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Abstract The societies of the Greater Horn of Africa (GHA) are vulnerable8

to variability in two climatologically distinct rainy seasons, the March-May9

‘long‘ rains and the October-December ‘short‘ rains. Recent trends in both10

rainy seasons, possibly related to patterns of low-frequency variability, have11

increased interest in future climate projections from General Circulation Mod-12

els (GCMs). However, previous generations of GCMs historically have a poor13

record in simulating the regional hydroclimate. This study conducts a process-14

based evaluation of simulations of the GHA long and short rains in CMIP6,15

the latest generation of GCMs. Key biases in CMIP5 models remain or are16

worsened, including long rains that are too short and weak and short rains that17

are too long and strong. Model biases are driven by a complex set of related18

oceanic and atmospheric factors. A too strong climatological zonal sea sur-19

face temperature gradient in the Indian Ocean and convection over the GHA20

that is too deep in particular are connected with erroneously powerful short21

rains in models. Model mean state biases in the timing of the western Indian22

Ocean sea surface temperature seasonal cycle are associated with certain GHA23

rainfall timing biases; this connection is however not replicated in interannual24

variability within models, suggesting there may be a common driver of both25

biases. Ocean biases cannot explain rainfall biases on their own; simulations26

driven by historical SSTs (AMIP runs) often have larger biases than fully cou-27

pled runs. A path towards using biases to better understand uncertainty in28

projections of GHA rainfall is suggested.29
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1 Introduction34

The Greater Horn of Africa (GHA), comprising eleven countries in East Africa,35

is a region of both climatic extremes and related societal vulnerability. It com-36

prises the driest area of the tropics, while its societies are heavily dependent37

on the rainfall cycle. Around 75% of the population in Ethiopia, Kenya, and38

Tanzania are smallholder farmers primarily working on rainfed lands (Salami39

et al 2019; Biazin et al 2012), and around 60% of the Somali population prac-40

tice pastoralism in arid and semi-arid water-stressed regions (UNDP 2019).41

Consequently, droughts are often associated with threats to food security –42

for example, the 2011 East African Drought led to the United Nations declar-43

ing a famine in southern Somalia, where 2.8 million people needed ‘life-saving44

assistance’ (NASA Earth Observatory 2011).45

A notable characteristic of the regional climate is the presence of two dis-46

tinct rainy seasons in the coastal plains of Ethiopia, Somalia, Kenya, and Tan-47

zania: the stronger ‘long’ rains, known locally as the gu’ in Somali or masika48

in Swahili, occur in the boreal spring, and the generally weaker but more49

variable ‘short’ rains, known locally as the deyr in Somali or vuli in Swahili,50

occur in the boreal fall (these will be referred to as the ‘long’ and ‘short’51

rains, respectively, throughout this paper). Drought extremes that contribute52

to famines often result from a mistiming or a complete loss of a rainy season53

such as during the fall 2010 drought (FEWSNET 2011), in which the ‘short’54

rains largely failed. Conversely, particularly wet seasons can cause destructive55

flooding, such as during the record ‘short’ rains associated with the 1997-199856

El Niño, which resulted in over 1,300 deaths and 270,000 displacements in57

Somalia alone (IRIN 97).58

Recent trends in the observational records in both rainy seasons have59

heightened concerns about the impact of climate change on rainfall variability60

in the GHA region. Declines in total seasonal rainfall since 1983 have been61

found in studies examining satellite data, station records, satellite-station hy-62

brid datasets, and in farmer recollections (Diem et al 2014, 2019; Ssentongo63

et al 2018; Cattani et al 2018; Salerno et al 2019), together with a decrease in64

the rainy season length, with both later onsets and earlier demises (Wainwright65

et al 2019).The frequency of ‘long’ rain droughts seems to have particularly in-66

creased since 1998, though this is likely the consequence of natural variability67

attributable to the Pacific Decadal Oscillation (Lyon 2014).68

Consequently, many recent studies have used climate models to project69

changes in rainfall characteristics under global warming scenarios. Modeling70

studies predict wetter and more intense ‘short’ rains (e.g. Dunning et al (2018);71

Otieno and Anyah (2013); Wainwright et al (2021)) and later and wetter ‘long’72

rains (e.g., Wainwright et al (2021)). These projections are incompatible with73

recent decreases in rainfall, a ‘paradox’ likely related to simulations of internal74
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variability in GHA rainfall (e.g. Lyon and Vigaud (2017)) or other modeling75

deficits.76

Climate models are increasingly used to project the impacts of regional cli-77

mate change into the future (e.g. Hsiang et al (2017); Carleton et al (2019)). In78

East Africa, recent studies have for example used CMIP5-era models to project79

the impact of global warming on maize and beans production in Ethiopia80

(Abera et al 2018; Thornton et al 2010), groundwater resources (Taylor et al81

2013), and metrics of fisheries, flood management, urban infrastructure, and82

urban health (Bornemann et al 2019), among others. Climate model studies83

are also routinely cited in government documents such as Kenya’s National84

Climate Action Plan Government of Kenya (2018), Ethiopia’s National Adap-85

tation Plan (Federal Democratic Republic of Ethiopia 2019), or Somalia’s com-86

munications to the UN Framework Climate Change Convention (Office of the87

Prime Minister, the Federal Republic of Somalia 2018).88

However, despite their heavy use in both academic and government sources,89

climate models historically have a poor record in simulating rainfall in East90

Africa. CMIP5 models have well-known biases in simulating both the strength91

and the timing of the ‘long’ and ‘short’ rains in East Africa. The ‘long’ rains in92

CMIP5 models start 19 days later on average than in observations (Dunning93

et al 2017); the ‘long’ rains are generally too weak and the ‘short’ rains too94

strong in models, leading to the ‘short’ rains being stronger than the ‘long’95

rains (Yang et al 2014).96

A process-based model evaluation is however particularly complex in the97

GHA due to the many regional and large-scale processes that affect local rain-98

fall. Both the ‘long’ and ‘short’ rains in the GHA are strongly dependent on99

the behavior of the large-scale circulation over the Indian Ocean basin. In its100

long-term average state, the atmosphere above the Indian Ocean is formed101

into a zonal overturning circulation referred to in the recent literature as the102

Indian Ocean Walker Cell or Walker-type circulation due to its similarities103

with the Pacific Ocean Walker Cell pattern over the Pacific Ocean. The In-104

dian Ocean pattern mirrors its Pacific Ocean counterpart; the climatological105

circulation involves near-surface westerlies, high-level easterlies, ascent over106

the eastern Indian Ocean and Indo-Pacific Warm Pool, and descent over the107

GHA (Nicholson 2017). This descent suppresses convection and is present to108

a certain extent even during the climatological average ‘short’ rain period109

(Nicholson 2017; King et al 2019).110

The ‘long’ and ‘short’ rains occur during the temporary reprieve of this111

climatological descent in the ‘shoulder’ seasons between the summer and win-112

ter monsoons. The ‘long’ rains generally begin in late March or early April as113

the Arabian High dissipates and the strong surface northerlies of the boreal114

winter weaken, and end as the Mascarene High intensifies, reversing the low-115

level meridional geopotential height gradient, and turning the offshore winds116

southerly as part of the broader Indian Monsoon circulation (Vizy and Cook117

2020; Camberlin et al 2010). The ‘short’ rains generally begin in late Septem-118

ber, as these strong southerly winds weaken and reverse once more (Vizy and119

Cook 2020).120
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The wet seasons are both characterized by seasonal peaks in offshore sea121

surface temperatures (SSTs) and rising motion in the atmosphere above the122

GHA. They feature weak, onshore surface winds bringing warm, wet air onto123

the GHA. The dry seasons are characterized by seasonal minima in offshore124

SSTs, large-scale descent through the middle and upper troposphere, and sur-125

face winds that are both parallel to the shore and dry (Yang et al 2015a;126

Nicholson 2017).127

This complex system suggests the influence of both oceanic and atmo-128

spheric factors; studies tracing the interannual variability of the ‘long’ and129

‘short’ rains have found corresponding influences from both. This variability is130

particularly strong in the ‘short’ rains, which, despite being weaker on average131

than the ‘long’ rains, contribute more to the overall interannual precipitation132

variability in the region (Camberlin and Philippon 2002).133

Anomalies representing a strengthening of the mean structure of the In-134

dian Ocean Walker Cell are associated with drier rainy seasons in the GHA135

and vice-versa. Stronger low-level westerlies are negatively correlated with the136

strength of the ‘short’ rains (Nicholson 2017). Conversely, low-level easterlies,137

often associated with the positive phase of the Indian Ocean Dipole (IOD),138

a metric of the zonal SST gradient, are often associated with particularly139

strong ‘short’ rains (Liebmann et al 2014; Nicholson 2017; Blau and Ha 2020).140

Mid-tropospheric vertical velocity, corresponding to the descending limb of the141

Walker Cell and local convection, has also been connected to regional rainfall;142

for example, models that overestimate the strength of the descending limb143

tend to be biased dry (King et al 2019) and models that explicitly resolve con-144

vection over the GHA reduce timing biases in the seasons (Wainwright et al145

2021). The influence of the direction of the high-level zonal winds above the146

GHA is complex; though weaker easterlies may indicate a weaker Walker Cell147

(e.g. King et al (2019); Hastenrath et al (2011)), above land they may indi-148

cate divergence aloft associated with convective activity in the western Indian149

Ocean (Camberlin and Philippon 2002; Limbu and Tan 2019).150

Given their connection to the interannual variability in the GHA rainy sea-151

sons, simulations of the surface SSTs and the Indian Ocean Walker Circulation152

are therefore logical targets to search for the sources of model biases. Conse-153

quently, we develop diagnostic metrics based on two aspects of the oceanic154

state, the zonal SST gradient represented through the IOD and western In-155

dian Ocean SSTs (WIOSSTs); and two aspects of the atmospheric circulation,156

zonal winds aloft and ascent over the GHA, to identify these sources.157

Warmer WIOSSTs and more positive values of the IOD index are expected158

to correlate with stronger long and short rains; later peaks of the SST seasonal159

cycle in both variables are expected to correlate with later peaks in the long160

and short rains. Given the IOD’s connection to interannual variability in the161

‘short’ rains in particular, metrics of the IOD are expected to particularly162

correlate with metrics of the ‘short’ rains.163

Stronger high-level easterlies above the GHA may be an indicator of the164

development of a convective center in the western Indian Ocean, particu-165

larly in the short rains when the coherence of the Walker Cell is stronger. In166
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this paradigm, stronger easterlies are expected to be correlated with stronger167

‘short’ rains. By a similar argument, zonal winds aloft are expected to have168

weaker correlations with metrics of the ‘long’ rains; though Camberlin and169

Philippon (2002) find westerly anomalies aloft for May (towards the end of170

the ‘long’ rains) and easterly anomalies aloft for March-April in years in which171

the ‘long’ rains seem to be particularly affected by the ENSO cycle.172

Stronger ascent, an indicator of convective activity, is expected to be tightly173

correlated with both stronger ‘long’ and ‘short’ rains, as is later ascent with174

later rainy seasons; biases in these metrics could diagnose problems with model175

convection simulations.176

CMIP6 models are now available, and offer higher resolutions, more ex-177

plicitly modeled physical processes, and improvements in key dynamics for178

the Indian Ocean basin (e.g., Gusain et al (2020)). A necessary but insuffi-179

cient condition for users of CMIP6 output to be confident in their projections180

is the models’ ability to reproduce key aspects of the climate variability in181

the historical record related to the task at hand (see e.g., the discussion in182

Nissan et al (2020)). Since these models will likely be extensively used to cre-183

ate projections of the impacts of climate change on East Africa in the coming184

years, this paper seeks to understand whether these models accurately repre-185

sent the characteristics of the seasonal cycles in the double rainy season area of186

the GHA, and whether they replicate key physical drivers of regional rainfall187

gleaned from the literature and derived from observations.188

The rest of this paper is structured as follows: Section 2 will introduce the189

daily observational and CMIP6 data used; Section 3 introduces the methodol-190

ogy for calculating seasonal and dynamical metrics. Section 4 will detail issues191

in CMIP6 representations of GHA rainfall. Sections 5 and 6 will investigate to192

what extent metrics of the ocean and the atmospheric circulation can explain193

biases in seasonal characteristics, respectively. Finally, Section 7 summarizes194

conclusions and charts a path forward for how this information can be used195

to interpret projections of the rainy seasons in the GHA.196

2 Data197

Daily data are used throughout this study to accurately characterize the timing198

of the rainy seasons (see e.g., Camberlin and Okoola (2003)). Not only are rainy199

seasons often less than two months long, but sub-seasonal variability apparent200

even in monthly data suggests that higher resolution data are needed to fully201

resolve the relevant dynamics (e.g., Camberlin and Philippon (2002)).202

To cover the longest timeframe included in all observational and modeling203

data products used, all analysis is conducted over the years 1981-2014 for204

climatological averages. Analysis for individual years is limited to the period205

1981-2013, to account for the demise of the short rains sometimes occurring206

after the Gregorian New Year.207
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2.1 Observational data208

To characterize precipitation in the Horn of Africa, we use daily rainfall data209

from the Climate Hazards Infrared Precipitation with Stations (CHIRPS)210

dataset (Funk et al 2015). CHIRPS combines satellite data from the TRMM211

satellite with interpolated rain gauge products and an elevation model. Though212

evaluation is complicated by the lack of a dense rain gauge network in the re-213

gion (e.g. Dinku (2018)), studies have shown CHIRPS to outperform other214

commonly used datasets in the GHA; while it overestimates the occurrence215

of rainfall, rainfall in those extra events tends to be minimal (e.g. Diem et al216

(2019); Ayehu et al (2018)).217

Daily sea surface temperatures (SSTs) from the Daily Optimum Inter-218

polation Sea Surface Temperature (DOISST) record, version 2.1 (Huang et al219

2021) are used to construct the ocean metrics. DOISST is a 0.25-degree gridded220

product blending in situ ship and buoy measurements with satellite-derived221

estimates from the Advanced Very High Resolution Radiometer (AVHRR).222

Though the Indian Ocean in DOISST is biased slightly low compared to in223

situ measurements (e.g., ∼ 0.08� C vs. Argo floats in Huang et al (2021)),224

having gridded daily data allows for a direct comparison to model output.225

250 hPa zonal velocity and 250 hPa and 500 hPa vertical pressure velocity226

from the ERA5 reanalysis product are used to analyze historical circulation227

patterns (Hersbach et al 2020). Data were downloaded in ERA5’s native hourly228

format and daily averages were taken to obtain daily data.229

2.2 Model data230

This study examines biases in models from the 6th edition of the Coupled231

Model Intercomparison Project (CMIP6; Eyring et al (2016)). Compared to232

the previous generation of climate models (CMIP5), CMIP6 models on average233

have slightly higher resolution and directly simulate more physical processes.234

While comprehensive analyses of the newer generation of models are still235

being performed, studies have begun to evaluate model behavior in the Indian236

Ocean region. For example, Gusain et al (2020) showed that CMIP6 models237

have improved representations of the Indian Monsoon compared to CMIP5238

models, which may suggest improvements in the simulation of tropical precip-239

itation generally, and dynamics in the Indian Ocean in particular.240

Precipitation, SSTs, zonal velocity at 250 mb, and vertical pressure velocity241

at 250 hPa and 500 hPa from any CMIP6 model with daily data for that242

variable (not every model has daily data for each variable, see Table 1) are243

used.244

To isolate the impact of SST biases on the biases in the GHA rainy seasons,245

daily precipitation data from CMIP6 model runs forced by historical SSTs are246

used, and referred to as ‘AMIP’ runs (‘atmospheric model intercomparison247

project’) throughout.248
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To illustrate how information about current biases may be used to parti-249

tion future model projections, precipitation from model runs using the SSP3250

scenario (O’Neill et al 2016), representing high challenges to mitigation and251

adaptation, are used as well.252

3 Methods253

3.1 Study area254

This study focuses on the area of the GHA that experiences a bimodal rainfall255

climatology (hereafter referred to as the “bimodal region”). In calculations of256

seasonal statistics, we consider every land grid cell in observations or models257

between 32� E and the Indian Ocean and between −3� S and 12.5� N for which258

the second harmonic is larger than the first harmonic. This region is similar259

to commonly-used geographic subsets for studies of East African rainfall, see260

e.g., the regions studied by Wainwright et al (2021) or Yang et al (2014). Some261

authors use a smaller region centered on Southern Somalia (e.g. Camberlin262

et al (2010); Liebmann et al (2014)); we show our results are robust to the263

particular region studied.264

Each model is evaluated based on its own reality – i.e., the study area is265

calculated separately for each model and for observations. Models do differ in266

the exact geographic area in which a bimodal rainy season is simulated (Figure267

1); however, models generally place this region in the coastal plains of Somalia,268

southeast Ethiopia, and northern Kenya, consistent with observations. The269

factors causing these differences may be important for understanding model270

behavior in this region, but are beyond the scope of this paper.271

3.2 Seasonal definitions272

Throughout this paper, we use the seasonal definitions by Dunning et al (2016)273

based on inflection points in the cumulative precipitation rate. This method274

was specifically designed for African regions with bimodal rainy seasons, and275

is designed to reduce the likelihood of ‘false starts’ – early-season storms fol-276

lowed by prolonged periods of dryness – that may be particularly damaging to277

recently-planted crops (Huho et al 2012; Dunning et al 2016). Notably, how-278

ever, it is derived from the data itself, and therefore may not overlap with local279

agricultural or pastoral definitions of the seasons. These may emphasize differ-280

ent aspects of the season, other variables such as soil moisture content, or use281

threshold-based definitions that are easier to measure using local information282

(e.g., Goddard et al (2010); Lala et al (2020)).283

For each grid cell in the study area, the onset and demise of the 1981-2014284

climatological rainfall is determined using the Dunning et al (2016) method,285

as is the onset and demise of the rainy seasons in each individual year from286

1981 to 2013 (see Section S1 for full details).287
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3.3 Seasonal metrics288

For each season, seasonal characteristics are calculated based on the onset and289

demise determined using the methodology detailed above. The ‘duration’ of290

each season is defined as the simple difference in days between the onset and291

demise, and the ‘total integrated rainfall’ or ‘strength’ as the total sum of daily292

rainfall between the onset and demise. The ‘peak timing‘ is the day of peak293

rainfall, while the ‘peak amount‘ is the amount of rain on that day.294

3.4 Circulation variables295

We develop diagnostic metrics based on two aspects of the oceanic state -296

IOD and western Indian Ocean SSTs, and two aspects of the atmospheric297

circulation - zonal winds aloft and ascent over the GHA.298

Connections between statistics of the rainy seasons as defined above and299

diagnostic statistics of the broader circulation are investigated. Each variable300

has a similar bimodal seasonal cycle to the rainy seasons (Figures 2, 3). The301

analysis focuses primarily on two metrics defined independently from the rainy302

seasons – the day on which the variable peaks, referred to as the ‘peak timing,’303

and the value of the variable on that peak day, referred to as the ‘peak amount,’304

for either the first or second portion of the calendar year. For each metric, this305

cutoff point between the boreal spring and fall seasons is chosen ad hoc to306

encompass the inflection points for each CMIP6 model and the observations.307

The boreal spring peak timing and amount values are compared to metrics308

for the ‘long’ rains, and the boreal fall values with the metrics for the ‘short’309

rains. All metrics are calculated both as a climatological mean and individually310

for all years in the sample, after each time series has been smoothed using a311

Gaussian filter with a 30-day width.312

To avoid defining explanatory variables using characteristics of the rainy313

seasons they may be imperfectly related to, the analysis is limited to variables314

that peak with a bimodal seasonal cycle. We can therefore use nonparametric315

variables, such as the peak day or peak value, that are robust to the limits316

of the rainy seasons. This approach may overlook several key processes, chief317

among them near-surface zonal winds in the Indian Ocean, which have histor-318

ically been connected to the rainy seasons (e.g. Hastenrath et al (1993)), but319

nevertheless allows an analysis of aspects of the primary oceanic and atmo-320

spheric dynamics of the region.321

Western Indian Ocean SSTs (WIOSSTs) Following the region used in Yang322

et al (2015a), average SSTs in the western Indian Ocean (referred to as WIOSSTs)323

are calculated as the average from -10� S to 12� N and 38� E to 55� E. For324

each year, the day of peak WIOSSTs and the peak WIOSSTs are calculated325

using daily OISST data, for the days 30 to 250 to compare to the long rains,326

and 250 to 30 of the following year to compare to the short rains.327
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Indian Ocean dipole mode index The IOD is characterized by the Dipole Mode328

Index (DMI) developed by Saji et al (1999) and used e.g. in Lyon (2020). The329

DMI is the difference between SSTs in the West (-10� S to 10� N, 50�-70� E)330

and East (-10� S - 0� S, 90�-110� E) Indian Ocean. If the DMI is positive,331

then SSTs in the western Indian Ocean are higher than in the eastern Indian332

Ocean. For each year, the day of peak DMI and the peak DMI are calculated333

using daily OISST data, for the days 30 to 230 to compare to the long rains,334

and 230 to 30 of the following year to compare to the short rains.335

Zonal winds aloft The average 250 hPa zonal velocity above the study area (-336

3� S to 12.5� N and 32� E to 52� E) is used to characterize the zonal circulation337

aloft. For each year, the day of peak westerlies and the peak westerly strength338

are calculated using daily ERA5 data, for the days 30 to 230 to compare to339

the long rains, and 230 to 30 of the following year to compare to the short340

rains.341

Ascent The average 500 and 250 hPa vertical pressure velocities in the bimodal342

region are used to characterize mid-level and upper-level ascent, respectively.343

For each year, the day of peak ascent and the peak vertical velocity using daily344

ERA5 data, for the days 50 to 250 to compare to the long rains, and 250 to345

50 of the following year to compare to the short rains.346

3.5 Analysis347

The timing and strength of the circulation variables are compared with the348

timing and strength of the rainy seasons in both models and observations.349

For the rest of this paper, ‘correlations’ refer to Pearson’s correlation coeffi-350

cients. First, interannual correlations in observations ρ
OI between these cir-351

culation metrics and their precipitation counterparts are calculated, which352

reveals whether these facets of the circulation are associated with characteris-353

tics of the rainy seasons in the historical record (see Section S3.1 for a detailed354

derivation). Significance is reported based on two-sided confidence 95% confi-355

dence intervals for correlation calculations.356

Interannual correlations between the circulation metrics and their precip-357

itation counterparts ρ
MI,mod for each individual model mod are then calcu-358

lated, revealing whether these facets of the circulation are associated with359

characteristics of the rainy seasons within a given model (Section S3.2). Fi-360

nally, the correlation between model climatological means of these circulation361

and rainy season metrics ρMM is calculated, which gives insight into whether362

the mean state of the model is associated with the biases in these metrics363

(Section S3.3).364

Whether a model is truly simulating the right processes for the right rea-365

sons is a combination of both low biases in variables of interest and good366

performance at replicating the dynamical factors that affect these variables367

in the observational record. Relationships robustly mirrored in both models368
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and observations may therefore point to metrics useful for diagnosing model369

performance.370

4 Precipitation biases in CMIP6 models371

Previous generations of models tended to begin the ‘long’ rains too late, pro-372

duce too little rain in the ‘long’ rains, and produce too much rain in the ‘short’373

rains (Yang et al 2014; Dunning et al 2017). These biases remain largely un-374

changed in the CMIP6 generation of models.375

4.1 Timing biases376

The average model ‘long’ rains across CMIP6 models begin 24 ± 18 days late377

(with ± expressing one standard deviation) compared to the average onset in378

the study area in CHIRPS data (Figure 4a). This bias is of similar magnitude379

to biases in CMIP5 (19 ± 13 in Dunning et al (2017)). The bias in the onset380

of the ‘short’ rains, on the other hand, is minor across models; the ensemble381

model-year bias is 2± 9 days too early.382

The peak day of the rainy seasons is also too late in both the ‘long’ and383

the ‘short’ rains, but more consistently so between rainy seasons than in the384

onset (19± 18 days and 14± 13 days, respectively; Figure 4d), with more late385

outliers during the ‘short’ rains.386

Models tend to be late on the demise of both rainy seasons - and similarly387

so; models that are late on the demise in the ‘long’ rains also tend to be late388

on the demise of the ‘short’ rains. Given that the demise of the ‘long’ rains has389

been connected in observations to the onset of the Indian Monsoon (Camberlin390

et al 2010), a pattern unique to the boreal summer, the robust connection with391

the demise of the ‘short’ rains before the boreal winter is surprising.392

These factors combine to make model ‘long’ rains slightly too short on393

average, and ‘short’ rains significantly too long on average (Figure 4c), and394

may be connected to the biases in relative strength of the rainy seasons, since395

rainy season strength is largely modulated by its length rather than average396

rate (Camberlin et al 2009).397

4.2 Strength biases398

As in CMIP5 models (Yang et al 2015b), CMIP6 models also overestimate the399

strength of the ‘short’ rains and underestimate the strength of the ‘long’ rains400

(Figure 4f). The average ratio of the amount of rain in the ‘short’ rains to401

the ‘long’ rains in models is 2.0, compared to 0.8 in the observations. Like in402

CMIP5 models, this discrepancy does come both from an underestimation of403

the strength of the ‘long’ rains (29 ± 93 mm too dry) and an overestimation404

of the strength of the ‘short’ rains (129 ± 152 mm too wet). In the amount405
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of both ‘long’ and ‘short’ rains, there is however substantial overlap with the406

range of observations (Figure 4f).407

Models tend to underestimate peak rainfall of both rainy seasons (Figure408

4e), which is consistent with existing biases in CMIP3 and CMIP5-generation409

models (e.g. Sun et al (2015)). However, peak rainfall may more generally410

be related to the model’s treatment of rainfall extremes, which is beyond the411

scope of this study.412

4.3 Resolution413

Increased CMIP6 model resolution does not remedy biases in precipitation414

over East Africa (Akinsanola et al 2021), suggesting that orography is not415

the primary driver of biases, at least within the resolution range of CMIP6416

models (0.70� − 2.8� per grid cell). The rest of this study will therefore focus417

on ocean-atmosphere dynamic processes in the Indian Ocean Basin alone as418

sources of rainfall biases in the bimodal region.419

5 SST representations420

5.1 Expected impact of SSTs421

To diagnose the impact of model SST biases on GHA rainfall biases, the re-422

lationships between WIOSSTs and the IOD and the GHA rainy seasons are423

investigated. Given connections found between the interannual variability of424

SSTs and the GHA rainy seasons in observations, models with WIOSSTs and425

IODs that are too strong or peak too late may be expected to have rainy426

seasons that are biased wet and late, or vice-versa.427

Like rainfall in the bimodal region, both variables climatologically peak428

twice a year (see Figure 2 for climatologies, and Figure 3 for composite cli-429

matologies relative to the onset of each season), though the average SST peak430

during the ‘short’ rains is notably a few weeks after the average end of the431

season. Since most of the interannual variability of the IOD is concentrated432

in the boreal fall, analyses have generally focused on its impact on the ‘short’433

rains; however, a west-east temperature gradient generally also forms in the434

boreal spring, peaking along with the average ‘long’ rains.435

Biases in the IOD and in WIOSSTs may point to errors in different, but436

related underlying processes. The IOD is closely related to the structure of the437

Indian Ocean Walker Cell – a positive IOD (warm west, cool east) is generally438

associated with low pressure in the western Indian Ocean and surface easterly439

winds that advect warm, moist air onto the GHA. A positive IOD generally440

involves anomalously positive WIOSSTs; however, several studies have also441

suggested a role for offshore SSTs in encouraging moisture convergence over442

central East Africa, regardless of the presence of a dipole event (e.g., Liu et al443

(2020)).444
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5.2 SSTs and the rainy seasons445

For each variable and each rainy season, six correlations are calculated – the446

interannual correlation in observations ρOI , the interannual correlation in an447

individual model ρMI,mod for every model mod separately, and correlations448

across model means ρMM for ‘strength’ (correlation between peak value of the449

variable and total rainfall in a season) and the ‘timing’ of the rainy seasons450

(correlation between peak timing of the variable and peak timing of the rainy451

season) (see Section S3 for derivations). The correlations across model means452

ρ
MM are based on climatological values of each metric, while the interannual453

correlations ρOI in observations and ρ
MI in models are calculated across values454

for each individual year. Figure 5a-b shows ρOI , ρMI,mod, and ρ
MM between455

the two diagnostic SST metrics and the strength and timing of the rainy456

seasons. Correlations are relatively robust to the GHA subset chosen (Figure457

S5).458

5.2.1 Mean state biases in WIOSSTs correlate with mean state biases in459

model rainy seasons460

The average model WIOSSTs tend to peak too late during the long rains and461

too early during the short rains, in line with the average model onset being462

too late for the long rains and too early for the short rains; the average model463

WIOSSTs also peak too high in both seasons (Figure S2). Models whose SSTs464

peak later on average have rainy seasons that peak later, and models whose465

peak WIOSSTs are higher have stronger rainy seasons, for both the ‘long’ and466

the ‘short’ rains – i.e., the correlation across model means ρMM,mod in Figure467

5 is high for both timing and amount in the ‘short’ and ‘long’ rains (Figure468

5a). However, apart from the association between warmer SSTs and stronger469

‘short’ rains, this signal is not mirrored across years in observations as a signif-470

icant interannual correlation in observations ρOI , nor is it present across years471

in most individual models as a significant ρ
MI . This combination suggests472

that while the direct relationship between WIOSSTs and the rainy seasons473

may be weak, mean-state biases easily visible in the SST seasonal cycle may474

nevertheless be indicative of common drivers of both SST and GHA rainfall475

biases. A model that is particularly suggestive of this mean-bias relationship476

is KIOST-ESM, which has the lowest mean state bias in the timing of the477

boreal spring SST peak, one of the lowest biases in the strength of the boreal478

spring SST peak, and one of the lowest biases in the timing and strength of479

the ‘long’ rains (Figure S2).480

5.2.2 IOD strength biases associated with model short rain biases481

Generally, the strength of the IOD – meaning how much warmer the western482

Indian Ocean is than the eastern Indian Ocean – and the WIOSSTs peak are483

strongly correlated with the strength of the ‘short’ rains in all metrics - ρOI ,484
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ρ
MM , and ρ

IM for many models are generally positive and significant (right-485

most columns in Figure 5a-b). The correlation is stronger with the IOD than486

with WIOSSTs by themselves, in line with previous studies connecting the487

IOD to the short rains in observations on interannual timescales. The high488

correlation between the dipole mode index and ‘short’ rain strength across489

model years in particular suggests that models on average are reproducing490

this well-known ocean-atmosphere relationship. One notable outlier to this491

strong relationship is AWI-ESM-1-1-LR, for which the strength of the IOD492

is negatively correlated with the strength of the short rains (though this is493

insignificant); AWI-ESM-1-1-LR also has the largest dry bias in the short494

rains among models studied.495

These relationships in both models and observations seem to suggest the496

use of the IOD as a diagnostic variable for model simulation of processes that497

affect the strength of the ‘short’ rains in the bimodal region. In particular, some498

of the models with the most prominent mean state wet biases in the ‘short’499

rains also systematically create climatological IODs that are too powerful;1 i.e.,500

the western Indian Ocean is much too warm compared to the eastern Indian501

Ocean. Models with low mean state IOD strength biases in the boreal fall tend502

to also have low biases in the strength of the ‘short’ rains. A notable exception503

is IPSL-CM6A-LR, which has a low strength bias in the dipole mode index504

despite overestimating the strength of the ‘short’ rains by a factor of more505

than 2, suggesting that this low bias may mask structural errors in the model506

simulation of the region (Figure S3]).507

The strong relationship between model mean-state biases in the IOD and508

corresponding biases in the rainy seasons are in line with the findings of Hirons509

and Turner (2018), who show that many CMIP5 models have climatological510

low-level equatorial easterlies in the Indian Ocean instead of observed wester-511

lies and associated zonal SST gradients that are too strong during the ‘short’512

rains; these models subsequently cannot correctly capture the dynamics of513

moisture advection onto East Africa during IOD events in the boreal fall.514

Interestingly, the timing of the dipole mode index in the boreal spring515

is positively correlated with the timing of the ‘long’ rains in several mod-516

els, though it is insignificant in observations. The correlation is once again517

strongest for model means (i.e., ρMM > ρ
OI , ρMI), further suggesting that518

the mean state of the SST seasonal cycle may be related to rainfall biases in519

the bimodal region. However, since the corresponding timing correlation across520

model means for WIOSSTs is larger, it is possible that this correlation may521

be capturing the effect of WIOSSTs by themselves, which are generally higher522

during IOD events and are more frequently connected to ‘long’ rain variability523

(e.g., Yang et al (2015a)).524

1 e.g. MRI-ESM2-0, BCC-ESM1, the EC-Earth3 models, SAM0-UNICOM, BCC-CSM2-
MR, see models highlighted in green in Figure S2
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5.3 Evidence from atmosphere-only runs525

Do the mean state correlations imply that the SST biases are the primary526

driver of rainy season biases or, perhaps, that both SST and rainy season527

biases are affected by a common driver? To investigate this connection, we528

take advantage of “AMIP” runs – versions of the studied CMIP6 models that529

replace their ocean component with historical SSTs. These runs can simu-530

late to a certain extent how the model would behave if it perfectly simulated531

the ocean, though important atmosphere-ocean feedbacks are removed by pre-532

scribing SSTs. We recalculate model biases in the rainy seasons and compare533

them to biases in the same models run in their fully coupled mode (Figure534

6). Forcing CMIP6 models with historical SSTs does not uniformly improve535

biases; rather, for many models and metrics, biases are increased, particularly536

concerning the peak timing and demises of the GHA rainy seasons (Figure537

7), suggesting the relationship between SST and rainfall biases may be more538

complex.539

The average WIOSSTs in a CMIP6 model’s coupled run peak too late540

compared to observations during the long rains, but too early during the short541

rains (Figure S2); however, forcing models with historical SSTs does not lead542

to a consistent shift in the timing of the rains, nor a consistent reduction in543

the magnitude of the bias across metrics of the seasonal cycle. The bias in the544

demise of the long rains is in fact worsened, from 9 days on average in coupled545

runs to 30 days in AMIP runs on average (Figure 6b, x axis) and up to a factor546

of 10 in one model, BCC-CSM2-MR (Figure 7, ‘demise’ column in left panel).547

Given that the demise of the long rains is tightly correlated with the start of548

the Indian Monsoon in Kerala in observations (e.g., Camberlin et al (2010)),549

this bias may therefore be related to changes in monsoon dynamics brought on550

by the lack of interactive atmosphere-ocean coupling in AMIP runs. In fact,551

Yang et al (2015b) show that coupling-induced biases in GHA rainy seasons552

in CMIP5 models can appear jointly with dry biases in the Indian Monsoon.553

Unlike the fully coupled models, which especially overestimate the duration554

and intensity of the short rains, AMIP runs have long rains that are longer555

and stronger than the short rains, a reversal of a key bias in CMIP6 models;556

however, AMIP long rains are now too long and too strong compared to ob-557

servations. (Figure 6c, f; dots to the right and below the dotted 1:1 line show558

model- or observation-years in which the long rains are lower than the short559

rains). These two processes are likely linked; the total rainfall in a season is560

more modulated by the rainy season’s length than the average intensity of561

rainfall in observations (Wainwright et al 2019). It is important to emphasize562

however that these improvements in the biases in the strength of the rainy563

seasons in AMIP runs were the result of increased timing biases, and under-564

scores the point that models may produce the right metrics, but for the ‘wrong’565

reasons.566

Correlations between the model mean SST peak timing and the model567

mean rainy season timing in coupled models have suggested a role for mean568

state biases in the seasonal cycle in the modulation of the rainy seasons (Figure569
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5). AMIP results are consistent with this interpretation, at least for the onset570

of the rainy seasons. In particular, in one of the few robust improvements in571

biases in AMIP runs, coupled models that are most biased in the early year572

peak of WIOSSTs also tend to have the largest reductions in the bias of the573

onset of the long rains in their AMIP runs (Figure 8, L panel). A similar574

pattern is seen during the short rains; in AMIP runs, the SST peak in the575

second half of the year is pushed back compared to coupled runs (WIOSSTs576

are biased early; Figure S2), and the onset of the short rains is biased late on577

average in AMIP runs instead of early in coupled runs.578

Furthermore, the coupled models with the largest boreal fall IOD biases579

have the largest reduction in the strength biases of the short rains in their580

AMIP runs (Figure 8, R panel). These coupled models have zonal SST gra-581

dients that are substantially too strong, and correspondingly tend to produce582

short rains that are too powerful as well. As a result, particularly unphysi-583

cal values of the mean state IOD in a model may be a useful diagnostic to584

determine model skill in simulating the East African short rains.585

5.4 Conclusions on ocean-driven biases586

SST biases play a role in some, but not all facets of the biases in the rainy587

seasons in East Africa, in line with the highly coupled nature of the regional588

dynamics. Model mean correlations between mean state biases in SSTs and589

rainfall metrics that are not borne out in model interannual correlations sug-590

gest certain SST biases are driven by the same underlying patterns that pro-591

duce erroneous long and short rains in the GHA in models. AMIP runs tend to592

substantially reduce biases only in limited situations, for example, in models593

whose climatological IODs are 100-400% too strong during the short rains,594

or for models whose SST seasonal cycle is particularly out of phase with ob-595

servations. Instead, many biases are worsened in AMIP runs, implying either596

that the coupling between the atmosphere and ocean is crucial to the regional597

dynamics affecting those aspects of the GHA rainy seasons, or that competing598

atmosphere-ocean biases in different aspects of the model may have fortu-599

itously ‘cancelled out’ in the fully coupled runs.600

These findings are only partially consistent with those of Lyon (2020),601

which suggested that SST biases are the primary driver of both timing and602

strength biases of the East African rainy seasons, though that study used only603

one model which was not present in our sample. They are, however, consistent604

with previous studies showing that AMIP runs did not substantially fix biases605

in the rainy seasons in CMIP5, the previous generation of models (Hirons and606

Turner 2018; King et al 2019).607
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6 Circulation representations608

6.1 Expected impact of circulation biases609

Circulation metrics have been found to explain more variability in GHA pre-610

cipitation than ocean variables (Nicholson 2017), and the moisture budget is611

affected more by the circulation than the humidity cycle in observations (Yang612

et al 2015a), making aspects of the circulation useful foci for diagnosing biases613

in the processes driving the rainy seasons.614

The climatological circulation pattern over the Indian Ocean Basin, partic-615

ularly during the dry seasons, consists of ascent in the East over the Maritime616

Continent, easterlies aloft, descent over the western Indian Ocean and GHA,617

and surface westerlies along the equator. Strong descent over the GHA inhibits618

convection for most of the year.619

During the rainy seasons, this pattern reverses around the GHA: there is620

anomalous ascent over the GHA, anomalous westerlies aloft, and anomalous621

easterlies close to the GHA coast. The seasonal reversal of the winds aloft and622

the vertical motion over the GHA roughly track GHA rainfall, exhibiting a623

clear bimodal structure (Figures 2c-d, 3c-d); both of these are associated with624

an eastward shift in the descending arm of the Indian Ocean Walker Circula-625

tion during the rainy seasons, reducing its ability to suppress convection over626

the GHA (e.g. King et al (2019); Hastenrath et al (2011)). Surface easterlies627

are also strongly correlated with the ‘short’ rains (e.g. ∼ 0.85 in Hastenrath628

et al (1993)) but do not peak during the rainy seasons. Zonal velocity aloft (at629

250mb) and vertical velocity over the GHA are therefore examined to diagnose630

biases in the circulation processes associated with the rainy seasons.631

6.2 High-level zonal winds are associated with the strength of short rains632

This study primarily examines the relationship between high-level zonal winds633

and the ‘short’ rains, since the zonal circulation cell is not as coherent during634

the ‘long’ rains and therefore plays a smaller role in interannual variability635

(Hastenrath et al 2011). The strength of the ‘short’ rains are significantly636

negatively correlated with the peak zonal wind value in the second half of637

the year (Figure 5c); i.e., wetter ‘short’ rains are associated with stronger638

easterly anomalies. Strong easterlies directly above the GHA may be related639

to a reversal of the structure of the Indian OceanWalker Cell, with a convective640

center in the Indian Ocean off the coast of the GHA and upper-level divergence,641

as Limbu and Tan (2019) found in the OND climatology. This relationship is642

robust across model means as well (significant ρ
MM ), and is present across643

years in most models, though it is only significant in 6 models. The one model644

with a significant positive correlation (a positive ρMI), i.e., where wetter ‘short’645

rains are associated with weaker easterlies across years, INM-CM4-8, also has646

the largest wet bias in the ‘short’ rains. Furthermore, only one model, BCC-647

CSM2-MR, has strong westerlies during the ‘short’ rains on average together648
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with a substantial wet bias. Models however simulate the range of peak 250649

hPa zonal winds relatively well (Figure S4); biases in the upper-level zonal650

winds are therefore not a good diagnostic for GHA rainfall biases.651

6.3 Models overestimate the depth of short rain convection652

Vertical velocity is closely related to convection processes in observations and653

models. Rainfall in the bimodal region tends to occur when the processes654

that inhibit convection, such as descent associated with the Walker Cell or655

the import of cool, dry air leading to strong static stability, weaken (King656

et al 2019; Hastenrath et al 2011; Yang et al 2015a). Correspondingly, ascent,657

especially in the mid-troposphere, tends to closely track the development of658

both rainy seasons (Figures 2d, 3d).659

As expected, peak ascent at both 500mb and 250mb is strongly correlated660

with the strength of both the long and short rains in observations (Figure 5d,661

red column and S6 for 500 mb), and peak timing of ascent with the timing of662

the long rains. As with other metrics, the timing of the short rains tends to663

not be strongly correlated with the timing of ascent in observations or models,664

though one model is a particularly prominent outlier (CanESM5), for which665

later onsets are significantly associated with earlier peaking of ascent.666

Models generally replicate this strong relationship between peak ascent667

and peak strength of the rainy seasons, both across years in individual models668

and across mean states in different models (blue dots and bars in Figure 3d).669

Biases in ascent are therefore expected to translate directly to rainfall biases;670

this seems particularly relevant in the case of biases in the depth of convection671

during the ‘short’ rains. In observations, convection during the average ‘short’672

rains is much shallower than during the ‘long’ rains and tends to not reach673

250 hPa (Figure 9, red bars). The average model, however, produces ascent at674

250 hPa during the ‘short’ rains (Figure 9); in particular, models that produce675

climatological ascent at 250 hPa during the ‘short’ rains are on average 150 mm676

too wet, compared to 11 mm too dry for those that don’t. Models overestimate677

ascent in the ‘long’ rains on average as well (left panel in Figure 9), but this678

discrepancy is weaker.679

n other words, the strength biases of the ‘short’ rains may be related to680

model convection being too deep. In particular, models whose convection is681

not too deep tend to have ‘short’ rains closer to observed strengths, though682

even within this group, biases range from 140 mm too dry to 157 mm too683

wet. This signal is visible in other metrics as well; for example, the same684

models that are particularly biased in their vertical velocity also tend to be685

the models producing an IOD that is too powerful (see above in Section 5).686

Since the strength bias in the short rains is reduced in those models’ AMIP687

runs, the deep convection in the short rains is likely connected to the same688

overall structural error in these models that produces too much boreal fall689

convection in the western Indian Ocean.690
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7 Conclusions and discussion691

In conclusion, models continue to produce poor simulations of the rainy seasons692

in the GHA bimodal region. As in the CMIP5 generation of models, in CMIP6693

the timing of both the ‘long’ and ‘short’ rains tends to be late, the ‘short’694

rains tend to be too strong, and the ‘long’ rains tend to be too weak. These695

biases decrease confidence in projections of the evolution of future rainfall in696

the GHA, particularly since many are connected to problems simulating the697

underlying large-scale processes of the Indian Ocean Basin.698

In particular, these biases are correlated with biases in model representa-699

tions of four metrics of the ocean and atmosphere circulations in the Indian700

Ocean Basin – western Indian Ocean SSTs, the Indian Ocean dipole mode701

index, zonal winds aloft above the GHA, and ascent over the bimodal region.702

Mean state biases in the timing and strength of peak SSTs in the boreal spring703

and fall are correlated with biases in the timing and strength of the ‘long’ and704

‘short’ rains, respectively. Most models replicate the observed year-to-year re-705

lationship between the dipole mode index and the strength of the ‘short’ rains,706

though the average model produces an IOD that is too strong in the boreal707

fall.708

However, most rainy season biases in models are not reduced by fixing709

ocean biases; timing biases in particular are increased in AMIP runs in many710

models. Consequently, improvements to the performance of ocean models in711

GCMs alone may not be sufficient to improve model performance over the712

GHA. Nevertheless, due to their connection with both the ‘long’ and ‘short’713

rains, particularly significant mean state biases in the timing of the WIOSST714

cycle and the strength of the IOD may still be used as diagnostics for general715

biases in the simulation of the overall seasonal cycle of the basin.716

Model biases may therefore be particularly susceptible to issues in the717

simulation of broader circulation patterns. Peak zonal winds in the boreal718

fall aloft above the GHA are indeed significantly correlated with the strength719

of the ‘short’ rains across years in observations, across model means, and720

across years in a subset of models, with stronger easterlies or weaker westerlies721

associated with wetter seasons. This suggests that biased simulation of the722

Indian Ocean Walker Cell, which is particularly coherent during the ‘short’723

rains, may exacerbate rainfall biases. This is consistent with the findings of724

King et al (2019) for CMIP5 models, who also highlight the importance of725

improving Walker Cell dynamics in future modeling efforts.726

Finally, ascent over the bimodal region itself, which is predictably con-727

nected with the strength of both the ‘long’ and ‘short’ rains, is a useful di-728

agnostic of biases in model representations of convection. Despite the average729

250 hPa vertical pressure velocity in observations being positive, i.e., descend-730

ing, models produce high-level ascent on average, that is, convection that is731

too deep. The models with the biggest ascent bias are also the models with732

the largest positive bias in the Indian Ocean dipole mode index, suggesting733

an anomalously strong Bjerknes-type feedback, as had previously been found734
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in CMIP3 and CMIP5 models by Cai and Cowan (2013). The models are also735

those with the largest strength bias in the ‘short’ rains.736

Like in previous studies, it is easier to identify meaningful diagnostic met-737

rics for the ‘short’ rains, since these are more strongly coupled to large-scale738

patterns due to the stronger coherence of the Indian Ocean zonal circulation739

cell in this season (e.g., Hastenrath et al (2011)). Until a better understanding740

of the physical processes underlying the dynamics and interannual variability741

of the ‘long’ rains is developed, process-based model evaluations will continue742

to be more difficult to produce for the ‘long’ rains.743

A process-based model evaluation such as this one can be used to diag-744

nose whether models are simulating the rainy seasons correctly for the ‘right’745

reasons. A logical direction for future research would be to determine whether746

CMIP6 models that replicate observed relationships between the rainy seasons747

in East Africa and aspects of the atmospheric and ocean circulations produce748

different projections of future rainfall than those that don’t. For example,749

models that associate stronger IODs or stronger easterlies aloft over the GHA750

with weaker ‘short’ rains run counter to robust relationships found in the ob-751

servations and backed by literature; their projections may be flawed. Similarly,752

models with particularly large biases in key variables in the historical period,753

such as the IOD, may produce less trustworthy projections. An example of754

such a partitioning, based on models with the largest historical bias in the755

strength of the IOD is shown in Figure 10, which shows changes in rainy sea-756

son metrics between the historical period and end of century (2066-2098) in757

SSP370 (see Figure S8 for future values). These models’ changes are relatively758

clustered in the short rains (as would be expected given the increased relevance759

of the IOD to the short rains), particularly in their onset, demise and total760

rainy season amount changes. Similar to historical simulations, these models761

tend to be show the some of the wettest future short rains as well (Figure762

S1). Though part of this clustering may be due to the fact that these mod-763

els are not all independent (three of the six highlighted models are variants764

of the EC-Earth model), they may hint at particularly untrustworthy future765

outcomes. Further study will be needed to fully interpret these results, and766

compare them to model partitioning schemes based on different metrics.767

Finally, studying the biases in underlying processes is particularly crucial768

to identifying models that may have a low bias in the rainy seasons despite769

having an unrealistic simulation of the broader circulation; these models may770

have the ‘right’ rainy seasons, but for the ‘wrong’ reasons.771

More generally, studies that use climate model projections to estimate the772

impact of climate change on society should verify that the models are adept at773

simulating not just the variables of interest, but the processes that affect them.774

This is particularly important for rainfall, which is often poorly simulated,775

and in regions with complex dynamics such as the GHA, where biases in rainy776

seasons may have many causes.777



20 Kevin Schwarzwald et al.

Data Availability778

All rainfall statistics, circulation metrics, and correlations calculated for the779

research in this paper are available in the “gha rainfall cmip6” repository780

at https://github.com/ks905383/gha_rainfall_cmip6. All other data and781

code is available by request.782
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Table 1 Models analyzed in this study. A ’-’ marks models where we do not have data for
a given variable / run. See Table S1 for modeling group information.

precipitation (experiment) circulation (variable)

model historical AMIP SSP370 WIOSST IOD u ω

ACCESS-CM2 X X X X X X X
ACCESS-ESM1-5 X X X X X X X
AWI-ESM-1-1-LR X - X X X X X
BCC-CSM2-MR X X X X X X X

BCC-ESM1 X X - X X X X
CESM2 X X X X X X X

CESM2-FV2 X - - X X X X
CESM2-WACCM X X X X X X X

CESM2-WACCM-FV2 X X - X X - X
CMCC-CM2-HR4 X X - X X - -
CMCC-CM2-SR5 X X X X X X X

CMCC-ESM2 X - X X X - -
CNRM-ESM2-1 X X X - - - -

CanESM5 X X X X X X X
EC-Earth3 X X X X X X X

EC-Earth3-AerChem X X X X X - -
EC-Earth3-CC X X X X X - -
EC-Earth3-Veg X X X X X X X

EC-Earth3-Veg-LR X - X X X X X
FGOALS-f3-L X X - X - X X
FGOALS-g3 X X X X - X X
GFDL-CM4 X X - X X X X

GFDL-ESM4 X X X X X - X
IITM-ESM X X X X - - X
INM-CM4-8 X X X X - X X
INM-CM5-0 X X X X - X X

IPSL-CM5A2-INCA X - X X X - -
IPSL-CM6A-LR X X X X X X X

IPSL-CM6A-LR-INCA X - - X X - -
KACE-1-0-G X X X X - X X
KIOST-ESM X X - X X - X

MIROC6 X X X X X X X
MPI-ESM-1-2-HAM X X - X X X X

MPI-ESM1-2-HR X X X X X X X
MPI-ESM1-2-LR X X X X X X X

MRI-ESM2-0 X X X X X X X
NESM3 X X - X X X X

NorCPM1 X X - X - - X
NorESM2-LM X - X X X X X
NorESM2-MM X - X X X X X

SAM0-UNICON X X - X X X X
TaiESM1 X X X X - X X

UKESM1-0-LL X - - - - - -
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Fig. 1 Study area in CHIRPS observations and CMIP6 models. The red contour shows the
area with a bimodal rainy season structure over GHA land in CHIRPS; note that CHIRPS is
a land-only data product and rainfall observations over the ocean are not considered in this
study. Darker shading means more CMIP6 models have a bimodal rainy season in that loca-
tion. All models are shown at their native resolutions; grid cells may only partially overlap
between models. Most models place the bimodal region along the coastal plains of Somalia,
Kenya, and southeastern Ethiopia, consistent with observations. For the remainder of this
study, statistics of the rainy seasons (and ascent) are averaged over each data product’s
bimodal region over land.
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Fig. 2 Rainfall (blue) and key variable (red) climatologies in observations (CHIRPS for
rainfall, OISST for SST variables) or reanalysis (ERA5 for circulation variables). Light green
shading is the geographical average long (centered on May) and short (centered on October)
rainy seasons. Since climatology shows the study area average rainfall, but seasonal onset and
demises were calculated using local rainfall before averaging, correspondence between light
green shaded area and local rainfall climatologies is not perfect. See Figure 3 for composite
climatologies.
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Fig. 3 Seasonal composites of WIOSST, IOD, 250 hPa zonal winds (u), and 250 hPa
pressure velocity (ω) observations / reanalysis (top row: OISST, bottom row: ERA5). Values
are the average across years relative to CHIRPS seasonal onset (1981-2013); the average peak
day of each season is shown in dotted lines and the average end of each season in a solid line.
All variables peak roughly around the GHA bimodal rainy seasons, though peaks generally
correspond more closely to rainfall peaks during the long rains. See Figure 2 for raw (not
composite) climatologies.
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Fig. 4 Key characteristics of the ‘long’ and ‘short’ rains in the study region in CMIP6 mod-
els (light blue) and CHIRPS observations (red). Each dot shows a model-year (CMIP6) or
an observation-year (CHIRPS) between 1981 and 2013. Box plots show the median (notch),
0.25 and 0.75 quartiles (box), up to 1.5⇥IQR beyond the 0.25 and 0.75 quartiles (whiskers),
and outliers beyond this limit (circles). The range of models is biased versus observations
for almost every characteristic, except for the onset of the ‘short’ rains (panel a, x-axis).
Otherwise, models tend to be too late in their demise and peak timing, rain too little on the
wettest days, overestimate the length and strength of the ‘short’ rains, and underestimate
the length and strength of the ‘long’ rains.
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Fig. 5 Correlations between statistics of the GHA rainy seasons and statistics of (clockwise
from top) WIOSSTs, the IOD, upper-level pressure velocity, and upper-level zonal winds
in models and observations. For each sub-panel, the leftmost column (red dot) shows the
correlation between years of the variable and the rainy season in observations (‘observation-
year’ correlation), the center column (blue dots) shows the correlation between years of the
variable and the rainy season for each model (‘model-year’ correlation), and the rightmost
column (blue bar) shows the correlation between model means of the variable and the rainy
season (‘model-means’ correlation). Black vertical lines show 95% confidence intervals; for
individual models and observations, darker blue dots show significant Pearson’s correlation
coefficients at the p < 0.05 level. For each variable and season, correlations between two sets
of statistics are shown: ‘timing’ means the correlation between the peak day of the rainy
season and the peak day of the variable, ‘amount’ means the correlation between the total

amount of rain in that season and the peak amount of the variable. Correlations are robust
to different subsets of the GHA; see Figure S5 for the same calculations over a smaller box
centered on southeastern Somalia.
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Fig. 6 Key characteristics of the ‘long’ and ‘short’ rains in the study region (as in Figure
4), for models with available daily rainfall data from both fully coupled runs (light blue)
and runs forced with historical SSTs (dark blue). Coupling doesn’t uniformly reduce biases.
AMIP runs tend to end the long rains later, leading to an increase in the duration bias, and
begin the short rains later than fully coupled runs, leading to a decrease in the duration
bias. In both rainy seasons, the late bias in the timing of the rainy season peak is increased

compared to the fully coupled runs. In line with the changes in duration bias, the average
model-year total amount is too strong in the AMIP long rains, but the positive rainfall
bias is decreased in the short rains. In line with observations, the AMIP long rains are now
stronger than the short rains.

Limbu PTS, Tan G (2019) Relationship between the October–December rainfall in Tanzania915

and the Walker circulation cell over the Indian Ocean. Meteorologische Zeitschrift pp916

453–469, DOI 10.1127/metz/2019/0939917

Liu W, Cook KH, Vizy EK (2020) Influence of Indian Ocean SST regionality on918

the East African short rains. Climate Dynamics 54(11):4991–5011, DOI 10.1007/919

s00382-020-05265-8920

Lyon B (2014) Seasonal Drought in the Greater Horn of Africa and Its Recent Increase921

during the March–May Long Rains. Journal of Climate 27(21):7953–7975, DOI 10.1175/922

JCLI-D-13-00459.1923

Lyon B (2020) Biases in CMIP5 Sea Surface Temperature and the Annual Cycle of East924

African Rainfall. Journal of Climate 33(19):8209–8223, DOI 10.1175/JCLI-D-20-0092.1925

Lyon B, Vigaud N (2017) Unraveling East Africa’s Climate Paradox. In: Climate Ex-926

tremes, American Geophysical Union (AGU), chap 16, pp 265–281, DOI 10.1002/927

9781119068020.ch16928

NASA Earth Observatory (2011) Severe Drought Causes Famine in East Africa.929

https://earthobservatory.nasa.gov/images/51411/severe-drought-causes-famine-in-east-930

africa931

Nicholson SE (2017) Climate and climatic variability of rainfall over eastern Africa. Reviews932

of Geophysics 55(3):590–635, DOI 10.1002/2016RG000544933



28 Kevin Schwarzwald et al.

Fig. 7 Change in bias between fully coupled and AMIP runs. Each dot represents the
climatological bias difference |AMIP| - |coupled|, scaled by the average climatological bias
of the fully coupled runs for the long (L) and short (R) rains. A value of 0 means the
AMIP and coupled biases are identical; a value of 1 means the AMIP bias is larger than
the coupled bias by an amount equal to the average coupled bias, a value of -1 means the
opposite. AMIP models do not uniformly decrease (or increase) biases; the long rain demise
bias in particular is worsened in most models.

Fig. 8 Examples of metrics in which fully coupled runs tend to have stronger biases than
AMIP runs. Points show model means. Y axes represent the change in the absolute bias
between AMIP and coupled runs (negative values mean AMIP runs have lower biases) in
a given metric; x axes represent the early year WIOSST timing bias (L panel) or the late
year IOD strength bias (R panel) in the fully coupled run. Shading shows coupled model
bias. Models whose western Indian Ocean SSTs (WIOSSTs) peak the latest compared to
observations tend to see the biggest improvements in the late onset bias seen in the most
models’ long rains (L panel). Similarly, the models with the largest positive IOD biases (the
8 models in the red box in the R panel) show the largest improvements in short rain strength
biases when forced with historical SSTs.
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Fig. 9 Peak strength of pressure velocity (ω) over study region in models and observations.
Models tend to produce deeper convection than observations in the short rains (vertical
axes; model bias in pressure velocity is stronger at 250 hPa, where observations rarely show
strong upward motion, than at 500 hPa).
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Fig. 10 Changes in GHA rainy season characteristic between models’ historical runs (1981-
2013) and SSP370 (2066-2098) runs. Green dots highlight models with IOD biases above
1.5 K. Projections of future changes in onset, demise, peak daily amount, and total amount
for the short rains in particular seem to be similar across models with particularly biased
historical IODs; however, three of these models are variants from the same modeling group
(EC-Earth), which may explain the clustering.
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