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Abstract

To choose between options of different natures, standard decision models presume that a single
representational system ultimately indexes their subjective value on a common scale, regardless of how
they are constructed. To challenge this assumption, we systematically investigated hybrid decisions
between experiential options, whose value is built from past outcomes experience, and symbolic options
which describe probabilistic outcomes. We show that participants' choices exhibited a pattern consistent
with a systematic neglect of the experiential values. This normatively irrational decision strategy held
after accounting for alternative explanations, and persisted when it bore an economics cost. Overall, our
results demonstrate that experiential and symbolic values are not symmetrically considered in hybrid
decisions, suggesting that they are not commensurable and recruit different representational systems
which may be assigned different priority levels in the decision process. These findings challenge the
dominant models commonly used in value-based decision-making research.

Introduction

Standard models of economic decision-making generally assume a two-step decision process, where
individuals identify and assign values to available options, and ultimately pick the option with the highest
subjective value (1-3). The values attributed to individual options can derive from different sources. On
the one hand, a priori neutral stimuli acquire positive or negative experiential values after association with
past outcomes (rewards and punishments) (4-6). On the other hand, the explicit description of an
option’s possible outcomes and their probabilities are combined to form a subjective expected value (7-
10). Such explicit descriptions may take many different forms, including written language (from simple
vignettes to fully specified numerical variables), a symbolic code communicating the decision variables
(payoffs and probability) in an unambiguous manner, or a combination of the two (11).

In the standard two-step model, the way option values are built (via experience or description) is only
peripheral to the decision process itself, meaning that experiential and symbolic values converge to a
central valuation and decision-making system (3, 12-16). Thereby, choices between experiential and
symbolic options should present no particular challenge, because their values are translated into an
internal common currency, allowing an unbiased comparison between these differently generated option
values. This normative point of view is indirectly supported by the fact that the neural correlates of
experiential and symbolic values largely overlap in the so-called brain valuation system (17-20).

However, several lines of evidence in behavioral decision-making research question the idea of a central
valuation system. In fact, it is now a very well established that, when studied separately, experience-based
and description-based choices display different properties: a phenomenon referred to as the description-
experience gap (21-24). This difference in the subjective valuation of experiential and symbolic options
poses a direct, theoretical challenge to the idea of a central valuation system (25). This rather suggests
the existence of modality-specific valuation systems, relying on distinct cognitive representations, which
would hinder, if not impede, the comparison between experiential and symbolic options
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Strikingly, this key prediction has not been directly assessed, because studies usually consider separate
sets of decision problems for experiential and symbolic options (26, 23). Thereby, to date, very little
experimental evidence has formally assessed the commensurability of experiential and symbolic option
values, nor their mapping into a central or different valuation systems (27, 28). This is particularly
problematic considering that hybrid choices seem to be the norm rather than the exception in our modern
societies where descriptive information is omnipresent. For example, everyday situations like choosing
between our favorite restaurant (experience) and a new one with good review (description) is a
prototypical example of such a hybrid decision.

To fill this gap and challenge the commensurability of experiential and symbolic values, we designed a
new behavioral protocol. The experiment started with a learning phase during which human participants
repeatedly faced abstract cues paired with probabilistic outcomes, thereby learned to associate
experiential expected-values to the originally neutral symbols. After this phase, participants were asked to
make hybrid choices between the experienced symbols and described lotteries visualized as colored pie-
charts (a standard way to represent value symbolically) (11). When making hybrid choices, participants
treated the two kinds of options asymmetrically and, specifically, were neglecting experiential values. This
asymmetry was robust across seven experiments, where we controlled for many possible alternative
explanations, such as, insufficient learning, generalization issues or lack of incentives. Overall, the relative
neglect of an option’s value conditional on its source is consistent with the idea that different types of
values — such as experiential and symbolic — may involve different representational systems, resulting in
their incommensurability.

Results

We conducted a series of experiments structured in two main phases, one allowing the formation of
subjective values from the experience of past outcomes, and a second where these experiential options
(E-options) were presented against options whose subjective values were described by symbolic means
(S-options) (Fig. 1A). During the first (or learning: LE) phase, E-options were materialized by abstract
shapes that provided no explicit information concerning the expected value (EV) of the option. During the
LE choices, E-option values could therefore only be inferred from the history of gains (+ 1 point) and
losses (-1 point) associated to a specific cue. E-options were presented in four fixed pairs, each featuring
an EV-maximizing and an EV-minimizing option. Subsequently, in the Experiential-Symbolic (ES) phase,
subjects were asked to make choices between the very same E-options of the previous phase and pie-
charts explicitly describing the associated probabilities of gain and loss. As these ES, “hybrid” choices are
the main focus of this paper, we thereafter delineate three plausible hypotheses concerning the
behavioral output of this phase.

First, assuming that the subjective values of the E- and S-options are mapped into a common scale
(common currency hypothesis), subjects should make unbiased decisions in the ES phase. Accordingly,
the probability of choosing, say, the E-option, will be jointly determined by the EV of the E- and the S-
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option (Fig. 1B: left). In other terms, for a given E-option the inferred indifference point will precisely
correspond to S-options with equal EV.

Alternatively, the possibility that subjective values are constructed and represented in a modality-specific
way (representational gap hypothesis) entails that E- and S-options are not readily commensurable. This
situation could lead to two possible scenarios. In one of them, participants make random choices in the
ES-phase. In the other scenario participants could prioritize one of the two sources of information. Within
this scenario, participants could resolve the tension between E- and S-options basing their choices
primarily on the explicit symbolic values provided by the lotteries. In other terms, subjects would pick the
lottery, when positive, and reject it when negative, as if the E-option values were neglected and regressed
to zero (experiential value neglect; Fig. 1B: mid). In the other case, subjects would present an over-reliance
on experiential values and would display the opposite pattern: accept or reject an E-option without
considering the S-option value (symbolic value neglect, Fig. 1B: right). Crucially, the ES phase of our
experiments allows to tease apart these different scenarios by analyzing the probability of choosing an E-
option as a function of the S-option being presented. More precisely, taking each E-option separately and
uncovering the S-option (value) at which a preference shifts from the former to the latter provides us with
an estimate of how much a participant values an E-option. Quantifying the relation between E-options
and S-options boils down to inferring indifference points (i.e., when the probability of choosing one option
over the other is 50%) which acts as proxies of subject E-option values (Fig. 1B: insets).

First evidence for the experiential value neglect scenario

In the LE phase of the first experiment (N = 76), we presented pairs of E-options in an interleaved manner
(i.e., E-option pairs are distributed randomly in the sequence of trials) and we displayed only the outcome
of the chosen option (partial feedback) (Fig. 2A, Exp. 1). Apart from the most difficult learning context
(60/40), choice accuracy was above chance level for all E-option pairs (T(75) = 1.5, P>.05; T(75) = 10.98,
P <0.001), thus indicating that subjects aimed at (and managed to) maximize expected value.
Furthermore, accuracy was modulated by the difference in expected value (i.e., the decision value) of the
E-option pair. Choice accuracy increased as a function of the decision value (8 =0.077, T(300) =2.16, P <
0.05;3=0.08, T(300) =2.35,P<0.05; 3=0.21, T(300) = 5.94, P < 0.001), thus indicating that subjects’
behavior was sensitive to the specific EV of E-options involved in a given pair.

Regarding analysis of the ES phase, the probability of choosing an E-option in an ES decision was largely
determined by the S-option EV-value and the preference shift abruptly occurred around S-option EV equal
to zero (i.e., P(+ 1) =P(-1) = 0.5). Despite clear proofs of successful value learning and encoding during
the LE phase, ES phase-choice pattern was clearly consistent with the experiential value neglect scenario.
(Fig. 2B: left).

To quantify and statistically compare the differences in preferences observed in the LE and the ES phase,
we first estimated the theoretical subjective value of each E-option separately for the two choice types,
proxied by its probability of winning a point: p(win) (remind that the outcomes are fixed, so the expected

value of different options only depend on their probabilities to win). Concerning the LE phase, we
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leveraged on a classical associative learning approach, where we assumed p(win) to be iteratively
updated as a function of a prediction error-minimizing learning rule (30, 31, 6). We were able to infer
p(win) attributed to each E-option at the end of the learning process by fitting this, rather parsimonious
and standard, model.

Concerning the ES phase, subjective p(win) estimates were inferred using the following method: the
probability of choosing a specific E-option over a S-option of various expected values was assumed to
take the form of a logistic sigmoid function. We fitted those logistic functions to each E-option and
subject, and used them to extrapolate the indifference points indexing E-options’ subjective p(win).

Finally, to compare the overall valuation of the E-options in the LE and the ES phases, we computed a
measure of how well the subjective p(win) estimates from each phase matched the objective underlying
probabilities, using slopes estimates from linear regressions.

At this aggregate level, a slope equal to 1 corresponds to an unbiased representation of E-options’ p(win),
whereas a slope equal to 0 corresponds to random representations. In our data, the slopes estimated
from the LE phase were significantly higher and closer to 1 compared to those estimated from ES-choices
(T(75) = 6.53, P<.001) (Fig. 2C: left). Thus, ES decision problems feature a specific neglect of E-option
values, as if hybrid choices prioritized the value of the symbolic options over an unbiased comparison of
experiential and symbolic values, thereby confirming the experiential neglect hypothesis.

We ruled out a first trivial interpretation for this result, by only including in the analyses subjects that
performed at 100% of correct response in catch trials (i.e. trials involving choices between two S-options;
see Supplementary Materials), disseminated across the ES phase to ensure the subjects’ capacity to
understand the symbolic representation of the probabilities.

In the following sections of the paper, we provide additional evidence in favor of the experiential neglect
hypothesis by progressively ruling out alternative interpretations via additional measures and
experiments.

Ruling out insufficient learning and forgetting

While the experiential neglect pattern observed in the ES phase is consistent with the idea that E-options
and S-options are not equally considered in the decision process, it is also consistent with a much more
trivial hypothesis: insufficient learning. Despite reinforcement learning model fitting suggesting otherwise
(see Fig. 2C: left), it is indeed possible that the neglect of E-option in the decision is caused by an
imperfect and noisy E-option value representations at the end of the learning phase. To rule out this
alternative interpretation, we devised a series of experiments where we changed the LE phase in order to
improve learning, while keeping the (average) option values the same. In a second experiment (Exp.2; N =
71), we therefore presented decision problems as blocks (rather than interleaved as in Exp.1), so as to
improve performance and option identification by preventing the saturation of working memory (32).In a
third experiment (Exp.3; N = 83), we additionally provided the information concerning the unchosen option
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(complete feedback — a manipulation known for increasing accuracy (Palminteri et al., 2015; Bavard,
2021). Finally, on top of these variations, in a fourth experiment (Exp.4; N = 88) we also reduced the
number of decision problems of the LE phase to two, such that each decision problem was presented for
twice as many trials as in experiments 1-3, thereby reducing the uncertainty about the options’
outcomes. These manipulations were successful in significantly increasing decision accuracy in the LE
phase (Exp1: 0.66 + 0.01; Exp2: 0.71 +0.01, 3=0.05,T(314) =2.28, P< 0.05; Exp3: 0.82+ 0.01, 3 =0.16,
T(314)=7.17,P<0.001; Exp4: 0.79+0.01; 3=0.13, T(314) = 5.8, P<0.001), while avoiding ceiling
performance issues. Indeed, even in the easiest experiments, accuracy was still significantly modulated
by the decision values; for instance, the accuracy in the more difficult decision problem (60/40) was
always lower compared to the easiest one ('90/10°) (T =5.81, P<0.001; T = 8.81, P<0.001).

Crucially, the remarkable increase in the LE phase accuracy of the new experiments (107% - 124% of
Exp.1) was not paralleled by detectable qualitative differences in ES phase choice patterns (Fig. 2B). In
other terms, the experiential value neglect persists despite the uncertainty concerning the E-options’
values being considerably reduced (via blocked design, complete feedback and increasing the number of
trials per decision problem).

To quantitatively characterize this claim, we estimated the subjective p(win) for each E-option separately
for the LE and the ES phases and fitted a linear regression between the estimated subjective p(win) and
their true values (as described above). Confirming the efficiency of our manipulations in increasing
learning performance, the LE-inferred slopes increased significantly across experiments (Exp. 2: 8 =0.11,
T(942) =5.98, P=0.055; Exp. 3: B=0.28, T(942) = 6.5,P<0.001;; Exp. 4: B=0.31,T(942) =7.27,P<
0.001). Critically, the ES slopes were not modulated across experiments aside from Exp. 4 (Exp. 2: B=-0.1,
T(942)=-1.76,P=0.07; Exp. 3: =0.02, T(942) =6.5,P=0.67;; Exp. 4: B=0.11, T(942) = 2.06, P < 0.05)
(Fig. 2D). Overall, LE-inferred slopes were significantly higher than the ES slopes in all experiments (Exp.
2:T(70)=11.74,P<0.001; Exp. 3: T(82) = 15.8, P< 0.001; Exp. 4: T(87) = 11.64, P < 0.001; Fig. 2E), and the
asymmetric effects of the manipulations on the LE versus ES phases translated into a significant
interaction between the choice modality (ES and LE) and the experiment number (Exp. 2: B=-0.21,
T(942)=-2.58, P <0.05; Exp. 3: B=-0.26, T(942)=-3.29, P<0.01;; Exp. 4: =0.2, T(942) =2.57, P< 0.05).

The comparison between the first four experiments suggests that experiential value neglect is not a mere
effect of insufficient learning. We indeed observe that an improved performance in the learning phase
does not translate into a similar decrease of the experiential value neglect effect. However, independently
of the quality of learning, it is also theoretically possible that subjects forgot the E-option values when
entering the ES hybrid choice phase, although the fact that the ES phase directly succeeded the LE
phases within a matter of seconds makes it improbable. To rule out this possibility, in Exp. 1-4, we asked
subjects to evaluate the E-options’ p(win) just after the ES phase, by implementing a fully incentivized
stated probability (SP) procedure (35). More precisely, subjects were explicitly asked to rate the
probability of winning a point they attribute to an E-option, by means of a numerical rating scale

(Fig. 1D).
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We then evaluated the quality of the E-option memory retention by regression these stated probabilities
against their true values. Note that because this elicitation happens afterthe ES phase, this SP-inferred
slopes constitutes a lower bound of how well E-option values are learned and could be recovered during
the ES phase. Yet, the SP-inferred slopes were systematically higher than the ES-inferred slopes and
significantly so in Exp. 2, 3, 4 (Exp. 1: T(75) =2.62, P >0.05; Exp. 2: T(70) = 3.42, P < 0.05; Exp. 3: T(82) =
4.38,P<0.001, Exp. 4: T(87) =4.87, P<0.001). Therefore, E-options’ values elicited during the SP phase
were more accurate than those elicited in the preceding ES-phase. This observation rules out forgetting as
a plausible interpretation of the apparent experiential value neglect pattern observed in the ES phase.

Ruling out generalization issues and assessing the robustness to practice

The above-reported results from 4 experiments and 3 preference elicitation methods indicate that the
experiential value neglect phenomenon cannot be accounted for by insufficient learning nor by mere
forgetting. In the present section we rule out two additional alternative explanations. First, it should be
noted that the ES phase involves a generalization process, because the E-options are extrapolated from
the decision context where their subjective values are originally learned. It is therefore conceivable that
the apparent experiential value neglect is spuriously created by a generalization problem. Second, in the
previously reported experiments, subjects went through the different phases (LE, ES and SP) only once:
perhaps subjects were somehow taken by surprise by the ES phase. In that case, presenting them
different phases of the experiment twice will possibly allow them to improve their decisions by
anticipating the ES-phase (36).

To control for generalization and practice, we run two additional experiments. In experiment 5 and
experiment 6 (N=71 and N = 66), after the learning phase, we interleaved the ES-choices with choices
involving E-options presented in all possible combinations (referred to as EE-choices). Thus, in all cases
except one, EE-choices required being able to generalize their value to new decision problems. As in ES-
choices, we plotted the probability of choosing a given E-option as a function of the alternative E-option
(Fig. 3B). To check whether experiential value neglect disappears if participants are given the opportunity
to learn how to make ES decisions, Exp. 6 included a second session where we repeated all phases (LE,
ES, ES and SP). Of note, E-options in the second sessions were materialized by a new set of symbols.

EE-choices curves revealed that subjects were capable of successfully extrapolating the value of the E-
options to new decision problems involving other E-options. On the other side, the ES-choices were
consistent with experiential values neglect, thus replicating the previous experiments (of note, the LE-
phase of Exp. 5 and Exp. 6 presented the same characteristics as that of Exp.3: complete feedback and
block design) (Fig. 3A).

To formally assess the difference between EE- and ES-choices, we calculated for each subject their
option-specific indifference points, following the same procedure used for ES-choices and we compared
the inferred slopes across decision modalities. EE-inferred slopes were consistently significantly higher
than ES slopes in both Exp.5 and Exp.6 (Exp. 5: T(70) =4.5, P<0.001; Exp 6.1: T(65) =4.08, P<0.001).
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Being presented with the whole experiment a second time had no detectable effect in choice behaviorin
neither the EE- or the ES-phase. Indeed, we observe no significant increase in the slopes in neither ES- (B =
0.04, T(260) = 0.84, P = 0.4) nor EE- choices (3=0.1, T(260) = 1.59, P =0.11) and the ES-inferred slopes
were still significantly smaller compared to EE- ones (Exp. 6.2: T(65) =5, P<0.001). This suggests that
being exposed with the whole experiment one time and, by doing so giving participants the possibility to
adjust the decision strategy does not affect the main results.

Experiential value neglect persists even when it bears an economic cost

Analysis of choice behavior in the ES show that learned values of the E-options are largely neglected, as if
subjects were deciding on the basis of the value of the S-options only, and this despite the fact
performance in the LE, SP and EE-choices indicate that E-option values are well learned and memorized.
Neglecting experiential values seems, at least prima facie, suboptimal for the decision process, as taking
into account all relevant information is considered a hallmark of normative behavior (37, 38). However, if
E-option information processing (e.g. memory access/retrieval) is costly or if neglecting E-options does
not hinders decision performance dramatically, it may become rational to do so (39-41).

To evaluate this possibility, we simulated choices based on an extreme version of the experiential neglect
rule: if an S-option has positive expected value, choose it, otherwise choose the E-option. These
simulations show that, applied to the decision problems of the ES phase from experiments 1-to-6,
extreme experiential neglect still generates 77% of expected-value maximizing choices. This result is
actually not as counterintuitive as it initially appears: by design, a positive lottery is the most
advantageous option in = 50% of the decision problems in which it appears, and the converse is true for
the negative expected value lotteries. These considerations suggest that, instead of representing an
intrinsic cognitive limitation of value-based decision-making, the experiential value neglectis a rational
heuristic strategy deployed by efficient (or lazy) decision-makers maximizing an accuracy-effort trade-off
(42-45).

In order to test this new interpretation of the results, we designed a new experiment (Exp. 7) where we
reorganized E- and S-options probabilities in a way that makes neglecting experiential values
economically disadvantageous (Fig. 4A). In this new configuration, the narrower range of S-option values
are nested within the broader E-option values, so that any given S-option has a higher expected value
compared to the 4 negative E-options, and a lower expected value compared to the 4 positive E-options.
Such configuration guarantees that subjects neglecting E-option values in the ES-phase will exhibit a
chance-level choice accuracy (50% of expected value maximizing choices). Except for the modification of
the lotteries, Exp 6 present the exact number of trials.

Despite this stronger economic incentive, the behavioral pattern in ES-phase remained consistent with the
experiential value neglect scenario (Fig. 4B). The significant difference between ES and EE slopes
persisted in Exp. 7 (T(70) = 5.12, P<0.001), suggesting that despite the reorganization of probabilities, we
were still able to elicit more accurate E-option values from EE-choices (Fig. 4F, Fig. 4G). As a

consequence, compared to Exp. 6, the accuracy in the ES-choices significantly dropped in Exp 7 by
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approximately 20% (T(94.97) =11.01, P<.001, Fig. 4C). Of note, the accuracy in the EE-choices remained
the same (Fig. 4D, Fig. 4E), with no significant difference between the two experiments (T(131.77) = 0.38,
P=1,BF" =0.19).

These findings indicate that experience values are neglected even when it involves an (economic) cost.
Therefore, the results are consistent with the idea that the experiential value neglect reflects a hard-coded
feature of hybrid choices between experiential and symbolic option, rather than being strategically
deployed by the relative lack of incentive in Exp1-6.

Controlling for ambiguity aversion

E-options may be deemed more ambiguous, because their outcome probability distributions are inferred
from finite samples and cannot been known with absolute precision or certainty. Experiential value
neglect cannot be accounted by a simple form of ambiguity aversion (46-48), because E-options are
generally preferred compared to negative expected value S-options (i.e., there is no systematic bias
against E-options). Nonetheless, to assess whether the participant’s attitude toward ambiguous lotteries
differed between experiential and symbolic options in a final experiment we included choices with
ambiguous lotteries (i.e., lotteries, whose value was hidden). The results (presented in the Supplementary
Materials and Figure S1) indicate that ambiguity aversion was not detectable in our set up and that it
could therefore not contribute to explain the observed pattern of behavior. The results of Exp 8 also
replicate all previously reported findings.

Reaction times analysis: a tale of two systems?

Choice behavior differ across the ES- and the EE-choices. In the ES-phase, participants neglect the
experiential option value and to make choices only based on the symbolic option value, so that, if the S-
option is positive, it is chosen, otherwise it is rejected (Fig. 5A). On the other hand, EE-choices are based
on the retrieval from memory of the experiential values of both options. Thus, one decision process (ES-
choices) seems to involve the processing and representation of only one option value (the lottery), while
the other process (EE-choices) seems to involve the processing and the representation of two option
values. We hypothesized that these different processes translate into different reaction times between the
two choice modalities. To test this prediction, we compared the reaction times in EE and ES-choices, while
including only decisions with similar objective value difference (49). Indeed, we found that ES decisions
were faster compared to EE decisions, both when the S-option is chosen - (ES,) and when the E-option is
chosen —-(ES,) (T(136) =6.02, P<0.001; T(136) = 3.98, P<0.001; Fig. 5B and Fig. 5C). Of note, within ES
decisions, ES, choices were also slightly but significantly slower the ES choices (~ 50ms; T(136) = 4.35,
P <0.001), which may indicate that choosing the E-option requires additional processing to retrieve and
represent the value of the E-option. To confirm this intuition, we considered two categories of ES-choices:
choices exclusively consistent with the subject choosing using the estimates inferred from the LE phase,
on one side, and choices consistent with a full experiential value neglect, on the other side (Fig. S5). We
observed that, in conformity with previous results, ES-choices that are consistent with a full experiential
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value neglect are significantly faster than choices that can only be explained taking into account the E-
option values estimated from the LE-phase (T(386) = 2.27, P <0.05) (Fig. 5D). Overall, the RT analyses
support the idea that choices based on the S-values of the lotteries required reduced cognitive processing
compared to those involving the retrieving from memory. Thus, E-values inferred from ES-choices are
consistent with the dual process model of Fig. 5A.

Discussion

Our results clearly indicate that the experiential and symbolic option values are not treated symmetrically
when making hybrid choices and speak against the idea of a central valuation system that encodes
option values in a common currency, regardless of the way they are built (3, 12). The key finding
supporting this claim is provided by the analysis of hybrid decision problems between experiential and
symbolic cues, where choices appeared to be made by largely neglecting value information acquired
during the learning phase. Crucially, by running several experiments and including multiple control
measures, we ruled out several alternative explanations for of the experiential value neglect: this decision-
making pattern is not due to insufficient learning, forgetting, generalization issue, or a lack of incentive.
Finally, reaction time analyses are consistent with different processing of experiential and symbolic
values and with the idea of an additional cognitive cost associated with the memory retrieval of learned
values. It seems that past experiences and symbolic descriptions of possible outcomes ultimately
generate value representations different enough to make them largely incommensurable and that the
tension between the two is resolved by overweighting (or prioritizing) symbolic information. In the
following paragraphs we try to provide plausible reasons why these values representations radically
differ, why symbolic information is favored in hybrid choices and which cognitive mechanisms could
underly the behavioral pattern observed.

Symbolic descriptions of lotteries in our task (and in general) involve separate information about at least
two different features of outcomes: payoffs (i.e., the amount of reward to be won or lost) and their
probability (50). Models of decision-making designed to explain behavior in this kind of paradigms
frequently assume that probability and payoffs are processed individually. For instance, in prospect
theory and its extensions, different subjective weighting functions are supposed to apply to these
variables (51-53, 14, 54). A separate representation of payoffs and probabilities is also assumed by
models that do not suppose the calculation of a multiplicative expected utility (55) and by models
supposing that decisions are underpinned by feature-by-feature comparisons (56—60). On the contrary,
experience-based choices, as instantiated by simple reinforcement learning tasks, are usually modeled
assuming that the decision-makers represents a unique numeric value for each state-action pair. The
decision-maker can ‘look-up’ in this value matrix before making their choice and, once an outcome is
obtained it partially overwrites the ‘cached’ values previously stored in memory, so that they approximate
the average outcome (61). Option value representation is therefore structurally very different from that of
description-based choices, because the relevant features (payoffs and probabilities) are never explicitly
represented as separate attributes of the outcomes. Furthermore, some authors even suggest that

reinforcement-based choices may bypass the calculation of reward-based option-specific values, and is
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underpinned by what is called direct policy learning (62-65). Our results seem to reject an extremely
orthodox interpretation of direct policy learning (accuracy in the learning phase was sensitive to the value
difference between options and experiential values were successfully generalized to new combinations).
It is nonetheless plausible to conceive that - at least to some extent - reinforcement-based decisions
involve a value-free (policy-based) component that can be hardly compared with the subjective extracted
from explicit payoffs and probabilities. Functional neuroimaging investigations of experiential and
symbolic decision-making may also shed light on the debate about value representation across
modalities. While functional meta-analyses identified overlapping correlates of experiential and symbolic
values (17-20), the putative neural mechanisms of reinforcement-based and description-based decisions
differ in many crucial respects. First of all, the most influential and consensual neural models of
reinforcement-based leaning and decision-making give a preponderant role to dopamine-induced neural
plasticity circuits (66—68). More specifically dopamine-dependent plasticity is supposed to drive action
selection by shaping the strength of the synapses between the frontal cortex and the basal ganglia (69,
70). Current neural models do not attribute to dopamine-driven processes and the basal ganglia a
prominent role in description-based choices. Rather, they suppose that the decision process is solved by
cortical circuits (71-74), following an evidence accumulation process similar to that observed for
perceptual decisions (75, 76). Thus, structural differences in the neural mechanisms of choices across
modalities may represent a biologically grounded bases of the representational difference between
experiential and symbolic values.

The representational tension of hybrid choices is solved by subjects by neglecting the experiential values
and basing their choices on the symbolic value. Several control analyses allowed us to formally exclude
the possibility that this effect merely arise from insufficient knowledge of the experiential values. Why is
the symbolic information preferred? We suggest two not-mutually exclusive explanations. One possibility
is that experiential value estimates are perceived as less precise. Note here that precision represents the
uncertainty about the value estimate itself (48). Indeed, assuming imperfect memory storage and
retrieval, it is conceivable that experiential values are less precise compared to symbolic ones that can be
perfectly calculated (77). According to this interpretation, subjects would quasi-systemically prioritize the
more precise source of information for their choices (47, 48, 78). Another possibility is that subjects prefer
discarding experiential information not to incur the cost associated with the cost of memory retrieval (79,
80). Reaction times analysis was overall consistent with this idea, because choices involving the
processing of the experiential values were generally slower compared to those involving symbolic ones,
even if balanced in objective difficulty (49). This latter interpretation leaves open the possibility that if one
makes memory retrieval less costly, the behavioral pattern could be reversed (i.e., we would witness
symbolic value neglect). This could be possible for example after extensive training, once experience-
based choices are routinized (81) or, conversely, by making symbolic information harder to decode. These
are interesting possibilities to be explored by future studies.

Finally, we speculate on the possible cognitive mechanisms underlying the experiential value neglect

phenomenon and we identify two plausible candidates. The first mechanism involves ‘bottom-up’

attentional processes. It is well-documented that attentional focus biases evidence accumulation in value
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based decision-making (82, 83). It is therefore conceivable that an attentional bias toward symbolic
options may result in prioritizing described information and neglecting experiential one. The second
possible mechanism involves a ‘top-down’ heuristic process, according to which the calculation of
individual option values is highjacked by a deterministic decision rules (44). Of note, even if we managed
to demonstrate experiential value neglect in situations where it is disadvantageous (experiment 7), it can
nonetheless be argued that this decision rule is overall adaptive, because computationally cheap and
satisfying in most situations (see experiments 1-6).

To conclude, our results add to the collection of behavioral anomalies showing that values
representations are inherently dependent on the way they are built, as it is postulated by the ‘construction
of preference framework (84, 14, 85). More specifically, our findings pose serious challenges to the
default assumption that values representations are shared across different decision-making modalities,
traditionally referred to as experience- and description-based. The incommensurability between
experiential and symbolic values results in behaving as if discarding acquired information and
consequently entails suboptimal decisions. These findings are worth exploring outside the experimental
setting because many real-life decisions involve a tension between an experiential and a symbolic
component.
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Behavioral tasks, hypotheses, option values and experimental protocol. (A) The leftmost panel displays
successive screens of a typical trials in the learning phase (LE). The LE-phase consists in a two-armed
bandit task with fixed (4 or 2 — in experiment 4) pairs of abstract cues (E-options) and contained 120
trials. The rightmost panel displays successive screens of a typical trials in the Experiential-Symbolic
choice phase (ES). The ES-phase consists in binary choices between a lottery (standardly materialized as
a pie-chart) and a symbol previously presented in LE-phase. In most experiments, the EE phase lasted 88
trials (8 E-options x 11 S-options). Durations are given in milliseconds. (B) The panels illustrate three
possible hypotheses on how subjects could make choices in the ES-phase. In each panel the probability
of chosen the E-option is plotted against the value of the S-option (expressed as probability of winning a
point). The insets represent the indifference points (where the curves cross 50%; of not unbiased
indifference points should lay on the diagonal). The color of the curves indicates the value of the E-option
(lowest: light orange; highest: dark orange). The leftmost panel illustrate the default hypotheses
according to which E-options and S-options are fully commensurable and therefore the curves cross 50%
(indifference point) at exactly the value of the E-option. The central panel illustrates experiential value
neglect scenario according to which ES-choices are determined (almost) uniquely by the value of the S-
options. Finally, the rightmost panel illustrates the symbolic value neglect scenario, accordingly to which
ES-choices are determined (almost) uniquely the value of the E-options. (C) The panel displays the
options values. The topmost part shows how E-option were organized in learning contexts (in all
experiment except Experiment 4 and 7; of note, the attribution of the value to the symbols was
randomized across participants). The bottommost part shows the lotteries used in the ES phase (in all
experiment except Experiment 7). (D) The experiments were structured as follows: they all started with a
learning phase (LE), where subjects made choices between abstract symbols and received feedback
information. After the LE phase, subjects were asked to make repeated choices between each E-option
and several lotteries (see Fig. 1A and Fig. 1C). From Experiment 5 on, subjects were also asked to make
choice between E-options that were not necessarily presented together. Finally, we assessed the stated
probability (SP) of winning for each symbol by asking subjects to explicitly rate each E-option, following
a probability matching procedure (29).
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Raw behavioral results and inferred option values in Experiments 1-to-4. (A) Correct choice rate grouped
per learning context in the LE phase, where ‘40/60’ designated the hardest decision problem, “10/90’ the
easiest decision problem. The dark blue line indicates the mean, the mid-dark blue indicates the standard
mean error, and the light blue indicates a 95% confidence interval. The dotted line indicates chance (or
random) responding (50%). (B) Average probability of choosing an E-option over a S-option during ES
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phase. The color of the curves indicates the value of the E-option (lowest: light orange; highest: dark
orange). Dots represent the empirical indifference points, the value of a lottery that corresponds to a
probability of choosing the symbol 50% of the times. (C) The panels represent for each symbol the
inferred value (as expressed by the probability of winning; p(win)) as a function of the actual value. ES
estimates are represented in orange, LE estimates in blue and SP estimates in pink. In the data-boxes, the
dark tone line represents the mean, mid-dark tone the standard mean error, light tone a 95% confidence
interval. The lines represent linear regression (dark tone), and the average standard mean error (light
tone). (D) Comparison of individual inferred slopes obtained from linear fit (see Fig. 2C) in the three
modalities (LE, ES and SP in blue, orange and pink, respectively). The black lines represent mean and
standard error of the mean. The colored boxes represent 95% confidence interval. The shaded area
probability represents density functions. ***p<0.001 paired sample t-tests.
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Raw behavioral results and inferred option values in Experiments 5t0-6. (A) Average probability of
choosing an E-option over a S-option during ES phase. The color of the curves indicates the value of the
E-option (lowest: light orange; highest: dark orange). Dots represent the empirical indifference points, the
value of a lottery that correspond to a probability of choosing the symbol 50% of the times. Experiment
6.1 and Experiment 6.2 refers to the first and the second session, respectively (B) Average probability of
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choosing an E-option over another E-option during EE phase. The color of the curves indicates the value
of the E-option (lowest: light green; highest: dark green). Dots represent the empirical indifference points,
the value of a lottery that corresponds to a probability of choosing the symbol 50% of the times. (C) The
panels represent for each symbol the inferred value (as expressed by the probability of winning; p(win))
as a function of the actual value. ES estimates are represented in orange and EE estimates in green. In
the data-boxes, the dark tone line represents the mean, mid-dark tone the standard mean error, light tone a
95% confidence interval. The lines represent linear regression (dark tone), and the average standard mean
error (light tone). (D) Comparison of individual inferred slopes obtained from linear fit (see Fig. 3C) in two
modalities (ES and EE in orange and green, respectively). The black lines represent mean and standard
error of the mean. The colored boxes represent 95% confidence interval. The shaded area represents
probability density functions. ***p<0.001 two sample t-test.
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Option values and behavioral results in Experiment 7. (A) The panel shows and compare the options
value in Exp .1-6 to that of Exp 7. In Exp. 7, we reorganized E-options and S-options values such that half
of the E-options have higher expected-values than all S-options and, conversely the other half have lower
expected-values. In such an arrangement, a subject fully neglecting the E-options values in the ES phase
will end up with random choices in respect to utility maximization (B) Average probability of choosing an
E-option over a S-option during ES phase. The color of the curves indicates the value of the E-option
(lowest: light orange; highest: dark orange). Dots represent the empirical indifference points, the value of
a lottery that correspond to a probability of choosing the symbol 50% of the times. (C) Expected value
maximizing (i.e., correct) choices in the ES phase of Exp. 6 compared to Exp. 7. The black lines represent
mean and standard error of the mean. The colored boxes represent 95% confidence interval. The shaded
area probability represents density functions. ***p<0.001 two-sample t-test. (D) Average probability of
choosing an E-option over another E-option during EE phase. The color of the curves indicates the value
of the E-option (lowest: light green; highest: dark green). Dots represent the empirical indifference points,
the value of a lottery that correspond to a probability of choosing the symbol 50% of the times. (E)
Expected value maximizing (i.e., correct) choices in the EE phase of Exp. 6 compared to Exp. 7. The black
lines represent mean and standard error of the mean. The colored boxes represent 95% confidence
interval. The shaded area probability density functions. ***p<0.001 two-sample t-test. (F) The panel
represents for each symbol the inferred value (as expressed by the probability of winning; p(win)) as a
function of the actual value. ES estimates are represented in orange and EE estimates in green. In the
data-boxes, the dark tone line represents the mean, mid-dark tone the standard mean error, light tone a
95% confidence interval. The lines represent linear regression (dark tone), and the average standard mean
error (light tone). (G) Comparison of individual inferred slopes obtained from linear fit (see Fig. 4F) in two
modalities (ES and EE; in orange and green, respectively). The black lines represent mean and standard
error of the mean. The colored boxes represent 95% confidence interval. The shaded area probability
represents density functions. ***p<0.001 paired two-sample t-test.
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Figure 5

Hypothetical decision model and reaction times analyses (A) The panel presents a schematic
representation of the decision process in the EE- and the ES- phases, respectively. The two processes
differ in that in the former case (EE) the decision is based by retrieving the values of both options, while in
the latter case (ES), under an extreme form of experiential value neglect, only the value of the lottery
matters. (B) Median reaction times across modalities. EE decisions are significantly longer than ES
decisions (regardless of the choice taken in ES). When comparing when an S-option is chosen (ES,) and
when an E-option is chosen (ES,) we also observed a significant difference. The black lines represent
mean and standard error of the mean. The colored boxes represent 95% confidence interval. The shaded
area probability density functions. (C) Different in reaction times differences (ES, — ES, in orange; EE -
ES in green). In the data-boxes, the dark tone line represents the mean, mid-dark tone the standard mean
error, light tone a 95% confidence interval. (D) Reaction times as a function of whether the ES-choices
could be only explained by a total neglect of the experiential value (red) or whether they could only be
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explained by experiential values estimated from the learning phase (dark blue). In the data-boxes, the
dark tone line represents the mean, mid-dark tone the standard mean error, light tone a 95% confidence
interval. *p<0.05, **p<0.01, ***p<0.001 paired two-sample t-test.
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