
Preoperative clinical-radiomics nomogram for
microvascular invasion prediction in hepatocellular
carcinoma using 18 F-FDG PET/CT
Randi Fu  (  nbufurandi@126.com )

Ningbo University
Yutao Wang 

Ningbo University
Shuying Luo 

Ningbo University
Gehui Jin 

Ningbo University
Zhongfei Yu 

Shanghai University
Jian Zhang 

Shanghai University

Research Article

Keywords: hepatocellular carcinoma, microvascular invasion, 18F-FDG PET/CT, radiomics

Posted Date: February 21st, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1357220/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-1357220/v1
mailto:nbufurandi@126.com
https://doi.org/10.21203/rs.3.rs-1357220/v1
https://creativecommons.org/licenses/by/4.0/


Wang et al.

RESEARCH

Preoperative clinical-radiomics nomogram for
microvascular invasion prediction in
hepatocellular carcinoma using 18F-FDG PET/CT
Yutao Wang1,2†, Shuying Luo3†, Gehui Jin4, Randi Fu3*, Zhongfei Yu2 and Jian Zhang2

*Correspondence:

nbufurandi@126.com
1 Department of Medical imaging,

The Affiliated Hospital of Medical

School, Ningbo University,

Ningbo, Zhejiang Province,

315020, China
2 Shanghai Universal Medical

Imaging Diagnostic Center,

Shanghai University, Building 8,

406 Guilin Road, Xuhui District,

Shanghai, 201103, China
3 Faculty of Electrical Engineering

and Computer Science, Ningbo

University, Ningbo, 315211, China
4 Medical School, Ningbo

University, Ningbo, Zhejiang

Province, 315211, China

Full list of author information is

available at the end of the article
†Equal contributor

Abstract

Purpose: To develop a clinical-radiomics nomogram by incorporating radiomics
score and clinical predictors for preoperative prediction of microvascular invasion
in hepatocellular carcinoma.

Methods: A total of 97 HCC patients were retrospectively enrolled from
Shanghai Universal Medical Imaging Diagnostic Center and Changhai Hospital
Affiliated to the Second Military Medical University. 909 CT and 909 PET slicers
from 97 HCC patients were divided into a training cohort (N =637) and a
validation cohort (N = 272). Radiomics features were extracted from each CT or
PET slicer, and features selection was performed with least absolute shrinkage
and selection operator regression and radiomics score was also generated. The
clinical-radiomics nomogram was established by integrating radiomics score and
clinical predictors, and the performance of the models were evaluated from its
discrimination ability, calibration ability, and clinical usefulness.

Results: The radiomics score consisted of 45 selected features, and age, the ratio
of maximum to minimum tumor diameter, and 18F-FDG uptake status were
independent predictors of microvascular invasion. The clinical-radiomics
nomogram showed better performance for MVI detection (0.890[0.854,0.927])
than the clinical nomogram (0.849[0.804, 0.893]) (p<0.05). Both nomograms
showed good calibration and the clinical-radiomics nomogram’s clinical
practicability outperformed the clinical nomogram.

Conclusions: With the combination of radiomics score and clinical predictors,
the clinical-radiomics nomogram can significantly improve the predictive efficacy
of microvascular invasion in hepatocellular carcinoma (p<0.05) compared with
clinical nomogram.

Keywords: hepatocellular carcinoma; microvascular invasion; 18F-FDG
PET/CT; radiomics

1 Introduction
Hepatocellular carcinoma (HCC) is one of the most common malignancy and the

fourth leading cause of cancer-related death worldwide [1]. Liver resection and liver

transplantation are two universally acknowledged treatments with relatively good

prognosis, but the high probability of postoperative tumor recurrence still threat-

ens patients’ long-term survival [2, 3, 4]. Therefore, accurate detection of high-risk

factors for HCC recurrence preoperatively would play an important role in choosing

surgical techniques so as to reduce the chance of HCC recurrence and potentially

improve overall survival outcomes.
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Microvascular invasion (MVI) refers to the invasion of HCC cells to the peritoneal

peritumor tissues. It is one of the pathological features that reflect the aggressiveness

of the tumor which can only be seen on the pathological sections under the postop-

erative microscope. The presence of MVI in HCC patients generally indicates poor

survival prognosis, and HCC with MVI also has a much shorter disease-free survival

[5]. Therefore, MVI is seen as an important prognostic factor for HCC [6, 7, 8]. Due

to the extreme heterogeneity of HCC, no stable serological or genomic predictor of

MVI has been found so far [9, 10, 11]. Recently, preoperative prediction of MVI in

HCC using noninvasive imaging modalities has attracted clinical interest. Valuable

microscopic features by definition can only be imaged by postoperative biopsy and

hence effectively characterizations of the tumor heterogeneity are hard to achieve.

Therefore, the preoperative prediction of MVI in HCC remains an urgent problem.

18FDG PET/CT examination is an important method in molecular imaging, in

which PET examination provides molecular information such as the function and

metabolism of the lesions and CT examination provides precise anatomical local-

ization of the lesions. It can be used for staging and predicting prognosis in patients

with malignancy [12]. The maximum standardized uptake value and tumor-to-liver

ratio on PET images may be positively correlated with MVI and the prognosis of

HCC patients [12, 13]. For HCC patients, primary-tumor FDG avidity is a prog-

nostic indicator of ag-gressive tumor biological behavior and correlates with tumor

recurrence [14, 15].

As a new technology, radiomics can improve the assessment and quantification

of spatial heterogeneity of tumors by converting medical imaging information into

thousands of quantitative features through computer algorithms [16]. At present,

some scholars have successfully predicted MVI in HCC preoperatively using ra-

diomics [17, 18, 19, 20]. In this study, we used 18F-FDG PET/CT images for the

assessment of MVI of HCC and applied radiomics techniques to establish a ra-

diomics score (Rad-score) from PET/CT images, and we subsequently established

a nomogram for the prediction of preoperative MVI. If potential predictors can

be identified, 18F-FDG PET/ CT may become an alternative technique that can

provide additional information for MVI detection.

2 Materials and Methods

2.1 Patients

In this study, 223 HCC patients’ PET/CT images (from September 2012 to Novem-

ber 2020) from Shanghai Universal Medical Imaging Diagnostic Center and Chang-

hai Hospital Affiliated to the Second Military Medical University were retrospec-

tively analyzed. Among them, the inclusion criteria were as follows: (1) HCC was

confirmed by postoperative pathological examination, (2) 18F-FDG PET/CT was

performed preoperatively, (3) no invasive examination was performed before 18F-

FDG PET/CT examination, (4) imaging studies did not suggest venous tumor

thrombus and distant metastasis, and (5) the clinicopathological data were com-

plete. Exclusion criteria were as follows: (1) liver cancer with other pathology, (2)

patients with HCC recurrence, (3) previous history of malignancy in the liver or

other sites, (4) pathological diagnosis with macroscopic intravascular, and (5) miss-

ing clinicopathological data. Figure 1 displays the flow chart of the study population.
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After screening, a total of 97 eligible patients were enrolled, 38 had MVI and

59 had no MVI (confirmed by postoperative pathological examination). Depending

on the size of the tumor, each patient has a different number of slices. In this

paper we obtained 909 PET slicers and 909 CT slicers from 97 cases (including

485 with MVI and 424 without MVI). Each case’s baseline clinical data including

age, sex, 18F-FDG uptake status, ratio of maximum to minimum tumor diameter

(Max/Min-TD), and tumor location were collected by clinicians with more than 5

years of clinical experience. Clinical information was shown in Table 1. The slicers

were randomly divided into a training cohort (N =637) and a validation cohort (N

=272) at a 7:3 ratio. In a subsequent paper we will deal with a slice as a case for

experimentation.

2.2 18F-FDG PET/CT examination

Biograph 64 PET/CT imager we used was made by Siemens (Germany). 18F-FDG

was provided by Shanghai atomic science and technology, Ltd. The radiochemical

pu-rity was more than 95%. Patients were fasted more than 6h before examination,

and their blood glucose were controlled under 11.1mmol/l. Patients received intra-

venous 3.70-5.55mbq/kg 18F-FDG according to their body mass and underwent

PET/CT after lying still for 60min. The patient firstly underwent CT scan with

the following scanning parameters: tube voltage 120 kV, tube current 170 Ma; slice

thickness 3.0 mm. Then, imaging with PET was performed, and a three-dimensional

acquisition mode with 5-6 beds and 2.5min/bed was used. Delayed imaging was per-

formed in the case of diagnostic difficulties, which was performed within (120±15)

min after injection of 18F-FDG in 1-2 bed positions with identical scanning pa-

rameters. Attenuation correction was performed on the CT data and reconstructed

by an iterative method to finally obtain transverse, sagittal, coronal CT, PET, and

PET/CT fusion images. Both hospitals used the same model of PET/CT equipment

for image acquisition. And we selected transverse images of PET and CT images

for subsequent experiments.

2.3 Regions of interest segmentation

The tumor regions of interest (ROI) of each patient were manually drawn slice by

slice by two radiologists with 5-year experience using ITK-SNAP software (avail-

able for download at http://www.itksnap.org/). As shown in Figure 2, these were

annotated schematic diagrams of ROI using ITK-SNAP software. Both radiologists

were blind to the pathological results. The original image and segmentation files

were stored in the format of the Neuroimaging Informatics Technology Initiative.

2.4 Radiomics feature extraction

We extracted 465 CT radiomics features and 465 PET radiomics features from

the ROI for each case, and all radiomics features were extracted by the pyradiomics

package (https://pyradiomics.readthedocs.io/). The feature pool comprised 18 first-

order features, 75 raw texture features, 372 wavelet-based texture features. Raw

texture features included gray level co-occurrence matrix (GLCM), gray level run-

length matrix (GLRLM), gray level size zone matrix (GLSZM), gray level depen-

dence matrix (GLDM), neighbouring gray tone difference matrix (NGTDM). Num-
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bers of GLCM-based, GLRLM-based, GLSZM-based, GLDM-based and NGTDM-

based features were 24, 16, 16, 14 and 5, respectively. The features were also recom-

puted after different wavelet decomposition in two directions (x, y) of the original

images. Performing low-pass or high-pass wavelet filter along x or y directions re-

sulted in 4 decomposition of the original image. Consequently, we extracted 372

features by wavelet transformation of the tumor region.

2.5 Radiomics feature selection and construction of the radiomics score

First, normalize each radiomics feature to eliminate influence caused by the numeri-

cal range differences between features. To prevent overfitting of the results, we used

the least absolute shrinkage and selection operator (LASSO) regression algorithm to

select the optimal contributing features group. Features with corresponding coeffi-

cients that were not-zero in the LASSO regression results were retained. Radiomics

score (Rad-score) was calculated for each patient via a linear combination of selected

features that were weighted by their respective coefficients.

2.6 Development and validation of MVI-predicting nomograms

In order to analyze the significant factors affecting the prediction of MVI, univari-

ate and multivariate logistic regression analyses were used. To identify independent

clinical factors that influence the prediction of MVI, the factors with a p value of

0.05 or less in univariate analysis will be further analyzed using multivariate lo-

gistic regression. To prove the added value of Rad-score in MVI assessment, we

established a clinical nomogram (Clin-nom) that only contains independent clinical

predictors and a clinical-radiomics nomogram (C-Rad-nom) combining Rad-score

with clinical predictors. We assessed and compared the performance of the estab-

lished nomograms in terms of discrimination ability, calibration ability, and clinical

usefulness.

2.7 Statistical analysis

In this study, all the statistical analysis was conducted with R software (available

for download https://www.r-project.org/). Categorical variables were statistically

analyzed using the χ2 test and continuous variables were analyzed using the t test.

And p values less than 0.05 were considered statistically significant. In addition, pre-

dictive models were also established and evaluated using R software. The features

selection method of LASSO was performed using the “glmnet” package. The uni-

variate and multivariate logistic regression analyses were performed using the “glm”

function. Nomograms and calibration curves were plotted used the “rms” package.

The receiver operating characteristic (ROC) curves plotting and area under curve

(AUC) calculation was performed using the “pROC” package. The decision curve

analysis was performed with the “rmda” package.

3 Results

3.1 Clinical characteristics

Detailed clinical characteristics of cases are shown in Table 1. In 909 cases, 53.4%

(485/909) were MVI positive (MVI+: patients were confirmed to have MVI by

postoperative pathological examination) and 46.6% (424/909) were MVI negative
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(MVI−: patients were confirmed to have no MVI by postoperative pathological ex-

amination). MVI positivity was found in 53.4% (340/637) of tumors in the training

cohort, similar to 54.3% (145/272) seen in the validation cohort (P = 1.000). In

addition, there were no signif1icant differences between the two cohorts in other

clinical characteristics. These results justified the use of the training and validation

cohorts (P>0.05, Table 1).

3.2 Features extraction and radiomics scores construction

We cascaded the features extracted from the CT image (465 radiomics features) and

PET image (465 radiomics features) and our features group contained 930 radiomics

features for each case. As shown in Figure 3, we performed features selection using

the LASSO regression model. The left figure represents the distribution of coeffi-

cients for each feature, where the coefficient profile was plotted against the log (λ)

sequence. The right showed the adjustment of parameters in the LASSO model us-

ing 10-fold cross-validation to obtain a minimum standard. The binomial deviance

was plotted versus log (λ). As shown in Figure 3B, dotted vertical lines were drawn

at the optimal values by using the minimum criteria (the left) and the 1 standard

error of the minimum criteria (the right). Finally, we obtained 45 (12 features from

CT and 33 features from PET) as the most significant radiomics features from the

feature groups to construct Rad-score. Individual case’s Rad-score was computed

through a linear combination of the selected features weighted by their respective

coefficients.

3.3 Development of MVI-predicting nomograms

Univariate and multivariate logistic regression were used to determine the relation-

ship between the factors and MVI in HCC. As shown in Table 2, age, sex, 18F-FDG

uptake status and Max/Min-TD were significantly associated with the prediction of

MVI (P < 0.05) according to univariate logistic regression analysis. And according

to multivariate logistic regression analysis, we found age, 18F-FDG uptake status

and Max/Min-TD were independent predictors of MVI (P < 0.05).

In this study, the Clin-nom was established by combining age, 18F-FDG uptake

statues and Max/Min-TD. In order to verify the incremental value of Rad-score

in predicting MVI status, we combined four clinical predictors with Rad-score to

establish C-Rad-nom. As shown in Figure 4A and Figure 4B, Clin-nom and C-Rad-

nom were established in this study.

3.4 Validation of MVI-predicting nomograms

3.4.1 Discrimination ability

In this study, the AUC was used to identify the performance of the nomograms and

Rad-score in discriminating between MVI negative and MVI positive cases (Table

3). The performance of Rad-score, Clin-nom, and C-Rad-nom in MVI prediction,

AUCs were 0.903 (95% CI, 0.881-0.926), 0.941(0.923-0.9459), 0.962 (0.949-0.976) in

the training cohort, and 0.809 (0.756-0.856), 0.849(0.804-0.893), 0.890 (0.854-0.927)

in the validation cohort. We performed a DeLong test to verify whether there was

a significant difference among the Rad-score, Clin-nom and C-Rad-nom in MVI

prediction.



Wang et al. Page 6 of 11

According to Table 3, when Rad-score was included in Clin-nom, the performance

of the Clin-nom was significantly improved in the training cohort (P < 0.05), and

this significant improvement was also confirmed in the validation cohort, which

indicates that Rad-score has incremental value in MVI prediction. The ROC curves

of the Rad-score, Clin-nom, and C-Rad-nom in MVI prediction performance in the

training cohort and validation cohort were depicted in Figure 5.

3.4.2 Calibration ability and clinical usefulness

The calibration curves of Clin-nom and C-Rad-nom in the validation cohort were

shown in Figure 6. The calibration curve was used to estimate the consistentency

between the nomogram-predicted probability of MVI and the actual outcomes. In

Figure 6, both nomograms showed good calibration. In contrast, the C-Rad-nom

predicted probability of MVI status was consistent with the actual MVI probability,

whereas Clin-nom performed worse than C-Rad-nom, with some deviation from the

actual predicted probability.

The decision curve analysis (DCA) evaluated the performance for the Clin-nom

and C-Rad-nom in terms of clinic-pathologic application, thereby, reflecting its

clinical usefulness. As the decision curve analysis shown in Figure 7, within the

probability of predicting MVI ranges of 0.1 to 0.8, there was more benefit from

the Clin-nom and C-Rad-nom compared with the treat-all-patients scheme or the

treat-none scheme. And if the threshold probability is greater than 0.18, the use of

C-Rad-nom predicted MVI in the vast majority of cases to be more beneficial in

patients using Clin-nom.

4 Discussion

We have established and verified nomogram based on Rad-score for preoperative

MVI prediction of HCC patients. When the Rad-score were combined with the clin-

ical predictors in the Clin-nom, the Clin-nom performance is significantly improved

(P<0.05), which indicates the incremental value of the Rad-score for the prediction

of individualized MVI of HCC. In addition, we combined the extracted PET and

CT radiomics features to build a C-Rad-nom to facilitate the individualized predic-

tion of preoperative MVI. The predicted calibration curve of the validation cohort

was consistent with the ideal curves, and the DCA indicated that the C-Rad-nom

had clinical usefulness in this study.

Tumor heterogeneity can be difficult to identify or quantify through traditional

imaging tools or subjective image evaluation. Radiomics may be a useful imaging

marker to improve the assessment and quantification of tumor spatial heterogene-

ity. The radiomics features are extracted and calculated by computer, and it is

very challenging to explain the radiomics features. It is difficult for us to select

biomarkers from thousands of radiomics features. The common way is to develop

a multi-features parameter for outcome estimation using the radiomics technique

[17, 21, 22]. In our research, we extract the radiomics features from PET/CT images,

screen out the most representative radiomics features through LASSO regression,

and linearly combine the corresponding coefficients to establish Rad-score, these

features are indicators of tumor texture characteristics. This article confirms that

Rad-score in MVI assessment has incremental value and proves that radiomics can

reflect intratumoral heterogeneity.
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There hasn’t reached a consensus on whether tumor size is an independent pre-

dictor in the HCC MVI assessment model. Previous studies [23, 24, 25, 26] have

reported that the tumor size of HCC was significantly different in MVI positive

and MVI negative groups. The results of the previous research [27] showed that

tumor diameter was only an independent factor of MVI in univariate analysis, but

this result doesn’t suit multivariate analysis. In order to better describe the effect

of tumor size on MVI, we proposed the clinical index of Max/Min-TD for MVI

prediction. In our experiment, the diameter of the tumor was determined based on

the integrated measurement of CT and PET examination images. In addition, we

verified that Max/Min-TD was also significant for the prediction of MVI.

Some studies [28, 29] have shown that there is a certain correlation between the

positive PET scan and MVI. The higher the malignant degree of tumor cells, the

lower the degree of dephosphorylation, and more 18F-FDG deposits in the cells.

Therefore, moderately and poorly differentiated HCC can usually show increased

18F-FDG uptake. In this study, 87.24% (793/909) of patients had been grade III-IV

HCC, and 82.84% (753/909) of HCC showed increased 18F-FDG uptake. Addition-

ally, research [13] has proved that 18F-FDG PET/CT positive is an independent

predictor of MVI, and the specificity and sensitivity to predict MVI was 73% and

62%, respectively. In this study, 18F-FDG uptake status is an independent factor

to predict MVI in HCC, which is consistent with previous research.

Nomograms incorporating multiple risk factors have been widely used to predict

medical outcomes and prognosis. In this study, age, Max/Min-TD and 18F-FDG

uptake status were independently related to MVI. When Rad-score was included in

the Clin-nom, the Clin-nom AUC in the validation cohort was significantly increased

from 0.849 to 0.890 (P<0.05). In addition, the DCA shows that more patients

will benefit from the C-Rad-nom rather than the Clin-nom, suggesting that the

Rad-score add incremental value to the clinical usefulness of clinical predictors.

Currently, models constructed with radiomics features such as ultrasound, contrast-

enhanced CT, and MRI had been used to predict MVI status [17, 20, 30]. When

compared with other reported models, our study demonstrated that the C-Rad-nom

(0.890[0.854,0.927]) showed the best performance. Our model has the potential to

assist physicians in preoperative HCC MVI diagnosis.

Our study has several limitations. Firstly, because of the relatively small sample

size, we used each slicer of the patient as a single subject in the study. Since we

are using 2D slices, we may lose some 3D features (such as volume of the tumor).

Secondly, our research lacked multi-center validation. Although the C-Rad-nom

proposed in this paper has been evaluated in an internal validation cohort with good

results, further validation from other centers is needed to evaluate the reliability

of our predicted nomograms. And the experiment was completely retrospective,

so it needs to be verified by a prospective study. Finally, our clinical data were

incomplete and lacked some important preoperative clinical predictors (incomplete

tumor capsule, high serum α-fetoprotein level), which may account for our decreased

model performance.

5 Conclusions

In conclusion, we established Rad-score based on PET/CT images of HCC patients,

which can be an important factor for predicting MVI. The C-Rad-nom, which com-
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bines the Rad-score and clinical predictors, showed better performance in MVI

detection compared with the Clin-nom. Thus, the C-Rad-nom had the potential to

predict MVI preoperatively, enabling a more appropriate surgical plan.
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Figure 1 Flow chart of enrolling the study population.
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Figure 2 Annotation schematics of ROI were performed using ITK-SNAP software with the red
portion of the figure as the manually outlined ROI. In the first row, CT (A) and PET (B) images
of a 65-years-old male patient with coarse beam HCC with MVI. In the second row, CT (C) and
PET (D) images for a 53-year-old male with coarse beam HCC without MVI.

Figure 3 Features selection used the LASSO regression model in the features group. (A) LASSO
coefficients produced by the regression analysis. As shown in (B), λ =0.0240 with log (λ) =
−3.728 was chosen according to 10-fold cross-validation, where optimal λ resulted in 45 non-zero
coefficients in the features group.

Figure 4 Nomograms were established to predict MVI for HCC patients. Clin-nom (A) and
C-Rad-nom (B) developed from the training cohort. “Points” refers to point for the individual risk
factor and add together to the “Total points”. “HCC MVI risk” was calculated according to the
“Total points”

Figure 5 ROC curves of the Clin-nom, Rad-score and C-Rad-nom derived from the training (A)
and validation (B) cohorts. The x-axis is the “1-Specifificity”, and the y-axis is “Sensitivity”. The
AUCs were also presented in Table 3, respectively.

Figure 6 Calibration curves of the Clin-nom and C-Rad-nom generated from the validation
cohort. The ordinate represents the actual probability of MVI while the abscissa represents the
nomogram-predicted probability of MVI. The diagonal dashed line means that the predicted
probability is equal to the actual probability and the more deviation from the diagonal indicates
the greater the error of prediction.

Figure 7 Decision curve analysis for Clin-nom and C-Rad-nom was established in the validation
cohort. The abscissa shows the threshold probability, while the ordinate shows the net benefit.
The gray line represents the assumption of all MVI positive cases, and the black line represents
the assumption of all MVI negative cases.

Tables

Table 1 Clinical characteristics in the training and validation cohorts

Variables
Training cohort(n=637) Validation cohort(n=272)

p
MVI+ MVI − MVI+ MVI −

Sex, no. (%) 1.000
male 313(92.1) 257(86.5) 130(89.7) 114(89.8)
female 21(7.9) 40(13.5) 15(10.3) 13(10.2)

Age (years), mean ± SD 55.21±11.3 52.68±10.82 54.50±10.80 51.61±10.17 0.270
Max/Min-TD, mean ± SD 3.26±0.82 1.90±0.54 3.07±0.81 2.10±0.67 0.901
18F-FDG uptake status, no. (%) 0.607

Negative 3(0.9) 108(36.4) 8(5.5) 44(33.6)
Positive 337(99.1) 189(63.6) 137(94.5) 83(65.4)

Tumor location, no. (%) 0.152
Right lobe of liver 278(81.8) 241(81.1) 125(86.2) 108(85.0)
Left lobe of liver 62(18.2) 56(18.9) 20(13.8) 19(15.0)

MVI+: MVI positive, MVI −: MVI negative.
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Table 2 Results of the univariate and multivariate logistic regression analyses based on the training
cohort

Univariate logistic regression analysis Multivariate logistic regression analysis
OR (95%CI) p OR (95%CI) p

Sex 1.804(1.083, 3.048) 0.025 0.510(0.204, 1.492) 0.2371
Age 1.021(1.007, 1.035) 0.004 1.083(1.053, 1.116) <0.05

18F-FDG
uptake status

64.190(23.771, 263.248) <0.05 53.021(13.579, 314.040) <0.05

Max/Min-TD 3.529(2.111, 6.109) <0.05 19.655(12.008, 34.197) <0.05
Tumor location 0.960(0.643, 1.435) 0.841 — —

Table 3 The AUC of Rad-score and nomograms for predicting MVI

Models Training cohort (N=637) Validation cohort (N=272)
AUC (95% CI) p AUC (95% CI) p

Lower Upper Lower Upper
Rad-score 0.903 0.881 0.926 0.806 0.756 0.856
Clin-nom 0.941 0.923 0.959 0.849 0.804 0.893
C-Rad-nom 0.962 0.949 0.976 0.890 0.854 0.927
Rad-score vs Clin-nom 0.002 0.133
Rad-score vs C-Rad-nom 0.000* 0.000∗

Clin-nom vs C-Rad-nom 0.000∗ 0.000∗

∗ Indicated p < 0.0001.
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