech, Croatia, 2011), Chap. 8.
[14] Rezeq M., Joachim C., Lwin M.H. & Navarro F.A. Observations of Individual Cu-Phthalocyanine Molecules Deposited on Nano-Tips in the Field Emission Microscope. In: Grill L., Joachim C. (eds) Imaging and Manipulating Molecular Orbitals. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. (2013)
[15] Esat, T., Friedrich, N., Tautz, F. S. & Temirov, R. A standing molecule as a single-electron field emitter. Nature 558, 573 (2018)
[16] Girifalco, L. A. Molecular Properties of C60 in the Gas and Solid Phases. J. Phys. Chem. 96, 858-861 (1992)
[17] Drechsler, M. & Müller, E. W. Die Bestimmung der Polarisierbarkeit von Atomen und Molekülen mit dem Feldelektronenmikroskop. Zeitschrift für Physik 132, 195-211 (1952)
[18] Tsuei, K.-D. et al. Photoemission and photoabsorption study of C60 adsorption on Cu(111) surfaces. Phys. Rev. B 56, 15412 (1997)
[19] Li, W. et al. Fullerene film on metal surface: Diffusion of metal atoms and interface model. Appl. Phys. Lett. 104, 191606 (2014)
[20] Gall’, N. R., Rut’kov, E. V. & Tontegode, A. Ya. Interaction of C60 molecules with the (100)W surface: adsorption, initial stages of film growth, and thermal transformation of the adsorption layer. Semiconductors 38, 1023-1029 (2004)
[21] Murphy, E. L. & Good, R. H. Jr. Thermionic Emission, Field Emission, and the Transition
Region. Phys. Rev. 102, 1464 (1956)
[22] Young, R. D. Theoretical Total-Energy Distribution of Field-Emitted Electrons. Phys. Rev.113, 110 (1959)
[23] Bonetto, F., Vidal, R. A., Quintero Riascos, V., Bonin, C. J. & Ferrón, J. Growth, thermal desorption and low dose ion bombardment damage of C60 films deposited on Cu(111). J. Phys. Comm. 1, 045004 (2017)
[24] Maschhoff, B. L. & Cowin, J. P. Corrected electrostatic model for dipoles adsorbed on a metal surface. J. Chem. Phys. 101, 8138 (1994)
[25] Tsong, T. T. & Kellogg, G. Direct observation of the directional walk of single adatoms and the adatom polarizability. Phys. Rev. B 12, 1343 (1975)
[26] Forbes, R.G. "Gas field ionisation sources", Chapter 3 in: J. Orloff (ed), Handbook of Charged Particle Optics, 2nd edition (CRC Press, Baton Roca, 2008) pp 87-128.
[27] Mayer, A. Formulation in terms of normalised propagators of a charge-dipole model enabling the calculation of the polarisation properties of fullerenes and carbon nanotubes, Phys. Rev. B 75, 045407 (2007)
[28] Fiks, V. B. [Sov. Phys. Solid State 1, 14 (1959)].
[29] Huntington, H. B. & Grone, A. R. J. Phys. Chem. Solids 20, 76 (1961).
[30] Araidai, M. & Watanabe, K. Ab initio calculation of surface atom evaporation in electron field emission. e-J. Surf. Sci. Nanotech. 5, 106-109 (2007)
[31]Gruznev, D. et al. Stepwise self-assembly of C60 mediated by atomic scale moiré magnifiers. Nat Commun 4, 1679 (2013).
[32] Yanagisawa, H. et al. Laser-induced field emission from a tungsten tip: Optical control of emission sites and the emission process. Phys. Rev. B 81, 115429 (2010)
[33] Sato, M. Gas Adsorption on Tungsten Exposed to a Mixture of Nitrogen and Oxygen. Phys. Rev. Lett. 45, 1856 (1980)
[34] Giannozzi, P. et. al. J.Phys.: Condens.Matter 21, 395502 (2009), and Giannozzi P. et. al. J.Phys.: Condens.Matter 29, 465901 (2017)
[35] Hamada, I. van der Waals density functional made accurate. Phys. Rev. B 89, 121103(R) (2014)
[36] Jackson, J. D. Classical electrodynamics. 3rd ed. New York, NY: Wiley, 1999.
[37] Shuai, Z. & Brédas, J. L. Erratum: Electronic structure and nonlinear optical properties of the fullerenes C60 and C70: A valence-effective-Hamiltonian study. Phys. Rev. B 48, 11520 (1993)
[38] Forbes, R.G. "Atomic Polarisability Values in the SI System", Surface Sci. 64 367-371 (1977).
[39] Santos, F. C. „The electrostatic field of a point charge and an electrical dipole in the presence of a conducting sphere”, Eur. J. Phys. 25, 859-868 (2004).
[40] Hall, B. M., Tong, S. Y., & Mills, D. L. „Large-Angle Electron-Energy-Loss Spectroscopy with the Inclusion of a Surface Image Potential”, Phys. Rev. Lett 50, 1277 (1983)
[41] Forbes, R.G., "On Different Types of Dipole-Dipole Interaction", J. de Physique 50, Colloque C8, 15–20 (1989).
[42] Forbes, R.G., "On Charged Surface Models and the Origins of Field Adsorption", Surface Science 223 326-352 (1989).
[43] Islam, M. F. & Malik, F. B. Enhancement of laser-induced field emission in tungsten due to a metastable d band. Soli. Sta. Comm. 149, 1257 (2009)
[44] Martinek, J. & Stankowski, J. A model of fullerene conductance. Soli. Sta. Comm. 100, 717-720 (1996)
[45] Makarova, T.L. Electrical properties of two-dimensional fullerene matrices. Carbon 39, 2203-2209 (2001)
[46] Gravil, P.A. et al. Polarization of C60 by the surface electric field of GeS(001). Surf. Sci. 329, 199-205 (1995)
[47] Fletcher, R. & Reeves, C. M. Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)
[48] Polak, E. & Ribière, G. Note sur la convergence de méthodes de directions conjuguées. Rev. Française Informat Recherche Opérationelle 3 35–43 (1969)
[49] Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes 3rd Edition: The Art of Scientific Computing. 3 : Cambridge University Press, (2007)
[50] Jonsson, D., Norman, P., Ruud, K., Ågren, H. & Helgaker, T. Electric and magnetic properties of fullerenes. J. Chem. Phys. 109, 572 (1998)
[51] Norman, P., Luo, Y., Jonsson, D. & Ågren, H. Ab initio calculations of the polarizability and the hyperpolarizability of C60. J. Chem. Phys. 106, 8788 (1997)