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Abstract 

The natural convection flow over the vertical wavy surface in permeable media of 

viscous incompressible fluid with thermal conductivity has been investigated. The 

governing boundary layer equations are transformed into a non-dimensional form using a 

suitable set of dimensionless variables. The resulting nonlinear system of partial 

differential equations is solved numerically employing the finite difference, known as the 

fully implicitmethod. The numerical results for velocity u, temperature θ, Nusselt 

number Nu for different magnitudes of magnetic field parameter M, Prandtl number 

Pr, inverse Darcy number 1
Da

− , surface amplitude a, thermal conductivity variation 

parameter γ, and heat generation parameter Q. 

Keywords: Natural convection; Magnetohydrodynamics (MHD); Heat transfers; Wavy 

surface; permeable media; Thermal conductivity. 

Introduction 

Roughened surfaces are encountered in several heat transfer collectors, flat plate 

condensers in refrigerators, and heat exchangers. One normal illustration of a heat 

exchanger is radiator utilized in vehicles. 

The natural convection in permeable media on Magnetohydrodynamic(MHD). Boundary 

layers on various geometrical shapes have been studied by many investigators and it has 

been a very popular research topic for many years. The problem of MHD free convection 

in a strong cross field was investigated by Kuiken [1]. The natural convection of a 

vertical wavy surface was first studied by Yao [2]. Moulic et al. [3] have likewise 

concentrated on the mixed convection along the wavy surface.Molla et al [4] explored the 

natural convection stream along an upward wavy surface with uniform surface 

temperature in presence of heat generation/absorption. Al-Nimr and Hader[7] 

additionally researched MHD free convection flow in open-ended vertical permeable 

channels. Tashtoush and Al- odat[5] investigated the magnetic field effect on heat and 

fluid flow over a wavy surface with variable heat flux. Pop I et al[8] have also studied the 

problem of Magnetohydrodynamic boundary layer flow and heat transfer on a continuous 

moving wavy surface. G. Tanda and G. Vittori [9] studied the fluid flow and heat transfer 

mailto:rashaadel77@science.helwan.edu.eg
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in a two-dimensional wavy channel. F. M . Hady et al [10] likewise explored “MHD 

boundary layer flow and heat transfer over anuninterrupted moving wavy surface in 

permeable media. C. –Y. Cheng [11] studied also “the natural convection heat and mass 

transfer near aupward wavy surface with fixed wall temperature and concentration in a 

permeable medium. The natural convection along a  vertical complex wavy surface was 

studied by Yao [6]. Heat generation effects on MHD natural convection flow along a 

vertical wavy surface with variable thermal conductivity investigated by Md. Abdul Alim 

et al [13]  

The governing partial differential equations were transformed into a non-dimensional 

form by using dimensionless variables. The transformed boundary layer equations are 

solved numerically by finite difference ( fully implicit method ) [12]. The variation of 

velocity u, temperature θ and Nusselt number Nu as a function of Prandtl number Pr, 

inverse Darcy number 1
Da

− , magnetic field parameter M, wavy surface amplitude a, 

thermal conductivity variation parameterγ and heat generation parameter Q. 

Nomenclature 

 
a   the dimensionless amplitude of the 

wavy surface 

B    magnetic induction 

M    magnetic field parameter 

L characteristic reference wave-length 

Nulocal Nusselt number 

P      pressure 

Pr     Prandtl number 

Gr    Grashof number 

      electrical conductivity 

M     magnetic field parameter                        

g      gravitational acceleration 

T      temperature  

,u v axial and normal dimensionless 

velocity Components, respectively 

,u v the velocity components along  

( ,x y ) 

,x y  dimensionless coordinates 

,x y dimensional coordinates 

Da     Darcy number 

 
Q      heat generation parameter 

Qo       heat generation constant   

 
Cp  specific heat at constant pressure 

k   permeability of the saturated 

permeable Medium 

K   thermal conductivity  

Greek symbol 

       kinematics viscosity 

      density 

( )x  surface geometry function 

      dimensionless temperature 

     coefficient of thermal expansion 

      thermal diffusivity  

      thermal conductivity variation  

         parameter                           

 

superscripts  

      dimensional quantity  

 

Subscripts 

 

w       wall surface 

        free stream 

x       derivative with respect to x 
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Mathematical formulation and analysis  

In the study of two-dimensional steady laminar free convection boundary layer flow of a 

viscous incompressible and electrically conducting fluid along a vertical wavy surface in 

permeable media in presence of the magnetic field of strengthB , it is assumed that the 

surface temperature of the vertical wavy surface 
w

T is uniform, where
w

T T
. 

The boundary layer analysis outlined below ( )x is arbitrary, but our detailed 

numerical work. Assumes that the surface exhibits sinusoidal deformations. The wavy 

surface may be described by  

( ) sin (1)
n x

y x a
l


 

= =  
   

 

Where l is the characteristic length associated with the wavy surface and a is the 

amplitude of the wavy surface. The geometry of the wavy surface and the two-

dimensional Cartesian coordinate system are shown in figure(1) in addition, it is assumed 

that there is no heat generation, nobody forces acting on the system, no Joule heat effect, 

and no viscous dissipation. 

 

Figure (1) physical model and coordinate system. 
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The conservation equations for the flow with steady, laminar, and two-dimensional 

boundary layer under the Boussinesq approximation, the continuity, momentum, and 

energy equations can be written as:  

0 (2)
u v

x y

 
+ =

   

 

( )
2

21
(3)

u u p
u v u g T T u u

x y x k

   
 

  
+ = − +  + − − −

  
 

21
(4)

v v p
u v v v

x y y k




  
+ = − +  −

    

 

( )
2 (5)

p p

Q T TT T K
u v T

x y c c 
− 

+ = −  +
 

 

 

The boundary conditions 

 

 

 

: 0 , , (6)at y u T T p p → = = =  

Where ( ),x y are the dimensional coordinates tangent and perpendicular to the surface 

and ( ),u v are the velocity components in direction of ( ),x y , 
2 is the Laplacian 

operator, g is the acceleration caused by gravity,  is the density, p is the dimensional 

pressure of the fluid,  is the strength of magnetic fluid,  is the electrical conduction, 

 is the coefficient of thermal expansion,  is the kinematics viscosity,  is the 

dynamic viscosity, K is the thermal conductivity of the fluid
p

c , is the specific heat 

caused by constant pressure, k is the permeability of the saturated porous medium, 
w

T is 

( ) : 0 , 0 ,
w w

at y y x u v T T= = = = =
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the surface temperature, T
is the temperature surrounding the fluid and p

is the 

pressure of fluid beyond the boundary layer. 

 

Applying Prandl’s transposition theorem to convert the asymmetrical wavy surface into a 
flat surface and boundary-layer approximation, the upcoming dimensionless variables 

were introduced for non-dimensionalizing the fundamental equations shown: 

 
1 2

14

2
, ,

x y L
x y Gr p Gr p

L L




−−
= = =  

( )
1 1

2 4, ,
x x

L L d
u Gr u v Gr v u

dx

   
 

− −
= = − =  

( )
3

2
,

w

w

g T T T T
Gr L

T T





 



− −
= =

−
. (7) 

Where( ),u v are the dimensionless velocity components in ( ),x y direction,   is the 

dimensionless temperature. Registeringthe dimensionless dependent and independent 

variables into equations (2)-(5), we are going to get the following dimensionless form of 

the governing equations, after neglecting terms of smaller orders of magnitude inGr , the 

Grashof number, the fundamental equations are: 

0
u v

x y

 
+ =

 
 (8)

 

( )
1 2

24

2

1

1
x x

u u p p u
u v Gr

x y x y y

Mu Da u

 

 −

    
+ = − + + +

    

+ − −

                (9) 

 

( )
2

1 4 2

2

2 1

1
x x x

xx x

u u p u
u v Gr

x y y y

u Da u

  

 −

    
+ = − + +     

− −                 (10) 
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( )( ) ( )
22

2 2

2

1 1
1 1 1 (11)

Pr Pr

       
    

+ = + + + + +      
x xu v Q

x y y y

The pressure gradient is along the y-direction which can be demonstrated by reviewing 

Equation (10), as the result of the previous interpretations it implies that the lowest order 

pressure gradient along x-direction can be determined from the inviscid flow solution.  

( )
2

1 42 2 2

2

2 1 2

1
x x x x

x xx x

u u p u
u v Gr

x y y y

u Da u

   

  −

    
+ = − + +     

− −                    (12)

 

For our problem, the inviscid flow field is at rest and hence 0
p

x

 
=  

and elimination of  

p

y

 
  

 between equations (9), (10) by multiplying equation (10) by 
x

 and adding the 

two equations (9), (12) we have  

 

( )
2

2 2 1

2 2

2 2

1
1

1

1 1

 





 

−   
+ = + − −    + 

− +
+ +

x xx

x

x

x x

u u u
u v u Da u

x y y

M
u

                       (13)
 

The governing equations will be  

0 (14)
u v

x y

 
+ =

 
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( )
2

2 2 1

2 2 2 2

1
1 (15)

1 1 1

 
 

  
−   

+ = + − − − +    + + + 
x xx

x

x x x

u u u M
u v u Da u u

x y y

 

( )( ) ( )
22

2 2

2

1 1
1 1 1 (16)

Pr Pr

       
    

+ = + + + + +      
x xu v Q

x y y y

 By altering the boundary conditions (6) utilizing the dimensionless form (7) we get :

 

0 :      0 ,    0 ,   1= = = =at y u v  

:      0 ,     0→ = =at y u
                                             (17) 

In practical applications, the physical quantities of principle interest are the shearing 

stresswin terms of the skin friction coefficients   Cf  and the rate of heat transfer in terms 

of Nusselt number Nu which can be written as  

( )2

2
      


  

= =
−

w w
f

w

q x
C and Nu

U k T T
                            (18) 

The local skin friction coefficient  Cf  and the rate of heat transfer in terms of the local 

Nusselt number  Nu  takes the following form:  

 

C f Gr x( )1 4
2 = 1+s x

2 ¶2u

¶y2                                     (19) 

 

Nu Gr x( )- 1 4 = - 1+g( ) 1+s x

2 ¶q
¶y                          (20) 

 

Results and Discussion 
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The partial differential equations (14)-(16) and the associated boundary conditions (17) 

were solved numerically by finite difference fully ( implicit method ) the derivatives in 

regard to x and y are approximated by central difference. Many numerical results were 

obtained all over the progression of this task and representative set of graphical results for 

the velocity u and temperature field  besides the Nusselt number Nu are presented. 

Results are given for the magnetic field parameter M = 0 , 1 , 5 and  7 ; Prandtl number 

Pr = 0.5 , 1.5 , 3 and 4.5 ; the amplitude parameter a = 0.1 , 0.2 , 0.4 and 0.5 ; the inverse 

Darcy number  Da-1 = 0.1 , 0.5 , 1 , 2  and  5 ; heat generation parameter  Q = 0.2 , 0.5 , 1 

, 1.5  , 2  and  thermal conductivity variation parameter   = 0 , 1 , 2 , 6. Fig. (2) introduce 

the impact of magnetic field parameter  M on velocity description u , we can observe 

from this figure that  the increasingof magnetic field parameter M  inclines towards the 

increase of the velocity description u when M = 0 , 1 , 5, 7  ,  pr =0.7, Q = 0.1 , a = 0.2 , 

Da-1 =0.1 and  = 2. fig. (3) presents the impact of inverse Darcy number Da-1 on velocity 

description u , we can observe from this figure that the increase of inverse Darcy number 

Da-1inclines towards increase the velocity descriptionu whenDa-1 = 0.1 , 0.5 , 1 , 2  , 5 ,  

pr =0.7, Q = 0.1 , a = 0.2 , M =0.2 and  = 2. fig. (4) illustrated that the increase of heat 

generation parameter Q tends to increase the velocity description u when  Q = 0.2 , 0.5 , 1 

, 1.5  , 2 ,  pr = 0.7 ,  Da-1 =0.1  ,  a = 0.2  ,  M = 0.2 and   = 2.  Fig.(5) show that the 

increase of thermal conductivity variation parameter   tends to increase of the velocity 

description u  when  = 0 , 1 , 2 , 6 ,pr =0.7, Da-1 =0.1, a = 0.2 , M =0.2 and Q = 0.1. 

fig.(6) presents the impact of the magnetic field parameter  M  on the temperature 

description and it is clearly that the increase of  M tends to decrease the temperature   

when  M = 0 , 1 , 5, 7 ,  pr =0.7, Q = 0.1 , a = 0.2 , Da-1 =0.1 and  = 2. Fig.(7) and fig. (8) 

illustrates that the temperature description decrease with increment both of inverse 

Darcy number Da-1 and prandtle number  Pr  when  Da-1 = 0.1 , 0.5 , 1 , 2  , 5 , Pr = 0.5 , 

1.5 , 3 , 4.5 , Q = 0.1 , a = 0.2 , M =0.2 and  = 2. Fig. (9) and fig. (10) present the 

influence of  prandtle number  Pr and magnetic field parameter  M on Nusselt number Nu 

and it is clearly that the increment of  prandtle number  Pr and magnetic field parameter  

M incline towards the increment of the Nusselt number Nu when  Pr = 0.5 , 1.5 , 3 , M = 

0 , 1 , 5, 7 , Q = 0.1 , a = 0.2 , Da-1 =0.1 and  = 2. Fig.(11) and fig. (12) illustrate that the 

Nusselt number Nu increase with increase both of inverse Darcy number Da-1and heat 

generation parameter Q  when  Da-1 = 0.1 , 0.5 , 1 , 2  , 5 ,  Q = 0.2 , 0.5 , 1 , 1.5  , 2 ,  pr 

= 0.7 ,  a = 0.2  ,  M = 0.2 and   = 2. Fig .(13) illustrates that the increment in thermal 

conductivity variation parameterincline towards to the increment the Nusselt number Nu  

when   = 0 , 1 , 2 , 6  ,  pr =0.7, Da-1 =0.1, a = 0.2 , M =0.2 and Q = 0.1.  
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Fig. (2)Illustratesvelocity distribution u for different magnetic field parameter M, pr =0.7, 

Q = 0.1, a = 0.2, Da-1 =0.1 and  = 2. 

 

 

 

Fig. (3)Illustratesvelocity distribution u for different inverse Darcy number Da-1, pr =0.7, 

Q = 0.1, a = 0.2, M =0.2 and  = 2. 
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Da-1=2 

Da-1=5 



 10 

 

 

Fig. (4)Illustratesvelocity distribution u for different heat generation parameter Q, pr 

=0.7, Da-1 =0.1, a = 0.2, M =0.2 and  = 2. 

 

 

 

Fig. (5)Illustratesvelocity distribution u for different thermal conductivity variation 

parameter, pr =0.7, Da-1 =0.1, a = 0.2, M =0.2 and Q = 0.1. 
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Fig. (6)Illustratesthe temperature profile   for different magnetic field parameter M, pr 

=0.7, Q = 0.1, a = 0.2, Da-1 =0.1 and  = 2. 

 

 

 

 

Fig. (7)Illustratesthe temperature profile  for different inverse Darcy number Da-1, pr 

=0.7, Q = 0.1, a = 0.2, M =0.2 and  = 2. 
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Fig. (8)Illustratesthe temperature profile  for different prandtle number Pr, Da-1 =0.1, Q 

= 0.1, a = 0.2, M =0.2 and  = 2. 

 

 

Fig. (9)IllustratesNusselt number Nu for different prandtle number Pr, Da-1 =0.1, Q = 0.1, 

a = 0.2, M =0.2 and  = 2. 
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Fig. (10)IllustratesNusselt number Nu for different magnetic field parameter M, pr =0.7, 

Q = 0.1, a = 0.2, Da-1 =0.1 and  = 2. 

 

 

Fig. (11)IllustratesNusselt number Nu for different inverse Darcy number Da-1, pr =0.7, 

Q = 0.1, a = 0.2, M =0.2 and  = 2. 
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Fig. (12)IllustratesNusselt number Nu for different heat generation parameter Q, pr =0.7, 

Da-1 =0.1, a = 0.2, M =0.2 and  = 2. 

 

 

Fig. (13)Illustrates Nusselt number Nu for different thermal conductivity variation 

parameter, pr =0.7, Da-1 =0.1, a = 0.2, M =0.2 and Q = 0.1. 
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Conclusion  

In this paper, we study the effect of natural convection flow along an upward wavy 

surface in permeable media with variable thermal conductivity. We have found the 

governing boundary layer equations and altered them into a non-dimensional form using 

a suitable set of dimensionless variables. Afterwards, we have acquired the nonlinear 

system of partial differential equations which can be solved numerically by finite 

difference, known as the fully implicit method. We achieve some results of velocity u, 

temperature Q, Nusselt number Nu for different values of magnetic field parameter  M, 

prandtle number  Pr, inverse Darcy number Da-1, amplitude of wavelength a, heat 

generation parameter Q  and in thermal conductivity variation parameter g.    
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