[1] Choi, B.H., Ohashi, H., 2003. Generic criteria and an infrageneric system for Hedysarum and related genera (Papilionoideae‐Leguminosae). Taxon 52, 567–576. https://doi.org/10.2307/3647455
[2] Annicchiarico, P., Abdelguerfi, A., Ben Younes, M., Bouzerzour, H., Carroni, A.M., Pecetti, L., Tibaoui, G., 2008. Adaptation of sulla cultivars to contrasting Mediterranean environments. Aust. J. Agric. Res. 59, 702–706. https://doi.org/10.1071/AR08001
[3] Chouaki, S., Bessedik, F., Chebouti, A., Maamri, F., Oumata, S., Kheldoun, S., Hamana, M.F., Douzene, M., Bellah, F., Kheldoun, A., 2006. Deuxième rapport national sur l’état des ressources phytogénétiques. INRAA/FAO/Juin.
[4] Azani, N., Babineau, M., Bailey, C.D., Banks, H., Barbosa, A.R., Pinto, R.B., Boatwright, J.S., Borges, L.M., Brown, G.K., Bruneau, A., Candido, E., Cardoso, D., Chung, K.F., Clark, R.P., Conceição, A.D.S., Crisp, M., Cubas, P., Delgado-Salinas, A., Dexter, K.G., Doyle, J.J., Duminil, J., Egan, A.N., De La Estrella, M., Falcão, M.J., Filatov, D.A., Fortuna-Perez, A.P., Fortunato, R.H., Gagnon, E., Gasson, P., Rando, J.G., Tozzi, A.M.G. de A., Gunn, B., Harris, D., Haston, E., Hawkins, J.A., Herendeen, P.S., Hughes, C.E., Iganci, J.R.V., Javadi, F., Kanu, S.A., Kazempour-Osaloo, S., Kite, G.C., Klitgaard, B.B., Kochanovski, F.J., Koenen, E.J.M., Kovar, L., Lavin, M., Roux, M. Le, Lewis, G.P., De Lima, H.C., López-Roberts, M.C., Mackinder, B., Maia, V.H., Malécot, V., Mansano, V.F., Marazzi, B., Mattapha, S., Miller, J.T., Mitsuyuki, C., Moura, T., Murphy, D.J., Nageswara-Rao, M., Nevado, B., Neves, D., Ojeda, D.I., Toby Pennington, R., Prado, D.E., Prenner, G., De Queiroz, L.P., Ramos, G., Filardi, F.L.R., Ribeiro, P.G., Rico-Arce, M.D.L., Sanderson, M.J., Santos-Silva, J., São-Mateus, W.M.B., Silva, M.J.S., Simon, M.F., Sinou, C., Snak, C., de Souza, É.R., Sprent, J., Steele, K.P., Steier, J.E., Steeves, R., Stirton, C.H., Tagane, S., Torke, B.M., Toyama, H., Da Cruz, D.T., Vatanparast, M., Wieringa, J.J., Wink, M., Wojciechowski, M.F., Yahara, T., Yi, T., Zimmerman, E., 2017. A new subfamily classification of the leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66, 44–77. https://doi.org/10.12705/661.3
[5] Kadi, S.A., Guermah, H., Bannelier, C., Berchiche, M., Gidenne, T., 2011. Nutritive value of sun-dried Sulla (Hedysarum flexuosum) and its effect on performance and carcass characteristics of growing rabbits. World Rabbit Sci. 19, 151–159. https://doi.org/10.4995/wrs.2011.848
[6] Julier, B., Huyghe, C. 2010. Quelles légumineuses fourragères (espèces et variétés) et quelles conduites pour améliorer l’autonomie protéique des élevages herbivores ? Innovations Agronomiques, INRAE, 2010, 11, pp.101-114. ffhal-02664740f
[7] Ben Fadhel, N., Boussaid, M., Marrakchi, M., 1997. Variabilité morphologique et isoenzymatique de populations naturelles maghrébines d’Hedysarum flexuosum L. Al Awami 96, 77–90.
[8] Ben Fadhel, N., Afif, M., Boussaïd, M., 2006. Structuration de la diversité génétique de Hedysarum flexuosum en Algérie et au Maroc. Implications sur sa conservation. Fourrages 186, 229–240.
[9] Sébastien, A., Mahamadou, D., Claude, E., Soumanou, T.S., Valentin, K., Brice, S., 2013. Evaluation of biomass production and nutritive value of nine Panicum maximum ecotypes in Central region of Benin. African J. Agric. Res. 8, 1661-1668. DOI:10.5897/AJAR12.2026
[10] Aliliche, K., Beghalem, H., Landoulsi, A., Chriki, A., 2016. Molecular phylogenetic analysis of Rhizobium sullae isolated from Algerian Hedysarum flexuosum. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 109, 897–906. https://doi.org/10.1007/s10482-016-0688-3
[11] Ezzakkioui, F., El Mourabit, N., Chahboune, R., Castellano‐Hinojosa, A., Bedmar, E.J., Barrijal, S., 2015. Phenotypic and genetic characterization of rhizobia isolated from Hedysarum flexuosum in Northwest region of Morocco. J. Basic Microbiol. 55, 830–837. DOI: 10.1002/jobm.201400790
[12] Kishinevsky, B.D., Nandasena, K.G., Yates, R.J., Nemas, C., Howieson, J.G., 2003. Phenotypic and genetic diversity among rhizobia isolated from three Hedysarum species: H. spinosissimum, H. coronarium and H. flexuosum. Plant Soil 251, 143–153. DOI:10.1023/A:1022967213088
[13] Struffi, P., Corich, V., Giacomini, A., Benguedouar, A., Squartini, A., Casella, S., Nuti, M.P., 1998. Metabolic properties, stress tolerance and macromolecular profiles of rhizobia nodulating Hedysarum coronarium. J. Appl. Microbiol. 84, 81–89. DOI: 10.1046/j.1365-2672.1997.00318.x
[14] De Lajudie, P.M., Andrews, M., Ardley, J., Eardly, B., Jumas-Bilak, E., Kuzmanović, N., Lassalle, F., Lindström, K., Mhamdi, R., Martínez-Romero, E., Moulin, L., Mousavi, S.A., Nesme, X., Peix, A., Puławska, J., Steenkamp, E., Stępkowski, T., Tian, C.F., Vinuesa, P., Wei, G., Willems, A., Zilli, J., Young, P., 2019. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int. J. Syst. Evol. Microbiol. 69, 1852–1863. https://doi.org/10.1099/ijsem.0.003426
[15] Squartini, A., Struffi, P., Döring, H., Selenska-Pobell, S., Tola, E., Giacomini, A., Vendramin, E., Velázquez, E., Mateos, P.F., Martínez-Molina, E., 2002. Rhizobium sullae sp. nov.(formerly’Rhizobium hedysari’), the root-nodule microsymbiont of Hedysarum coronarium L. Int. J. Syst. Evol. Microbiol. 52, 1267–1276. DOI: 10.1099/00207713-52-4-1267
[16] Chiboub M, Saadani O, Fatnassi CI, Souhir A, Jebara M, Harzalli Jebara S., 2016. Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals. C R Biologies. 339(9–10), 391–398. https://doi.org/10.1016/j.crvi.2016.04.015
[17] Muresu, R., Polone, E., Sulas, L., Baldan, B., Tondello, A., Delogu, G., Cappuccinelli, P., Alberghini, S., Benhizia, Y., Benhizia, H., 2008. Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol. Ecol. 63, 383-400. DOI: 10.1111/j.1574-6941.2007.00424.x
[18] Muresu, R., Porceddu, A., Sulas, L., Squartini, A., 2019. Nodule-associated microbiome diversity in wild populations of Sulla coronaria reveals clues on the relative importance of culturable rhizobial symbionts and co-infecting endophytes. Microbiol. Res. 221, 10–14. https://doi.org/10.1016/j.micres.2019.01.004
[19] Sablok, G., Rosselli, R., Seeman, T., van Velzen, R., Polone, E., Giacomini, A., La Porta, N., Geurts, R., Muresu, R., Squartini, A., 2017. Draft Genome Sequence of the Nitrogen-Fixing Rhizobium sullae Type Strain IS123T Focusing on the Key Genes for Symbiosis with its Host Hedysarum coronarium L. Frontiers in microbiology, 8, 1348. https://doi.org/10.3389/fmicb.2017.01348
[20] de Diego-Diaz, B., Treu, L., Campanaro, S., da Silva Duarte, V., Basaglia, M., Favaro, L., Casella, S., Squartini, A., 2018. Genome Sequence of Rhizobium sullae HCNT1 Isolated from Hedysarum coronarium Nodules and Featuring Peculiar Denitrification Phenotypes. Genome announcements, 6(4), e01518-17. https://doi.org/10.1128/genomeA.01518-17
Beghalem, H., Aliliche, K., Chriki, A., et al. (2017). Molecular and phenotypic characterization
of endophytic bacteria isolated from Sulla nodules. Microbial Pathogenesis, 111, 225–231.
Beghalem, H., Aliliche, K., Chriki, A., et al. (2017). Molecular and phenotypic characterization
of endophytic bacteria isolated from Sulla nodules. Microbial Pathogenesis, 111, 225–231.
[21] Beghalem, H., Aliliche, K., Chriki, A., Landoulsi, A., 2017. Molecular and phenotypic characterization of endophytic bacteria isolated from sulla nodules. Microbial pathogenesis, 111, 225–231. https://doi.org/10.1016/j.micpath.2017.08.049
[22] Howieson, J.G., Dilworth, M.J., 2016. Working with rhizobia. Australian centre for international agricultural research Canberra.
[23] Somasegaran, P., Hoben, H.J., 1994. Quantifying the growth of rhizobia, in: Handbook for Rhizobia. Springer, pp. 47–57. https://doi.org/10.1007/978-1-4613-8375-8_5
[24] Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. DOI: 10.1006/abio.1976.9999
[25] Ben Mrid, R., Omari, R.E., Nhiri, M., 2016. Effect of nitrogen source and concentration on growth and activity of nitrogen assimilation enzymes in roots of a moroccan sorghum ecotype. Plant 4, 71–77.
[26] Zerhari, K., Aurag, J., Khbaya, B., Kharchaf, D., Filali‐Maltouf, A., 2000. Phenotypic characteristics of rhizobia isolates nodulating Acacia species in the arid and Saharan regions of Morocco. Lett. Appl. Microbiol. 30, 351–357.DOI: 10.1046/j.1472-765x.2000.00730.x
[27] Busse, M.D., Bottomley, P.J., 1989. Growth and nodulation responses of Rhizobium meliloti to water stress induced by permeating and nonpermeating solutes. Appl. Environ. Microbiol. 55, 2431–2436.DOI: 10.1128/aem.55.10.2431-2436.1989
[28] Chen, W., Kuo, T., 1993. A simple and rapid method for the preparation of gram- negative bacterial genomic DNA. Nucleic Acids Res. 21, 2260. https://doi.org/10.1093/nar/21.9.2260
[29] Laguerre, G., Nour, S.M., Valérie, M., Sanjuan, J., Drouin, P., Amarger, N., 2001. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 981-993. DOI: 10.1099/00221287-147-4-981
[30] Weisburg, W.G., Barns, S.M., Pelletier, D.A., Lane, D.J., 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703. DOI: 10.1128/jb.173.2.697-703.1991
[31] Martens, M., Delaere, M., Coopman, R., De Vos, P., Gillis, M., Willems, A., 2007. Multilocus sequence analysis of Ensifer and related taxa. Int. J. Syst. Evol. Microbiol 57, 489-503.DOI: 10.1099/ijs.0.64344-0
[32] Martens, M., Dawyndt, P., Coopman, R., Gillis, M., De Vos, P., Willems, A., 2008. Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int. J. Syst. Evol. Microbiol 58, 200-214. DOI: 10.1099/ijs.0.65392-0
[33] Vinuesa, P., Silva, C., Werner, D., Martínez-Romero, E., 2005. Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol. Phylogenet. Evol. 34, 29–54. https://doi.org/10.1016/j.ympev.2004.08.020
[34] Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054
[35] Saitou, N., Nei, M., 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 406-425. DOI: 10.1093/oxfordjournals.molbev.a040454
[36] Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120. https://doi.org/10.1007/BF01731581
[37] Wei, G.H., Tan, Z.Y., Zhu, M.E., Wang, E.T., Han, S.Z., Chen, W.X., 2003. Characterization of rhizobia isolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau of China and description of Rhizobium loessense sp. nov. Int. J. Syst. Evol. Microbiol. 53, 1575–1583.DOI: 10.1099/ijs.0.02031-0
[38] Rogel, M.A., Ormeño-Orrillo, E., Martinez Romero, E., 2011. Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst. Appl. Microbiol. 34, 96–104. https://doi.org/10.1016/j.syapm.2010.11.015
[39] Yates, R., Howieson, J., De Meyer, S.E., Tian, R., Seshadri, R., Pati, A., Woyke, T., Markowitz, V., Ivanova, N., Kyrpides, N., 2015. High-quality permanent draft genome sequence of Rhizobium sullae strain WSM1592; a Hedysarum coronarium microsymbiont from Sassari, Italy. Stand. Genomic Sci. 10, 1-6. doi: 10.1186/s40793-015-0020-2
[40] Elboutahiri, N., Thami-Alami, I., Zaid, E.-H., Udupa, S.M., 2010. Physiological and genetic diversity in Rhizobium sullae from Morocco, in: Sustainable Use of Genetic Diversity in Forage and Turf Breeding. Springer, pp. 85-88.
https://hdl.handle.net/20.500.11766/8430
[41] Salis M., Carroni A.M., Longu A., Manunza P., Pitzalis M., 2010. Characterization and Preliminary Evaluation of Hedysarum coronarium L. Ecotypes in Mediterranean Environment. In: Huyghe C. (eds) Sustainable use of Genetic Diversity in Forage and Turf Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8706-5_21
[42] Córdoba, E.M., Nadal, S., Román, B., González-Verdejo, C.I., 2013. Collection, characterization and evaluation of wild Hedysarum coronarium L. populations from Andalusia (southern Spain). Australian Journal of Crop Science. 7, 165-172. https://search.informit.org/doi/10.3316/informit.260584659060803
[43] Benhizia, Y., Benhizia, H., Benguedouar, A., Muresu, R., Giacomini, A., Squartini, A., 2004. Gamma proteobacteria can nodulate legumes of the genus Hedysarum. Syst. Appl. Microbiol. 27, 462–468. DOI: 10.1078/0723202041438527
[44] Sbabou, L., Regragui, A., Filali-Maltouf, A., Ater, M., Béna, G., 2016. Local genetic structure and worldwide phylogenetic position of symbiotic Rhizobium leguminosarum strains associated with a traditional cultivated crop, Vicia ervilia, from Northern Morocco. Syst. Appl. Microbiol. 39, 409-417. DOI: 10.1016/j.syapm.2016.06.005
[45] Tondello, A., Villani, M., Alessandrini, A., Baldan, B., Squartini, A., 2011. Identification of the root nodule symbiont of the rare legume species Hedysarum confertum Desf. (Hedysarum humile L.) in its Italian relictual site. Plant Biosyst. Int. J. Deal. with all Asp. Plant Biol. 145, 901–905. https://doi.org/10.1080/11263504.2011.633109
[46] Torche, A., Benhizia, H., Rosselli, R., Romoli, O., Zanardo, M., Baldan, E., Alberghini, S., Tondello, A., Baldan, B., Benguedouar, A., 2014. Characterization of bacteria associated with nodules of two endemic legumes of Algeria, Hedysarum naudinianum and H. perrauderianum. Ann. Microbiol. 64, 1065–1071. https://doi.org/10.1007/s13213-013-0745-3
[47] Ahemad, M., Kibret, M., 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J. King saud Univ. 26, 1–20. https://doi.org/10.1016/j.jksus.2013.05.001
[48] Gamalero, E., Glick, B.R., 2015. Bacterial modulation of plant ethylene levels. Plant Physiol. 169, 13–22.DOI: 10.1104/pp.15.00284
[49] Fitouri, S.D., Trabelsi, D., Saïdi, S., Zribi, K., Jeddi, F. Ben, Mhamdi, R., 2012. Diversity of rhizobia nodulating sulla (Hedysarum coronarium L.) and selection of inoculant strains for semi-arid Tunisia. Ann. Microbiol. 62, 77–84. https://doi.org/10.1007/s13213-011-0229-2
[50] Jordan, D.C. 1984 Family III. Rhizohiaceae Conn (1938), in: Krieg, N.R., Holt, J.G. (Eds.), Bergey’s Manual of Systematic Bacteriology, vol. 1, Williams & Wilkins, pp. 234–254.
[51] Amarger, N., Macheret, V., Laguerre, G., 1997. Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int. J. Syst. Bacteriol. 47, 996–1006. DOI: 10.1099/00207713-47-4-996
[52] Quispel, A. 1988. Hellriegel and Wilfarth’s discovery of (symbiotic) nitrogen fixation one hundred years ago. In: Bothe, H., de Bruijn, F.J., Newton, W.E. (Eds.), Nitrogen Fixation: One Hundred Years After, Gustav Fisher, pp. 3–12.
[53] Radeva, G., Jurgens, G., Niemi, M., Nick, G., Suominen, L., Lindstrom, K. (2001) Description of two biovars in the Rhizobium galegae species: biovar orientalis and biovar officinalis. Syst. Appl. Microbiol. 24, 192–205. DOI: 10.1078/0723-2020-00029