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Abstract: As environmental concerns have grown, the combined economic emission dispatch (CEED) 
problem has gotten a lot of attention. Both the cost of fuel and the emission pollution caused by it must 
be kept to a minimum. As a result, this paper presents an innovative hybrid approach (ihPSODE) for 
solving CEED problems. This hybrid technique incorporated novel differential evolution (nDE) and 
particle swarm optimization (nPSO). Where nDE introduces a new mutation approach and crossover 
rate (to prevent premature convergence) as well as nPSO introduces a new acceleration coefficient, 
inertia weight and position improve equation (to alleviate the stagnation). So as to balance among local 
and global search ability, after ihPSODE population evaluation, the best half individuals are determined 
and the rest individuals are discarded. Then, nPSO is used in the current population (to sustain 
exploration and exploitation) and nDE is employed in the nPSO generated population (to improve 
convergence accuracy). The competence of the proposed algorithms (ihPSODE, nPSO and nDE) are 
inspected on 23 unconstrained benchmark function and then solved 3 test system (3-, 6- and 40-unit) of 
economic load dispatch (ELD) and 3 test system (3-, 10- and 40-unit) of CEED problem. The 
experiments have denoted that the proposed algorithms show competitive results and significant 
performances. 

Keywords: Economic load dispatch, Combined economic emission dispatch problem, Meta-heuristic 
algorithms, Hybrid algorithm.   

1. Introduction  

In modern power system operation, economic load dispatch (ELD) is a critical optimization problem 
(Mansor et al. 2018). The basic goal of the ELD problem is to lower total generation costs while keeping 
load demand and other equality and inequality limitations in mind. Apart from the producing capacity 
limits, the classic ELD primarily analyses the power balance constraint. But, due to practical limitations 
in power system operation, ELD essentially consider a multiplicity of real-world constraints like 
transmission loss, prohibited operating zones, multi-fuel options, ramp rate limits, spinning reserve 
along with system power demand etc. It resulted with a non-convex nonlinear ELD problem and finding 
an optimum solution of this type problem is very challenging and time-consuming. The environmental 
constraint, which consists of Carbon oxides (Cox), Nitrogen oxides (NOx) and Sulphur oxides (Sox), 
infects the air, is one of those limitations that is always taken into account. By properly allocating load 
among available generators, the hazardous environmental pollutants released by fossil-fuel power plants 
can be decreased. However, the power plant's operational costs would rise. As a result, a solution must 
be found that balances both emissions and fuel costs. It can have been attained by ‘combined economic 
and emission dispatch (CEED)’ problem. The key goal of the CEED problem is to concurrently reduce 
fuel costs and emissions while meeting equality and inequality limits plus load demand. Mathematically, 
the ELD and CEED problem can be expressed as an optimization (minimization) problem, as shown 
below. 

1.1 Mathematical problem formulation  

Economic load dispatch (ELD) 

In ELD the total fuel cost ($/hr) can be mathematical expressed as below: 

                                                  𝐹𝑡 = ∑ (𝑎𝑖𝑃𝑖2 + 𝑏𝑖𝑃𝑖+𝑐𝑖)𝑛𝑖=1                                                                     (1) 

Also, in view of valve-point loadings effect the fuel cost function given as follows.    

                                 𝐹𝑡 = ∑ [(𝑎𝑖 + 𝑏𝑖𝑃𝑖+𝑐𝑖𝑃𝑖2) + |𝑒𝑖sin(𝑓𝑖(𝑃𝑖𝑚𝑖𝑛 − 𝑃𝑖))|]𝑛𝑖=1                                       (2) 

where 𝐹𝑡: total fuel cost of generations ($/hr); 𝑎𝑖 , 𝑏𝑖and𝑐𝑖: cost factors of a generator𝑖; 𝑒𝑖 and 𝑓𝑖: fuel 

cost quantities for valve point effects of a generator𝑖; 𝑃𝑖: power output of the 𝑖𝑡ℎ generator.   
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The constraints of ELD problems are listed as follows.  
o Generator limits 𝑃𝑖min ≤ 𝑃𝑖 ≤ 𝑃𝑖max 

where 𝑃𝑖min (minimum) and 𝑃𝑖max (maximum) power generation by unit 𝑖.  
o Power balance  ∑𝑃𝑖𝑛

𝑖=1 = 𝑃𝐷(totalloaddemand) + 𝑃𝐿(totaltransmissionlineloss) 
𝑃𝐿 =∑∑𝑃𝑖𝐵𝑖𝑗𝑃𝑗𝑛

𝑗=1 +𝑛
𝑖=1 ∑𝑃𝑖𝐵𝑜𝑖𝑛

𝑖=1 + 𝐵𝑜𝑜 

where 𝐵𝑖𝑗, 𝐵𝑜𝑖 and 𝐵𝑜𝑜 are transmission loss coefficient.   

o Prohibited operating zone 𝑃𝑖min ≤ 𝑃𝑖 ≤ 𝑃𝑖,1𝑙  : 𝑃𝑖,𝑘−1𝑢 ≤ 𝑃𝑖 ≤ 𝑃𝑖,𝑘𝑙 : 𝑃𝑖,𝑛𝑖𝑢 ≤ 𝑃𝑖 ≤ 𝑃𝑖max; 𝑘 = 2,3, …𝑛𝑖 
where 𝑛𝑖: number of prohibited operating zone and 𝑃𝑖,𝑘𝑙  & 𝑃𝑖,𝑘𝑢 : lower and upper limit of 𝑘𝑡ℎ 

prohibited zone of generating unit 𝑖. 
o Ramp rate limit  max(𝑃𝑖min, 𝑃𝑖𝑡−1 − DR𝑖) ≤ 𝑃𝑖𝑡 ≤ min(𝑃𝑖max, 𝑃𝑖𝑡−1 + UR𝑖) 

where 𝑃𝑖𝑡 & 𝑃𝑖𝑡−1 current & previous output power and 𝑈𝑅𝑖 & 𝐷𝑅𝑖: up & down ramp limit of 
generating unit 𝑖. 

Combined economic emission dispatch (CEED) 

When generator units burn fossil fuels, pollutants such as SOx, NOx, and COx are released into the 
atmosphere. The overall emission of these pollutants, known as emission constrained dispatch (ECD), 
can be written as.  

                                         𝐸𝑡 = ∑ [10−2(𝛼𝑖𝑃𝑖2 + 𝛽𝑖𝑃𝑖 + 𝛾𝑖)⏟              quadraticfunction + 𝜓𝑖exp(𝜆𝑖𝑃𝑖)⏟        exponentialfunction]𝑛𝑖=1                              (3) 

 

where 𝐸𝑡: total amount of emissions (lb/hr) and 𝛼𝑖 ,𝛽𝑖 ,𝛾𝑖, 𝜓𝑖 𝜆𝑖: emission coefficients of the 𝑖𝑡ℎunit. 
Moreover, simultaneously minimizing two objective function 𝐹𝑡 and 𝐸𝑡 is the main target of the CEED 
problem. By a price penalty factor (ℎ) methodology this bi-objective problem can be transformed into a 
single objective problem as follows.  

                                                                  𝜑𝑡 = 𝐹𝑡 + ℎ × 𝐸𝑡                                                                    (4) 

where 𝜑𝑡; total cost of the system operation. The price penalty factor ℎ can be calculated by the following 

procedures for a particular load demand.    

(i). Calculate the ratio 
𝐹𝑡(𝑃𝑖max)𝐸𝑡(𝑃𝑖max) = ℎ𝑖 , 𝑖 = 2,3, … 𝑛$/kg. 

(ii). Sort the obtained ℎ𝑖 values in ascending order. 

(iii). Add 𝑃𝑖max of each unit one at a time starting from the unit with smallest ℎ𝑖 until∑ 𝑃𝑖max ≥ 𝑃𝐷. 
(iv). Catch the last value of ℎ𝑖 that attains the previous situation which signifies the price penalty factor 

for the given load. 
Equation (5) can be modified as follow (for providing a balance between minimization of the fuel cost 
and emission).   

                                                        𝜑𝑡 = 𝑤 × 𝐹𝑡 + (1 − 𝑤) × ℎ × 𝐸𝑡                                                    (5) 

where 𝑤 (specifies type of the optimization problem) is the weight factor and if –  
(i). 𝑤 =1 infers ELD problem 

(ii). 𝑤 =0 implies ECD problem 
(iii). 𝑤 =0.5 indicates CEED problem 
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1.2 Related literature survey   

To handle engineering optimization challenges, many traditional optimization techniques such as 
Newton and quasi-Newton have been created. Moreover, they have some intrinsic limitations, such as 
high computing cost, local optimal stagnation, and search space derivation (Simpson et al. 1994). It's 
also challenging to locate the best solution during the problem-solving process. To circumvent the 
limitations of traditional optimization approaches, meta-heuristics algorithms (MAs) have been 
developed to handle complicated engineering optimization problems. The MAs can be separated into 4 
sets according to the mechanical variances as- 
 

MAs   Motivated from  Example  

Evolutionary algorithms  
(EAs) 

biology genetic algorithm (GA) (Davis 1991), differential 
evolution (DE) (Storn and Price 1997),  
Backtracking Search Optimization Algorithm (BSA) 
(Civicioglu P 2013; Hassan and Rashid 2019a; 
Hassan and Rashid 2019a)  etc.  

Swarm intelligence 
algorithms  
(SIAs) 

social bugs particle swarm optimization (PSO) (Kennedy and 
Eberhart 1995), artificial bee colony (ABC) 
(Karaboga and Basturk 2007), cuckoo search (CS) 
(Yang and Deb 2009), krill herd (KH) (Gandomi and 
Alavi 2012) grey wolf optimizer(GWO) (Mirjalili et 
al. 2014) dragonfly algorithm (DA) (Mirjalili 2016), 
harris hawks optimization (HHO) (Heidari et al. 
2019) etc. 

Physics-based algorithms  
(PBAs) 

natural 
phenomenon  

harmony search (HS) (Geem et al. 2001), 
gravitational search algorithm (GSA) (Rashedi et al. 
2009), water cycle algorithm (WCA) (Eskandar et 
al. 2012), equilibrium optimizer (EO) (Faramarzi et 
al. 2019) etc. 

Human behaviour based 
algorithms  
(HBAs) 

human being  teaching-learning-based optimization (TLBO) (Rao 
et al. 2011), mine blast algorithm (MBA) (Sadollah 
et al. 2013) etc. 

 
The employment of the "trial-and-error" method in looking for solutions is the fundamental 

advantage of these algorithms. As a result, these methods have been successfully used to global 
optimization issues. Between popular MAs, PSO and DE successfully applied in diverse optimization 
parts due to their dominant search ability and simple arrangement. However, various drawbacks of DE 
and PSO limit their application in complex optimization contexts.  

The fundamental drawback of PSO is that it can quickly become trapped in a local optimal solution 
zone. As a result, in PSO, speeding convergence speed and avoiding local optimal solutions are two 
essential challenges. To address such concerns, many potential changes to the PSO have been proposed 
in recent literature. Espitia and Sofrony (2018) proposed VPSO in which particle vortex behavior and 
particle circular motions are implemented for improving search capacity and escaping the local minima 
respectively. To find the optimum of the current search and gradually explore the search space, Yu et al. 
(2018) proposed SHPSO by the implementation of social learning PSO. Chen et al. (2018) devised 
PSOCO where two distinct crossover operations are taken to produce promising exemplars in order to 
balance diversity. A self-adaptive tool and unique factor (w, c1, c2) utilized for enhancing each particle 
position depending on their fitness in UAPSO which is devised by Isiet and Gadala (2019). Hosseini et 
al. (2019) developed HAFPSO where fractional-order derivatives and hunter-attack strategy are used to 
accelerate convergence and avoid stagnation respectively. Khajeh et al. (2019) proposed MPSO where a 
novel particle initializing scheme with random distribution is used for uniformly covering the search 
space. Ang et al. (2019) invented CMPSOWV, in which two diversity maintenance schemes (multi-
swarm technique and probabilistic mutation operator) are used to prevent the premature convergence. 
Lanlan et al. (2020) proposed NOPSO where non-inertial velocities update formula, opposition based 
learning strategy and adaptive elite mutation strategies are employed to avoid local optimum trapping. 



4 
 

Xiong et al. (2020) proposed NMSPSO where three strategies- novel information exchange strategy (for 
information transfer between sub-swarms), novel leaning strategy (for speed up the convergence) and 
novel mutation strategy (for better exploration) are incorporated. In the ground of real-world problems, 
DE also has noteworthy performance and become a great optimizer. Still, it has few concerns like local 
exploitation ability and convergence rate. So as to reduce its concerns, hordes of effective and robust DE 
has been intended in the literature. Qiu et al. (2018) proposed MMDE where a novel bottom-boosting 
mechanism (to maintain the reliability), partial-regeneration strategy (to identified the promising 
solutions) and mutation operator DE/current/1 (to explore over solution space) are introduced. Zhang 
and Li (2018) developed DEPS in which a modified parent selection scheme is chosen to use the 
experience of successful parents while selecting them in mutation operator. Huang et al. (2018) invented 
hypercube-based NCDE where hypercube neighbourhood based mutation (to maintain the neighborhood 
size in a reasonable range) and self-adaptive techniques (to control the hypercube’s radius vector) are 
used. Yang et al. (2019) developed daDE in which a modified mutation rule is created to utilize the 
information of the current and the former individual’s altogether. It has great benefits on the robustness 
and convergence speed. Liu et al. (2019) proposed HDEMCO where two layers’ top layer (where multi 
cross operation perform that provides rapid convergence) and bottom layer (where success-history-
based adaptive DE is implemented for better global search) are considered. Gui et al. (2019) devised 
MRDE in which different trial vector generation strategies, regroup scheme and an adaptive strategy are 
performed to speed up the convergence rate. Li et al. (2019) developed EJADE where a sorting 
mechanism and a dynamic population reduction strategy are employed to speed up the convergence rate 
and maintain the diversity respectively. Hu et al. (2020) invented BADE where an annealing strategy 
allow the searching space to explore and accelerate the convergence too. Ben (2020) proposed ADE 
where initial population and a new difference vector (in mutation phase) are created by the knowledge 
of damage scenario structure and dispersion of individuals respectively. 

Moreover, to increase the performance of a single algorithm, one of the primary research advices is 
the hybrid strategy. Because of diverse optimization methods have dissimilar search behaviours and 
benefits. Hence, to reduce their individual weaknesses (like premature convergence, stacks at local 
optima etc.), hybrid methods are now preferred more to solve complex optimization problems. As a 
result, many hybrid algorithms for DE and PSO are presented in the literature in order to improve their 
performance. Seyedmahmoudian et al. (2015) proposed DEPSO, where DE is employed to adds 
diversity on traditional PSO. However, it may not appropriate for multimodal optimization problems. 
Parouha and Das (2015) devised DPD in which DE is executed in the inferior and superior groups, 
while PSO is employed in the mid-group. But, for solving complex real-world problems it may need 
some moderations. Tang et al. (2016) proposed HNTVPSO-RBSADE, which employs a nonlinear time 
varying PSO and a ranking based self-adaptive DE to result in dynamic exploration and exploitation. 
Parouha and Das (2016a) developed MBDE in which swarm mutation and swarm crossover for DE is 
used to direct knowledge and improve the solution quality. Parouha and Das (2016b) proposed DE-
PSO-DE in which the population is divided into three groups (A, B, & C) and executed in parallel 
manner. Famelis et al. (2017) devised DE-PSO where DE is merged with a velocity-update rule of PSO 
to enhance diversity. Mao et al. (2018) proposed DEMPSO in which DE is added first to lessen the 
search space and then acquired populations used modified PSO (MPSO) as an initial population to speed 
up the convergence rate. Tang et al. (2018) developed SAPSO – mSADE in which self-adaptive PSO 
(SAPSO) and modified self-adaptive DE (mSADE) are evolved to balance diversity and reduce 
potential stagnation respectively. Too et al. (2019) invented BPSODE where the strength of binary PSO 
(BPSO) and binary DE (BDE) are inherited and computed in sequence. Dash et al. (2020) proposed 
HDEPSO in which three DE operations (mutation, modified crossover and selection) are fused with the 
best particles of PSO for enhancing global searching ability. Parouha and Verma (2021) proposed 
innovative hybrid algorithm of DE and PSO for bound-unconstrained optimization and ELD problem 
with or without valve point effects. It integrated with novel PSO (to escape stagnation) and DE (to avoid 
premature convergence). Further, Verma and Parouha (2021) applied the innovative hybrid algorithm to 
solve non-convex dynamic economic dispatch problem and numerical, graphical as well as comparative 
results shows its capability to solve considered optimization problems.  

Moreover, a related recent review of DE, PSO and their hybrids as well as other MAs variants for 
solving CEED problem are mentioned as further. Mahdi et al. (2018) proposed QBA, in which a cubic 
criterion function is employed to represent this problem to reduce the nonlinearities of the system. The 
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addition of quantum behaviour in bats, which eventually contributes to the diversification of population 
and diversifies the foraging habitats. In addition, early convergence in BA can be prevented. Jiang et al. 
(2019) devised GPSOA, where it integrates PSO with gravitation laws of GSA. Here, the particle’s 
velocity is reorganized by random support of PSO and GSA. Additionally, Weibull-based probability 
density function is also used, to designate the stochastic individualities of wind speed and output power. 
Rezaie et al. (2019) proposed CIHSA, which is the combination of IHSA and CHSA. Where IHSA has a 
suitable convergence rate with high accuracy and CHSA has a high strength to find the best solutions in 
altered runs. Moreover, to dynamically tuning the parameters, employing virtual harmony memories and 
generate random numbers it uses chaotic patterns. Goudarzi et al. (2019) proposed MGAIPSO, it utilizes 
three operators, an arithmetic crossover and a mutation operator from GA to produce elite off-springs 
and maintain diversity; a non-linear time-varying double-weighted technique from PSO to obtain a 
substantial balance between exploration and exploitation. Edwin Selva Rex et al. (2019) proposed a 
novel hybrid algorithm (GA–WOA) using GA and Whale optimization for solving CEED problem. This 
method verified on 4 different test systems and it is superior to other heuristic methods with slight 
increase in the CPU execution time. Rashid et al. (2020) invented MIW-PSO, in which a multiple inertia 
weight is incorporated in PSO to improve its convergence characteristics for minimizing fuel cost and 
pollutant emission in the uncertain energy production expense and random load. Bibi et al. (2020) 
developed GOA, where the comfort zone operator of GOA assists in extracting stupendous simulations 
results of minimized fitness of multi objective functions that shows the efficiency of GOA in term of 
highly optimal and feasible solution satisfying all the system equality and inequality operational 
constraint. Khatsu et al. (2020) proposed PPSO in which a linear and non-linear time varying weight 
inertia factor (LWF and NLWF) are introduced in PPSO to enhance its searching ability. Goyal et al. 
(2020) proposed BBO, where an optimum generator scheduling has been achieved by employing BBO 
with all system constraints. Sakthivel et al. (2020) proposed MOSSA, it integrates squirrel search 
algorithm along with Pareto-dominance principle to generate non-dominated solutions. Also, it 
employed outward elitist depository tool with flocking distance categorization (to retain the distribution 
diversity) and utilized fuzzy decision-making strategy (to select the finest cooperated solution). Ajayi 
and Heymann, (2021) devised MSA. It is encouraged by the effort of moths the moonlight towards. 
Also, to provide the essential spinning reserve capacity, it slated thermal generators as solar energy is 
intermittent in nature. Hassan et al. (2021) proposed CAEO, which uses the chaotic maps which enhance 
a variety of the solution spaces and improve the convergence capabilities to achieve the optimum 
solutions as well as avoid the local minima. 

1.3 Research gaps (Inspiration/motivation) 

Despite the fact that a large number of MAs have been introduced in the literature, they have not 
been able to solve a wide range of problems (Wolpert and Macready 1997). Particularly, for some 
problems an algorithm can produce satisfactory outcomes but not for others. As a result, for solving a 
variety of optimization problems there is a necessity to develop some efficient algorithms. Furthermore, 
over separate efforts hybrid algorithms are now favored more to solve complex real-world problems. 
Hence, from the inspiration of above mentioned facts and literature investigation motivation of this 
study is to design an effective and innovative hybrid algorithm with the combination of novel variants of 
MAs. Between popular MAs, PSO and DE as well as their hybrids successfully applied in diverse 
optimization parts due to their leading search ability and simple structure. Consequently, after a wide 
analysis of the literature on diverse alternatives of PSO and DE with their hybrids the subsequent 
resulting opinions is evaluated and encouraged form them. 

(i). The PSO is largely dependent on its parameters (which direct particles to the optimum) and 
position update (to balance diversity). As a result, numerous investigators have attempted to 
improve the accuracy and speed of PSO by modifying its control parameters and position update 
equation.  

(ii). In DE mutation and crossover schemes with their associated control factors, are used to generate 
the global best solution, which is favorable for refining convergence performance. Hence, the 
most appropriate schemes and their related factor are regarded as a critical research study for DE. 

(iii). Owing to their efficiency in solving complex real-world problems hybrid methods have caught the 
more interest of investigators. As per investigation, PSO and DE have balancing properties and 
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their hybrids have recently gained more popularity to solve numerous real-world problems. From 
now, to the best of our information, figuring out how to hybridize PSO and DE is still an open 
research problem. 

1.4 Contribution 

Inspired by above remarks and literature study planned the following for solving CEED problems.  
(i). an innovative hybrid algorithm (ihPSODE): it integrated with suggested novel PSO (to increase 

the population diversity) and novel DE (it produce perturbations to avoid the algorithm trapping 
into local optima).  

(ii). novel PSO (nPSO): it involves new gradually changeable (increasing and/or decreasing) 
parameters and new equation for position update.  

(iii). novel DE (nDE): it includes combination of novel operators (mutation and crossover) and new 
related control parameters. 

The proposed algorithms have validated on 23 typical unconstrained benchmark functions then used 
to solve 3 test systems (3, 6 and 40-unit test system) of ELD and 3 test systems (3, 10 and 40-unit test 
system) of CEED problem. Comparative experiments endorse the efficiency and superiority of the 
presented algorithms. 

The rest of this paper is presented in the following. Section 2 presents the proposed algorithms in 
details. Proposed algorithms are tested on 23 unconstrained benchmark functions in Section 3. In 
Section 4, the proposed algorithms applied on 3 different test systems of ELD and CEED problems. 
Conclusions would be drawn in section 5 with future work. 

2. Proposed methodology  

This section briefs the basics PSO and DE then discussed and the proposed methodology in detail. 

Particle Swarm Optimization (PSO) (Kennedy and Eberhart 1995) 

In a 𝐷-dimensional optimization space 𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝐷) and 𝑣𝑖 = (𝑣𝑖,1, 𝑣𝑖,2, … , 𝑣𝑖,𝐷) denote 

the position and velocity of the 𝑖𝑡ℎ particle, respectively. During the evolutionary process, each 
individual constantly adjusts its velocity and position by following the personal best experience 𝑝𝑏𝑒𝑠𝑡𝑖 = (𝑝𝑏𝑒𝑠𝑡𝑖,1, 𝑝𝑏𝑒𝑠𝑡𝑖,2, … , 𝑝𝑏𝑒𝑠𝑡𝑖,𝐷) and the population best experience 𝑔𝑏𝑒𝑠𝑡𝑗 =(𝑔𝑏𝑒𝑠𝑡1, 𝑔𝑏𝑒𝑠𝑡2, … , 𝑔𝑏𝑒𝑠𝑡𝐷). The specific mathematical formulations are presented as:  

 

             𝑣𝑖,𝑗𝑡+1 = 𝑤𝑣𝑖,𝑗𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖,𝑗𝑡 − 𝑥𝑖,𝑗𝑡 ) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑗𝑡 − 𝑥𝑖,𝑗𝑡 )                               (6) 
 

                                          𝑥𝑖,𝑗𝑡+1 = 𝑥𝑖,𝑗𝑡 + 𝑣𝑖,𝑗𝑡+1                                                                         (7) 

where 𝑡 denotes the number of iterations. 𝑐1 and 𝑐2 are two important control parameters called 
acceleration coefficients. 𝑟1and 𝑟2 are two randomly selected numbers within the range [0,1]. 𝑤 is the 
inertia weight  

Differential Evolution (DE) (Storn and Price 1997) 

In DE algorithm, an initial population which includes 𝑛𝑝 individuals are randomly generated in the 𝐷-dimensional solution space. In the searching space, each individual represents a candidate solution. 
Three main operations on DE given as follows. 
(i). Mutation: After initialization, to increase the population diversity, DE hires the mutation operator 

to create a mutation vector (mutant individual) 𝑣𝑖,𝑗𝑡  with respect to the target vector 𝑥𝑖,𝑗𝑡  at 

generation 𝑡 as  

                                       𝑣𝑖,𝑗𝑡+1 = 𝑥𝑟1𝑡 + 𝐹(𝑥𝑟2𝑡 − 𝑥𝑟3𝑡 )                                                                (8) 

where 𝑟1, 𝑟2 and 𝑟3 are jointly different integers taken from [1, 𝑁𝑃] and are distinct from the index 𝑖. The control parameter 𝐹 is a scaling factor, which amplifies the difference vector.  

(ii). Crossover: After the above operation, a binomial crossover which recombines the target vector 𝑥𝑖,𝑗𝑡  

and the mutation vector 𝑣𝑖,𝑗𝑡+1, is usually applied to generate a new trail vector 𝑢𝑖,𝑗𝑡+1 as follows.  
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                    𝑢𝑖,𝑗𝑡+1 = {𝑣𝑖,𝑗𝑡+1; if𝑟𝑎𝑛𝑑(𝑗) ≤ 𝐶𝑟or𝑗 = 𝑟𝑛𝑏𝑟(𝑖)𝑥𝑖,𝑗𝑡 ; if𝑟𝑎𝑛𝑑(𝑗) > 𝐶𝑟or𝑗 ≠ 𝑟𝑛𝑏𝑟(𝑖)                                                                  (9) 

where 𝑗 = 1, … , 𝐷. 𝑟𝑎𝑛𝑑(𝑗) is a random number on the interval [0, 1]. Crossover rate 𝐶𝑟 is another 

control parameter in DE algorithm. To ensure that 𝑢𝑖,𝑗𝑡+1 get at least one parameter from 𝑣𝑖,𝑗𝑡+1, 𝑟𝑛𝑏𝑟(𝑖) is a randomly selected integer within [1, 𝐷].  
(iii). Selection: following the crossover operation, DE applies a greedy strategy to select a vector for the 

next generation as follows. If the trial vector 𝑢𝑖,𝑗𝑡+1 has better or equal fitness, it will be retained in 

the next generation. Otherwise, the target vector 𝑥𝑖,𝑗𝑡  will survive. 

                                           𝑥𝑖,𝑗𝑡+1 = {𝑢𝑖,𝑗𝑡+1; if𝑓(𝑢𝑖,𝑗𝑡+1) ≤ 𝑓(𝑥𝑖,𝑗𝑡 )𝑥𝑖,𝑗𝑡 ; Otherwise                                                  (10) 

2.1 novel PSO (nPSO) 

The specific operation of nPSO may be separated as below steps.  
1-step Generate initial population 𝑥𝑖𝑡 = {𝑥𝑖,1𝑡 , 𝑥𝑖,2𝑡 , … , 𝑥𝑖,𝐷𝑡 } 𝑖 = 1, 2, … , 𝑛𝑝, randomly follows the 

uniform distribution.  
2-step Compute the objective function value 𝑓(𝑥𝑖𝑡).  
3-step 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 selection with updating. 
4-step Each individual adjusts its velocity and position as follows- 

As per earlier investigation in PSO- 
(i). small and large 𝑤 values effect exploration and exploitation in earlier and latter 

stages correspondingly. 
(ii). acceleration coefficient 𝑐1 (decreasing) and 𝑐2 (increasing) supports personal and 

global best results individually. 
(iii). accuracy of achieved solution is not high and particles oscillate near local optimum 

for next iterations as good situation can be used in positions update procedure. 
Encouraged by above statistic in nPSO following parameter suggested.  

(i). a linearly decreased 𝑤  (𝑤 = 12 (1 + 𝑡𝑚𝑎𝑥−𝑡𝑡𝑚𝑎𝑥 )). 

(ii). gradually decreased 𝑐1 (𝑐1 = ( 11+ 𝑡𝑡𝑚𝑎𝑥))  and gradually increased 𝑐2 

(𝑐2 = ( 12− 𝑡𝑡𝑚𝑎𝑥)) acceleration factor.  

(iii). 𝑛𝑡 = 𝑒(1−𝑡𝑚𝑎𝑥+𝑡𝑡𝑚𝑎𝑥−𝑡) (a non-linear decreasing factor), where  𝑡&𝑡𝑚𝑎𝑥 is current 
iterations & maximum number of iterations respectively, introduced in position 
update equation, it may have benefitted once nPSO executes local search in later 
iterations as particles get nearby to the global best result.   

The offered factor behavior illustrated in Fig. 1 & Fig. 2. 

  
Fig. 1 𝑤, 𝑐1 & 𝑐2  behavior during evolution 

process c1 
Fig. 2 Factor 𝑛𝑡 behavior during evolution 

process  
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Under the above circumstance, eq. (6)- to update velocity and eq. (7)- to update position 
can be replaced as follows. 𝑣𝑖𝑡+1 = (12 (1 + 𝑡𝑚𝑎𝑥−𝑡𝑡𝑚𝑎𝑥 )) 𝑣𝑖𝑡 + ( 11+ 𝑡𝑡𝑚𝑎𝑥) 𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖𝑡 − 𝑥𝑖𝑡) + ( 12− 𝑡𝑡𝑚𝑎𝑥) 𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖𝑡) (11) 

                                                         𝑥𝑖𝑡+1 = 𝑥𝑖𝑡 + 𝑛𝑡𝑣𝑖𝑡+1                                                 (12)  
5-step Stop if reaching the convergence/termination condition otherwise repeat the steps from 2.  
 

2.2 novel DE (nDE) 

The specific operation of nDE may be divided into the following stages.  
1-step In the 𝐷- dimensional solution space, an initial population generated uniform randomly 

which includes 𝑛𝑝 individuals. 
2-step Compute the objective function value. 
3-step (i). Mutation 

Mathematically, the proposed mutation strategy can be described as follows.  𝑣𝑖,𝑗𝑡+1 = 𝑥𝑖,𝑗𝑡 + 𝜏 × 𝑟𝑎𝑛𝑑(0, 1) × (𝑏𝑒𝑠𝑡𝑖,𝑗𝑡 − 𝑥𝑖,𝑗𝑡 )                            (13) 

where 𝑣𝑖𝑡: mutant vector, 𝑥𝑖𝑡- target vector, 𝜏: convergence parameter, 𝑟𝑎𝑛𝑑(0, 1): 
uniformly scattered random number among 0 & 1 and  𝑏𝑒𝑠𝑡𝑖: best vector. 
In eq. (13), importance of 𝜏 has an significant influence on presentation of nDE & 
ihPSODE (defined below). The vibrant amendments of 𝜏 are specified as below and its 
behavior depicted in Fig. 3 as early, middle and later stages on evolution procedure.   

 

 
Fig. 3 Factor 𝜏 behavior during evolution process 

 

it may observe that from Fig. 3 during the evolution following stages.  

early  middle  later  

the choice probability of 
mutation scheme is nearer 
to 100% and population 
diversity can be sustained 
effectually when 𝜏 ≥ 1.5. 
Thus, as far as possible 
ihPSODE and nDE is 
capable to examine 
additional promising 
regions.  

the choice probability 
befits minor, which is not 
helpful for both to 
converge and hence 𝜏 
would not be excessively 
large (𝜏 < 2.5).  Thus, 
ihPSODE and nDE can 
accelerate search while 
retaining global 
exploration capability. 

the choice probability of 
ihPSODE and nDE would 
be improved when 𝜏 ≤2.2,as ihPSODE and nDE 
can concentrate on 
improving local 
exploitation facility, 
convergence speed and 
precision. 
 

As all, a smaller value of 𝜏 is helpful for global convergence ability as well as a 
larger value of 𝜏 is useful to retain population diversity. Therefore, advised to take 
the value of 𝜏 in between or equal to 1.5&2.2 which balance local exploitation and 
global exploration.    

(ii). Crossover 
it can be observed that from eq. (9) if 𝐶𝑟 becomes with following values 
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larger smaller 𝑣𝑖𝑡 (mutation vector) pays extra to the 𝑢𝑖𝑡 
(trial vector), it is useful to speed up local 
search and convergence rate, but it lose 

those target vectors (𝑥𝑖𝑡) which have 
superior fitness.  

𝑥𝑖𝑡 donates more to the 𝑢𝑖𝑡, it is helpful to 
preserve global search ability and 
population diversity, but it makes slow 
searching process and not able to 
generate new individual structures.  

Hence, proposed novel 𝐶𝑟 = 0.9 −𝑒(1− 𝑡𝑚𝑎𝑥𝑡𝑚𝑎𝑥−𝑡+1) × 0.7 is use in nDE to overcome 
the above issues. It can maintain population diversity and accelerate convergence of 
the nDE. Ultimately, 90% trial vectors can be created by mutation operators if 𝐶𝑟 is 
equal to 0.9 along with as crossover probability increases it may upsurge mutation 
degree of vectors.  

(iii). Selection 
Following the crossover operation, nDE applies a greedy strategy eq. (10) to select a 
vector for the next generation.  

4-step Stop if reaching the convergence/termination condition otherwise repeats the steps from 2. 

2.3 innovative hybrid PSODE (ihPSODE)   

Primarily, ihPSODE is created on involving higher competence of the contributed nPSO and nDE. The 
specific operation of ihDEPSO can be revealed as below stages. 
1-step In the 𝐷- dimensional solution space, an initial population generated uniform randomly which 

includes 𝑛𝑝 individuals. 
2-step Compute the objective function value. 
3-step Sort population according to according to their performance as well as recognize best half and 

remove the rest population.  
4-step Apply nPSO 
5-step Apply nDE (in offspring generated by nPSO)  
6-step Merge the population produced by nPSO and nDE 
7-step Stop if reaching the termination condition otherwise repeats the steps from 2.  

3. Validation of presented algorithms    

To confirm the performance of the presented algorithms, experiments are investigated on twenty-one 
classical unconstrained benchmark functions (cubfs). Among these functions,𝑓1~𝑓7, 𝑓8~𝑓13 and 𝑓14~𝑓23 
are unimodal, multimodal and fixed-dimension benchmark functions, respectively. The data of these 
cubfs are scheduled in Table 1. Simulations were piloted on Intel (R) Core (TM) i5-2350, CPU @ 
2.30GHz with 4 GB RAM and simulated in C language (C-free Standard 4.0). Furthermore, to handle 
constraint, a penalty term is added to the objective function. Because of its higher efficiency, the bracket 
operator penalty (Deb 1995) was chosen for this study. Besides after several tryouts fine-tuning value of 
R=1𝑒03 is recommended for presented algorithms. In each table, overall best values are emphasized 
with bold of corresponding algorithms. 

The produced result by proposed algorithms on 23 cubfs is compared with traditional algorithms 
(HHO (Heidari et al. 2019) & EO (Faramarzi et al. 2019)), PSO variants (HEPSO (Mahmoodabadi et al. 
2014) & RPSOLF (Yan et al. 2017)), DE variants (JADE (Zhang and Sanderson 2009) & SHADE 
(Tanabe and Fukunaga 2013)) and hybrid variants (FAPSO (Xia et al. 2018), & PSOSCALF (Chegini et 
al. 2018)). Table 2 lists the parameters of all of the above-mentioned compared and proposed 
algorithms. Stopping criteria, independent run and population size of presented algorithms are taken as 
same or the least of comparative methods for fair comparison. Table 3 shows the comparative 
experimental results of 30 independent runs in terms of mean/average value (avg), standard deviation (std), 
and ranking (rank) of the objective function values. The comparative results of the algorithms directly 
from the original papers. 
 

 
 
 



10 
 

Table 1 Classical unconstrained benchmark functions (cubfs) 
   

cubfs formulation Type Dim. Range 𝑓𝑚𝑖𝑛 𝑓1(𝑥) = ∑ 𝑥𝑖2𝐷𝑖=1   
 

u
n
im

o
d
al

 

30 [-100,100] 0 𝑓2(𝑥) = ∑ |𝑥| + ∏ |𝑥𝑖𝐷𝑖=1𝐷𝑖=1 |  
 

30 [-10, 10] 0 𝑓3(𝑥) = ∑ (∑ 𝑥𝑗𝑖𝑗=1 )2𝐷𝑖=1   30 [-100,100] 0 𝑓4(𝑥) = 𝑚𝑎𝑥𝑖|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝐷 30 [-100,100] 0 𝑓5(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖2)2 + (𝑥𝑖 − 1)2]𝐷−1𝑖   30 [-30, 30] 0 𝑓6(𝑥) = ∑ (⌊𝑥𝑖 + 0.5⌋)2𝐷𝑖        30 [-100,100] 0 𝑓7(𝑥) =  (∑ 𝑖𝑥𝑖4𝐷𝑖 ) + 𝑟𝑎𝑛𝑑[0,1)   30 [-1.28, 1.28] 0 𝑓8(𝑥) = ∑ −𝑥𝑖𝑠𝑖𝑛(√|𝑥𝑖|)𝐷𝑖   

m
u

lt
im

o
d

al
 

30 [-500,500] -418.9829*D 𝑓9(𝑥) = ∑ [𝑥𝑖2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10]𝐷𝑖    30 [-5.12,5.12] 0 𝑓10(𝑥) = −20𝑒𝑥𝑝(− √1𝐷0.2 ∑ 𝑥𝑖2𝐷𝑖 ) −exp(1𝐷∑ 𝑐𝑜𝑠2𝜋𝑥𝑖𝐷𝑖 ) + 20 + 𝑒  
30 [-32,32] 0 

𝑓11(𝑥) =  14000∑ 𝑥𝑖2 −∏ 𝑐𝑜𝑠 (𝑥𝑖√𝑖)𝐷𝑖𝐷𝑖 + 1  30 [-600, 600] 0 𝑓12(𝑥) =  𝜋𝐷 {10𝑠𝑖𝑛2(𝑥𝑦) + ∑ (𝑥𝑖 − 1)2𝐷𝑖 (1 + 𝑠𝑖𝑛2(𝑥𝑦𝑖+1))) + (𝑦𝐷 − 1)2} +∑ 𝑈(𝑥𝑖 , 10,100,4)𝐷𝑖    

30 [-50,50] 0 

𝑓13(𝑥) = 0.1{𝑠𝑖𝑛2(3𝜋𝑥𝑖)} + ∑ (𝑥𝑖 − 1)2𝐷𝑖=1 [1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖 + 1)] + (𝑥𝐷 − 1)2 +∑ 𝑈(𝑥𝑖 , 5, 100,4)𝐷𝑖   

30 [-50,50] 0 

𝑓14(𝑥) =  ( 1500+ ∑ ( 1𝑗+1+∑ (𝑥𝑖−𝑎𝑖𝑗)61𝑖=0 )25𝑗=1 )−1      

fi
x

ed
-d

im
en

si
o
n
 

2 [-65, 65]] 1 

𝑓15(𝑥) = ∑ (𝑎𝑖 − 𝑥0(𝑏𝑖2+𝑏𝑖𝑥1)(𝑏𝑖2+𝑏𝑖𝑥2+𝑥3))210𝑖=0    
4 [-5,5] 0.00030 𝑓16(𝑥) = 4𝑥02 − 2.1𝑥04 + 13 𝑥06 + 𝑥0𝑥1 − 4𝑥12 + 4𝑥14  2 [-5,5]  −1.0316 𝑓17(𝑥) =  (𝑥1 − 5.14𝜋2 𝑥02 + 5𝜋 𝑥0 − 6)2 + 10(1 − 18𝜋) 𝑐𝑜𝑠𝑥0 + 10    
2 [-5,5] 0.398 𝑓18(𝑥) = 1 + (𝑥0 + 𝑥1 + 1)2(19 − 14𝑥0 + 3𝑥02 − 14𝑥1 − 6𝑥0𝑥1 + 3𝑥12){30 +(2𝑥0 − 3𝑥1)2(18 − 32𝑥0 + 12𝑥02 + 48𝑥1 − 36𝑥0𝑥1 + 27𝑥12)}  2 [-2,2] 3 𝑓19(𝑥) = −∑ 𝑐𝑖𝑒𝑥𝑝 (−∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)23𝑗=1 )4𝑖=1     3 [1,3]  −3.86 𝑓20(𝑥) = −∑ 𝑐𝑖𝑒𝑥𝑝 (−∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)26𝑗=1 )4𝑖=1   6 [0,1]  −3.32 𝑓21(𝑥) = −∑ ((𝑥 − 𝑎𝑖)𝑇(𝑥 − 𝑎𝑖) + 𝑐𝑖)−15𝑖=1   4 [0,10]  −10.1532 𝑓22(𝑥) = −∑ ((𝑥 − 𝑎𝑖)𝑇(𝑥 − 𝑎𝑖) + 𝑐𝑖)−17𝑖=1   4 [0,10]  −10.4028 𝑓23(𝑥) = −∑ ((𝑥 − 𝑎𝑖)𝑇(𝑥 − 𝑎𝑖) + 𝑐𝑖)−110𝑖=1   4 [0,10] −10.5363 

 
Table 2 Parameter for cubfs of compared and presented algorithms  

 
Algorithm Reference  Control Parameter Population 

Size 

Stopping criterion Run 

Term Values 

HHO (Heidari et al. 2019) escaping energy 𝐸 < 0.5, 𝐸 ≥ 0.5 30 500 30 
EO (Faramarzi et al. 2019) a1, a2, GP {1,1.5,2,2.5,3},{0.1,0.5,1,1.5,2},(0.1.0.25,0.5,0.75,0.9} 30 500 30 
HEPSO (Mahmoodabadi et al. 2014) PC, PB  0.95,0.02 50 500 30 
RPSOLF  (Yan et al. 2017) w,c1,c2,c3, ,  0.55,1.49,1.49,1.5,0.99 50 500 30 

JADE (Zhang and Sanderson 2009) Fi , CRi, randci(μF , 0.1),randni(μCR, 0.1) 50 1000 30 
SHADE  (Tanabe and Fukunaga 2013) Pbest, Arc rate  0.1, 2 30 500 30  
FAPSO (Xia et al. 2018) - - 50 5000 30 
PSOSCALF (Chegini et al. 2018) wmin, wmax, c1min, c1max,c2min, c2max,  0.4,0.9,0.5,2.5,0.5,2.5,1.5 50 500 30 

nPSO 

P
re

se
n
te

d
 

al
g
o
ri

th
m

s  

- - 30 500 30 
nDE τ [1.5,2.2] 30 500 30 
ihPSODE - - 30 500 30 

 

It should have been noted that the average objective function values of the presented algorithms 
(nPSO, nDE and ihPSODE) are better and/or equal to the compared standard algorithms, PSO 
alternatives, DE alternatives, and hybrid variants, as shown in Table 3. The presented algorithms 
produce less std for most of the cubfs which terms their stability. Also, all algorithms are ranked 
separately (as 1 for best, 2 for following performer and so on) grounded on average result values in 
Table 3. From Table 3 it is decided that ihPSODE, nDE & nPSO ranked as 1st, 2nd & 4th successively. 
As well, average and overall rank of presented versus others algorithms are declared in Table 3. Then, it 
can be say that the proposed algorithms outperform others by rankings. Furthermore, the supremacy of 
the proposed algorithms over other algorithms is analyzed statistically using- (i) a one-tailed t-test (at 
5% significance level of 98 degrees of freedom (df)) and (ii) Wilcoxon Signed Rank (WSR) test (at 5% 
significance level). The details of these tests can be found in (Das and Parouha 2015). In Table 4, results 
of t- and WSR statistical test on cubfs are reported. In most of consequence, it can be perceived that 
from this table presented algorithms has ‘a+’ or ‘a’ sign in case of t-test which signify highly or 
significantly better than other respectively and ‘+’ or ‘≈’ sign in case WSR test which indicate better or 
equally performances. Moreover, p-values of the presented algorithms listed in Table 4 which is lower 
than others and indicating that their reliability to produce best results on the majority of runs. 
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Table 3 Simulation results on cubfs  𝑓𝑛(𝑥) 
Criteria 

Algorithms 

Classical algorithms PSO alternatives DE alternatives Hybrid alternatives Presented algorithms 

HHO  EO HEPSO RPSOLF JADE SHADE FAPSO PSOSCALF nPSO nDE ihPSODE 𝑓1(𝑥) avg 2.03e+00 3.32e-40 16.26772 5.065e-269 1.87e-31 1.42e-09 2.87e−127 1.11014e-20 0  0  0  

std 4.04e−01 6.78e-40 10.01293 0.00e+00 6.43e-31 3.09e-09 1.76e−127 1.83289e-20 0 0 0 
rank 9 4 8 2 5 7 3 6 1 1 1 𝑓2(𝑥) avg 1.70e+00 7.12e-23 1.28424 1.000e-134 2.79e-15 0.0087 1.02e-17 4.09460e-11 0  0  0  
std 7.37e−02 6.36e-23 0.41611 3.753e-134 9.51e-15 0.0213 1.43e-17 5.68981e-11 0 0 0 

rank 9 3 8 2 4 7 5 6 1 1 1 𝑓3(𝑥) avg 1.17e+02 8.06e-09 7.423e+03 7.791e-249 1.10e-03 15.4352 1.68e-11 2.16858e-12 0.17e-129 0  0  

std 5.28e+00 1.60e-08 7.423e+03 0.00e+00 5.14e-03 9.9489 2.49e-11 1.03815e-11 1.67e-131  0 0 
rank 9 6 10 2 7 8 5 4 3 1 1 𝑓4(𝑥) avg 2.05e+00 5.39e-10 23.95145 1.937e-157 1.66e-03 0.9796 4.09e+03 8.47410e-08 8.35e-098 3.28e-101 0  
std 7.40e−02 1.38e-09 7.71460 1.061e-156 1.98e-03 0.7995 6.53e+02 1.23324e-07 7.08e-098   7.12e-103  0 

rank 9 5 10 2 7 8 11 6 4 3 1 𝑓5(𝑥) avg 2.95e+00 2.53e+01  2.380e+03 27.42672 1.18e+01 24.4743 6.55e-11 21.97646 4.85e-012 1.25e-021 2.21e-033 

std 8.36e−02  0.16e+00 1.852e+03 0.24848 1.57e+01 11.2080 1.99e-11 0.54774 3.21e-012 1.85e-023 3.72e-037  
rank 9 7 11 8 10 6 4 5 3 2 1 𝑓6(𝑥) avg 2.49e+00 8.29e-06 21.55405 2.98244 4.59e-31 5.31e-10 2.37e-12 7.13998e-12 1.75e-032 0  0  
std 8.25e−02 5.02e-06 9.33263 0.23250 1.65e-30 6.35e-10 1.84e-13 3.65884e-11 9.16e-035  0 0 

rank 9 8 6 10 3 7 4 5 2 1 1 𝑓7(𝑥) avg 8.20e+00 1.17e-02 0.12982 0.00104 6.49e-03 0.0235 0 0.00012 5.11e-001 2.19e-003 1.07e-003 
std 1.69e−01 6.54e-04 0.09727 7.644e-04 2.48e-03 0.0088 0 0.00010 1.70e-002  1.10e-004 1.40e-005  
rank 11 6 10 7 5 9 1 4 8 3 2 𝑓8(𝑥) avg 4.86e+00 -9016.34 -2.139e+03 -3.254e+03 -1.24e+04 -11713.1 2.48e-11 -12569.48 -6.37e+004 -1.25e+004 -1.25e+004  
std 1.03e+00 595.1113 8.282e+02  2.860e+02 1.27e+02 230.49 6.44e-12 2.39996e-07 2.10e-001  1.07e-017 0 

rank 4 6 5 7 1 8 2 1 9 1 1 𝑓9(𝑥) avg 3.77e+00 0 42.00118 0 1.71e-04 8.5332 0 0 0 0 0 

std 8.87e−01 0 7.08632 0 1.52e-04 2.1959 0 0 0 0 0 
rank 3 1 5 1 2 4 1 1 1 1 1 𝑓10(𝑥) avg 3.75e+00 8.34e-14 2.83842 4.085e-15 1.31e-14 0.3957 4.86e-15 2.24609e-11  1.97e-014 1.44e-015 2.88e-016 
std 8.75e−01 2.53e-14 0.66134 1.084e-15 2.46e-14 0.5868 1.74e-15 2.33542e-11 0 0 0 

rank 8 7 9 3 5 10 4 8 6 2 1 𝑓11(𝑥) avg 4.17e+00 0 1.16858 0 2.87e-03 0.0048 1.74e-16 0 3.37e-111 0 0 

std 5.56e−01 0 0.12602 0 7.85e-03 0.0077 3.60e-16 0 1.11e-119 0 0 
rank 7 1 6 1 4 5 3 1 2 1 1 𝑓12(𝑥) avg 1.90e+01 7.97e-07 0.47856 0.26157 1.73e-02 0.0346 1.57e-32 8.46465e-14 3.34e-002 1.05e-032 3.73e-033 
std 3.31e+00 7.69e-07 0.22623 0.03386 7.74e-02 0.0875 0.00e+00 2.79106e-13 1.02e-004 2.77e-034 3.18e-034 

rank 11 5 10 9 6 8 3 4 7 2 1 𝑓13(𝑥) avg 1.89e+01 0.029295 1.85056 2.05282 5.45e-24 7.32e-04 1.58e-32 0.00399 9.30e-004 2.09e-021 1.58e-032 

std 1.56e+00 0.035271 0.65246 0.16579 2.58e-23 0.0028 0 0.00928 3.71e-004 3.27e-023 1.89e-043 
rank 10 7 8 9 2 4 0 6 5 3 1 𝑓14(𝑥) avg 9.98e−01 0.99800 0.99800 1.54064 9.98e-01 0.998004 9.98e-001 1.13027 9.98e-001 9.98e-001  9.98e-001  
std 9.23e−01 1.54e-16 9.219e-17 1.84429 0 5.83e-17 1.27e-08 0.50338 0 0 0 

rank 1 1 1 3 0 1 1 2 0 0 0 𝑓15(𝑥) avg 3.10e−04 0.00239 6.404e-04 0.00171 3.01e-03 0.002374 3.95e-04 3.13244e-04 3.99e-004 3.83e-004 3.02e-004 

std 1.97e−04 0.00609 2.801e-04 0.00508 6.92e-03 0.0061 6.02e-08 2.17489e-05 2.96e-007 9.23e-012 2.38e-018 
rank 2 11 7 9 8 10 5 3 6 4 1 𝑓16(𝑥) avg −1.03e+00 -1.03161 -1.03161 -1.03161 -1.03e+00 -1.03162 −1.03e+00 -1.0316 −1.03e+000 −1.03e+000 −1.03e+000  
std 6.78e−16 6.04e-16 3.554e-15 1.650e-05 6.78e-16 6.51e-16 0 4.40244e-16 0 0 0 

rank 1 1 1 1 1 1 0 1 0 1 1 𝑓17(𝑥) avg 3.98e−01 0.397887 0.39787 0.39837 3.98e-01 0.397887 3.98e-001 0.39788 3.98e-001 3.98e-001  3.98e-001  

std 2.54e−06 0 6.594e-13 5.267e-04 0.00e+00 3.24e-16 0.00e+000 3.66527e-15 0 0 0 
rank 1 2 2 1 1 2 1 2 1 1 1 𝑓18(𝑥) avg 3 3 0.65246 3.00002 3 3 3 3 3 3 3 
std 0 1.56e-15 5.146e-11 1.658e-05 1.82e-15 1.87e-15 5.31e-016 5.96540e-13 1.33e-018 0 0 

rank 1 1 2 1 1 1 1 1 1 1 1 𝑓19(𝑥) avg −3.86e+00 -3.86278 -3.86278 -3.85923 -3.86e+00 -3.86278 −3.87e+000 -3.86278 −3.86e+000 −3.86e+000 −3.86e+000  

std 2.44e−03 2.59e-15 1.008e-13 0.00283 2.71e-15 2.69e-15 2.11e-004 8.31755e-15 3.36e-021 0 0 
rank 1 1 1 3 1 1 2 1 1 1 1 𝑓20(𝑥) avg −3.322 -3.2687 -3.31803 -3.10441 -3.29e+00 -3.27047 -3.29e+000 -3.27168 -3.27e+000  -3.32e+000  -3.32e+000  
std 0.137406 0.05701 0.02170 0.15760 5.11e-02 0.0599 0 0.06371 0 0 0 

rank 1 6 2 7 4 5 3 5 5 1 1 𝑓21(𝑥) avg −10. 1531 -8.55481 -10.15319 -4.76171 -9.14e+00 -9.2343 -7.51e+00 -10.15319 -9.87e+001  -1.01e+001  -1.01e+001  

std 0.885673 2.76377 2.680e-05 0.73723 2.06e+00 1.3969 1.21e-01 4.46227e-15 1.07e-011 0 0 
rank 1 5 1 6 4 3 3 1 2 1 1 𝑓22(𝑥) avg −10.4015 -9.3353 -10.39978 -4.81927 -9.88e+00 -10.2809 -6.04e+01 -10.40294 -9.87e+000  -1.04e+001  -1.04e+001   
std 1.352375 2.43834 0.01728 0.75699 1.61e+00 1.3995 2.14e-01 1.80672e-15 2.08e-002 2.91e-012 1.10e-016 

rank 1 5 1 7 3 2 6 1 4 1 1 𝑓23(𝑥) avg −10.5364 -9.63655 -10.53640 -5.06376 -1.03e+01 63.333 -5.64e+00 -10.53640 -9.13e+000  -1.05e+001  -1.05e+001  

std 0.927655 2.38811 5.845e-07 0.82968 1.40e+00 80.872 5.70e-02 4.84794e-15 2.05e-003 1.07e-021 0 
rank 1 3 1 6 2 7 5 1 4 1 1 

Sum of rank 119 102 125 107 87 124 75 75 78 35 24 
Average  5.17 4.43 5.43 4.65 3.78 5.39 3.26 3.26 3.39 1.52 1.04 

Overall rank 8 6 10 7 5 9 3 3 4 2 1 

Table 4 Statistical outcomes on cubfs  
 

Vs 
 
Standards  

Algorithm 

Classical algorithms PSO alternatives DE alternatives  Hybrid alternatives  Presented algorithms  

 HHO EO HEPSO RPSOLF JADE SHADE FAPSO PSOSCALF nDE ihPSODE 

n
P

S
O

 

Better 11 21 20 19 20 13 15 19 0 0 
Equal 4 2 2 2 2 9 4 3 7 8 
Worst 8 0 1 2 1 1 4 1 16 15 
R+ 293 387 312 323 335 305 300 382 350 400 
R- 172 78 153 142 130 160 165 83 115 65 
p-value 5.1e-09 5.3e-10 5.7e-10 5.1e-09 6.2e-10 4.6e-08 5.8e-10 5.6e-10 6.2e-09 5.3e-10 
t-test a a a a+ a a+ a+ a+ a a+ 
Decision ≈ ≈ ≈  + + + + + + + 

Vs  HHO EO HEPSO RPSOLF JADE SHADE FAPSO PSOSCALF nPSO ihPSODE 

n
D

E
 

Better 15 21 21 21 20 13 14 18 15 0 
Equal 8 2 2 2 3 9 9 5 8 16 
Worst 0 0 0 0 0 1 0 0 0 7 
R+ 416 313 329 465 345 355 377 323 342 315 
R- 49 152 136 79 120 130 88 142 123 150 
p-value 5.6e-10 5.2e-10 6.2e-10 6.9e-07 8.2e-10 5.8e-10 6.2e-11 4.3e-09 5.1e-10 6.9e-07 
t-test a a a a a a+ a+ a a+ a+ 
Decision + + + ≈ + ≈  ≈  + + + 

Vs  HHO EO HEPSO RPSOLF JADE SHADE FAPSO PSOSCALF nDE nPSO 

ih
P

S
O

D
E

 

Better 14 0 20 20 20 13 14 15 8 15 
Equal 7 6 3 3 3 10 9 8 15 8 
Worst 2 17 0 0 0 0 0 0 0 0 
R+ 321 294 330 313 329 367 293 377 323 304 
R- 144 171 135 152 136 98 172 88 142 161 
p-value 6.2e-10 5.1e-10 5.1e-07 5.1e-10 4.6e-08 5.7e-10 6.2e-09 5.3e-08 4.6e-10 5.7e-07 
t-test a a a a+ a a+ a a+ a+ a 
Decision + + + ≈  ≈ + ≈ + + + 
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To demonstrate that presented algorithms satisfied convergence speed, the convergence curves of 
comparative and presented algorithms on eight (𝑓1(𝑥), 𝑓5(𝑥), 𝑓6(𝑥), 𝑓7(𝑥), 𝑓8(𝑥), 𝑓9(𝑥), 𝑓10(𝑥) and 𝑓11(𝑥)) typical 30-D cubfs are plotted and presented separately in Fig. 4(a-h). From this figure it can be 
see that almost all of the considered benchmark functions, either unimodal or multimodal, would be 
quickly optimized by the presented algorithms (nPSO, nDE, and ihPSODE).  

 

  
(a). 𝑓1(𝑥) (b). 𝑓5(𝑥) 

  
(c). 𝑓6(𝑥) (d). 𝑓7(𝑥) 

  
(e). 𝑓8(𝑥) (f). 𝑓9(𝑥) 

  
(g). 𝑓10(𝑥) (h). 𝑓11(𝑥) 

 

Fig. 4(a-h) Convergence of different algorithms 
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Likewise, an effort is completed to catch global optimal solution entire of 690 runs (30 population 
size with 30 runs for each cubfs) and demonstrated in Fig. 5. It states that the presented algorithms 
provide the best optimal solutions. Apart from that, the computational time of the presented and equated 
algorithms on each cubfs is calculated and illustrated in Fig. 6 via box plots. This figure shows that the 
presented algorithms take less time to attain the best value for the entire set of cubfs. 

  
Fig. 5 Global optimal solution out of 690 runs Fig. 6 Processing times of algorithms for cubfs 

In general, it can be decided that the performance of presented algorithms is superior to or at least 
equal to other intelligent optimization algorithms (classical, PSO, DE and Hybrid variants) on most test 
functions. In conclusion, presented algorithms (nPSO, nDE, and ihPSODE) can be considered as an 
effective and efficient method. 

4. Presented algorithms for CEED problem 

To further investigate the feasibility of presented algorithms (nPSO, nDE, and ihPSODE) in real-life 
problems, two large scale power engineering optimization problem (ELD and CEED) are considered 
here. These problem include 3 test systems (3, 6 and 40-unit test system) of ELD and 3 test systems (3, 
10 and 40-unit test system) of CEED problem. The obtained best solutions are utilized to evaluate the 
feasibility of different algorithms. 

Unit Test Systems  

Problem Unit Test Systems (UTSys) Description  

ELD 

UTS-1 (3-unit test system)  
(Hardiansyah et al. 2013)  

it involves load demand of 300MW. 

UTS-2 (6-unit test system)  
(Serapiao 2013)  

it involves 700MW total load demands. 

UTS-3 (40-unit test system)  
(Hardiansyah 2013)  

it consist valve loading point effect and 
involves load demand of 10500MW. 

CEED 

UTS-4 (3-unit test system)  
(Devi and Krishna 2008)  

it consider emission impact and involves 400 
MW and 500 MW load demand as well. 

UTS-5 (10-unit test system)  
(Basu 2011)  

it consider valve point effects and involves 
2000MW total load demand.  

UTS-6 (40-unit test system)  
(Basu 2011)  

it consists of non-smooth fuel cost and 
emission functions and involves 10500MW 
total load demand. 

Computational Steps of ihPSODE for CEED problem  

The steps of ihPSODE for solving CEED problem are given as below: 

1-step Read the 𝑃𝐷 (Power Demand)   
2-step Compute ℎ (price penalty factor) 
3-step t (iteration) = 1  
4-step Generate initial population vector of real power generator (based on prohibited zone and ramp 

limit constraints) 
5-step Evaluate the fitness function using equation (5) 
6-step Sort the population (as per fitness function value) 
7-step Apply nPSO (in best half population) 
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8-step Apply nDE (in offspring generated by nPSO)  
9-step Merge the population produced by nPSO and nDE 
10-step Stop if reaching the termination condition otherwise repeats the steps from 5.  
11-step Print the results (generator schedule, minimized operating cost, corresponding fuel cost, and 

emission output) 

4.1 Results and discussions 

The results of presented hybrid algorithms (nPSO, nDE and ihPSODE) are compared with CDE-SQP 
(Coelho and Mariani 2006),  PPSO (Chen and Yeh 2006), APPSO (Chen and Yeh 2006), SFL (Serapião 
2009), BFO (Serapião 2009), CCPSO (Park et al. 2010), SOMA (Coelho and Mariani 2010), CSOMA 
(Coelho and Mariani 2010), DE/BBO (Bhattacharya and Chattopadhyay 2010), EDA/DE (Wang et al. 
2010), ARCGA (Amjady and Rad 2010), TSAGA (Subbaraj et al. 2011), MODE (Basu 2011), NSGAII 
(Basu 2011), PDE (Basu 2011), SPEA-2 (Basu 2011), GA (Kumar and Alwarsamy 2012), PSO (Kumar 
and Alwarsamy 2012), GSA (Güvenç et al. 2012), ABC_PSO (Manteaw and Odero 2012), DE (Kumar 
and Alwarsamy 2012), QP (Hardiansyah et al. 2013), EMOCA (Zhang et al. 2013), SA (Hardiansyah et 
al. 2013), CS (Serapiao 2013), DHS (Wang and Li 2013), ABC (Serapiao 2013),  FA (Serapiao 2013), 
MPSO (Hardiansyah 2013), MABC/D/Cat (Secui 2015) and MABC/D/Log (Secui 2015), WOA 
(Mirjalili and Lewis 2016), FPA (Abdelaziz et al. 2016), GA-WOA (Edwin Selva Rex et al. 2019), β-
GWO (Betar et al. 2020), on ELD and CEED test systems.  

For clearness, stopping criteria (500 iterations) population size (30) and independent run (25) of 
presented algorithms is taken same as relative algorithms. Rest parameter of proposed methods are same 
as above. The simulations result of presented algorithms with other comparative algorithms are listed in 
Table 5 (for UTS-1), Table 6 (for UTS-2), Table 7 (for UTS-3), Table 8 (for UTS-4), Table 9 (for UTS-
5) and Table 10 (for UTS-6).   

Table 5 Simulation results for UTS-1  
 

Outputs (MW) QP   SA GA PSO DE  FPA nPSO nDE ihPSODE 

P1 207.6799  207.6336 208.99 209.001 207.637 207.6316 204.3651 205.1546 205.3596 
P2 87.4010  87.2867 86.0041 85.92 87.2833 87.2886 81.3969 82.2746 82.0584 
P3 15.0000  15.0000 15.4163 15.0000 15.0000 15.0000 14.238 12.5708 14.582 
PL 10.0808  9.9203 10.4099 9.9833 9.9203 9.9202 8.6788 8.7645 7.7655 ∑𝑃𝑖 310.0808  309.9203 310.4099 309.9211 309.9203 309.9202 308.6788 308.7645 309.7655 

Cost($) 3621.50  3619.76 3624.28 3621.75 3619.8 3619.75 3619.88 3619.55 3619.45 

CPU(s) 3.258 3.4017 1.4065 3.2065 4.503 0.4191 0.391 0.402 0.235 
 

Table 6 Simulation results for UTS-2  
 

Outputs (MW)  CS  ABC  FA  PSO SFL BFO  FPA nPSO nDE ihPSODE 

P1 324.113  323.043 293.312 288.653 287.392 222.260 323.995 321.2581 321.001 321.995 
P2 76.859  54.965 79.546 82.753 67.637 58.777 76.846 73.4416 74.846 74.322 
P3 158.094 147.354 123.334 132.988 140.933 150.395 158.20 154.3169 155.4747 153.1017 
P4 50  50 69.7 50 98.357 106.963 50 50.0000 50.0000 50.0000 
P5 51.963  85.815 79.546 99.565 64.052 101.601 51.983 50.9834 50.1583 50.5813 
P6 50  50.233 63.778 57.768 53.15 72.559 50 50.0000 48.5200 50.0000 
PL 11.03  11.4 11.44 11.73 11.59 11.73 11.024 11.0122 11.0124 11.0245 ∑𝑃𝑖 711.03  711.4 711.44 711.73 711.59 711.73 711.024 711.0122 711.0124 711.0245 

Cost($) 8356.06  8372.27 8388.45 8401.45 8419.78 8428.69 8356.05 8368.8401 8359.2141 8356.1545 
CPU(s) 2.65 4.51 3.56 1.99 2.54 1.25 0.796 1.851 1.018 0.653 

 

Table 7 Simulation results for UTS-3 
 

Outputs  

(MW)  
PSO  PPSO APPSO MPSO ARCGA CCPSO TSAGA CDE_SQP SOMA EDA/DE CSOMA DE/BBO DHS Β-GWO FPA nPSO nDE ihPSODE 

P1 113.116  111.601 112.579 113.9971 110.8252 114.0000 110.7998 111.7600 111.1110 112.8544 110.8016 110.7998 110.7998 110.8001 72.4810 110.7918 110.7451 110.5643 
P2 113.01  111.781 111.553 112.6517 113.9112 111.0400 110.7999 111.5600 110.8299 111.7795 110.8068 110.7998 110.7998 110.8218 103.0314 110.7123 110.4518 103.1231 

P3 119.702  118.613 98.751 119.4255 97.4000 97.3000 97.3999 97.3900 97.4122 97.4059 97.4007 97.3999 97.3999 97.3934 83.2726 97.3933 97.1254 83.4532 
P4 81.647  179.819 180.384 189.0000 179.7331 179.6000 179.7331 179.7300 179.7443 179.7274 179.7333 179.7331 179.7331 179.7318 182.3106 179.7333 179.5241 117.3106 
P5 95.062  92.443 94.389 96.8711 88.6454 90.7210 87.7999 91.6600 88.1510 87.9306 87.8180 87.9576 87.7999 92.6135 76.1669 87.7333 87.4875 95.2234 

P6 139.209  139.846 139.943 139.2798 140.0000 140.0000 140.0000 140.0000 139.9959 139.9880 139.9997 140.0000 140.0000 140 126.1346 140 140 125.4556 
P7 299.127  296.703 298.937 223.5924 259.6000 260.0600 259.5997 300.0000 259.6065 259.7736 259. 6010 259.5997 259.5997 259.6065 258.8452 259.5342 259.1542 258.8567 
P8 287.491  284.566 285.827 284.5803 284.6000 285.8700 284.5997 300.0000 284.6045 284.6280 284.6000 284.5997 284.5997 284.6012 297.163 284.5234 284.3571 296.8765 

P9 292.316  285.164 298.381 216.4333 284.6000 284.7700 284.5997 284.5900 284.6149 284.7539 284.6005 284.5997 284.5997 284.5997 290.889 284.5432 284.7415 289.889 
P10 279.273  203.859 130.212 239.3357 130.0000 130.0000 130.0000 130.0000 130.0002 130.0291 130.0003 130.0000 130.0000 130 274.8232 129 129.875 129.8232 
P11 169.766  94.283 94.385 314.8734 168.7985 94.0000 94.0000 168.7900 168.8029 168.7908 168.7999 168.7998 94.0000 168.7992 356.9806 166 168.7752 356.9806 

P12 94.344  94.090 169.583 305.0565 168.7994 168.3800 94.0000 94.0000 94.0000 168.8084 168.7999 94.0000 94.0000 168.7930 124.4054 124 124 124.3345 
P13 214.871  304.830 214.617 365.5429 214.7600 214.4500 214.7598 214.7600 214.7591 214.7191 214.7599 214.7598 214.7598 214.7614 493.3764 214.2143 215.7452 213.3554 
P14 304.790  304.173 304.886 493.3729 394.2800 394.0100 394.2794 394.2800 394.2716 394.2888 394.2794 394.2794 394.2794 394.2808 344.9029 380.2322 394.2234 344.9444 

P15 304.563  304.302  304.467 304.547 280.4326 304.5200 394.2794 304.5200 304.5206 304.5196 304.5196 394.2794 394.2794 394.2809 372.3864 392.2222 394.2132 372.3454 
P16 304.302  304.302  304.177 304.584  394.2800 304.5700 394.2794 304.5200 394.2834 394.2952 394. 2794 394.2794 394.2794 304.5237 345.4624 392.2455 392.3433 392.4654 
P17 489.173  489.544 498.452 435.2428 489.2798 489.2800 489.2794 489.2800 489.2912 489.2905 489.2796 489.2794 489.2794 489.2802 422.6378 485.2344 484.2344 482.6456 

P18 491.336  489.773 497.472 417.6958 489.2800 489.5600 489.2794 489.2800 489.2877 489.2779 489.2795 489.2794 489.2794 489.2846 434.4065 462.2432 489.3494 462.4675 
P19 510.880  511.280 512.816 532.1877 511.2806 511.2900 511.2794 511.2800 511.2977 511.2861 511.2794 511.2794 511.2794 511.2710 461.3107 511.2234 513.2233 510.3466 
P20 511.474  510.904 548.992 409.2053 511.2800 511.2700 511.2794 511.2800 511.2791 511.2792 511.2796 511.2794 511.2794 511.2782 434.3828 511.5432 473.2124 510.7644 

P21 524.814  524.092 524.652 534.0629 523.2803 523.2300 523.2794 523.2800 523.2958 523.2858 523.2797 523.2794 523.2794 523.2798 545.2846 523.2343 524.2223 529.2456 
P22 524.775  523.121 523.399 457.0962 523.2800 523.6300 523.2794 523.2900 523.2849 523.2899 523.2798 523.2794 523.2794 523.2807 490.3572 522.2123 524.2232 523.3567 
P23 525.563  523.242 548.895 441.3634 523.2800 523.8200 523.2794 523.2800 523.2856 523.2783 523.2801 523.2794 523.2794 523.2798 506.0639 523.2794 523.2412 506.0677 

P24 522.712  524.260 525.871 397.3617 523.2800 523.6200 523.2794 23.2800 5523.2979 523.3199 523.2795 523.2794 523.2794 523.2795 467.310 489.2794 472.2243 480.3107 
P25 503.211  523.283 523.814 446.4181 523.2800 523.3300 523.2794 523.2800 523.2799 523.2791 523.2797 523.2794 523.2794 523.2811 488.1203 524.2794 523.3422 522.1776 
P26 524.199  523.074 523.565 442.1164 523.2801 523.6800 523.2794 523.2800 523.2910 523.3076 523.2799 523.2794 523.2794 523.2766 486.9019 514.5434 523.4543 520.9666 

P27 10.082  10.800 10.575 74.8622 10.0000 10.0000 10.0000 10.0000 10.0064 10.0021 10.0004 10.0000 10.0000 10 16.8002 13 12 13.8654 
P28 10.663  10.742 11.177 27.5430 10.0000 10.0000 10.0000 10.0000 10.0018 10.0054 10.0004 10.0000 10.0000 10 39.3475 34 35.05 39.3456 
P29 10.418  10.799 11.210 76.8314 10.0000 10.1600 10.0000 10.0000 10.0000 10.0061 10.0003 10.0000 10.0000 10 23.6359 10 10 23.6123 

P30 94.244  94.475 96.178 97.0000 88.7611 87.8700 87.8000 90.3300 96.2132 88.8932 92.7158 97.0000 87.7999 87.8779 86.3295 87.7455 97 86.3345 
P31 189.377  189.245 189.999 118.3775 190.0000 190.0000 190.0000 190.0000 189.9996 189.9975 189.9998 190.0000 190.0000 190 165.9924 190 190 165.9567 
P32 189.796  189.995 189.924 188.7517 190.0000 190.0000 190.0000 190.0000 189.9998 189.9919 189.9998 190.0000 190.0000 190 174.5707 190 190 174.5544 

P33 189.813  188.081 189.714 190.0000 190.0000 190.0000 190.0000 190.0000 189.9981 189.9825 189.9998 190.0000 190.0000 190 184.0570 190 190 189.0123 
P34 199.797   198.475 199.284 120.7029 164.8000 165.2300 164.7998 200.0000 164.9126 164.9291 164.8014 164.7998 164.7998 164.8134 193.6668 163.7543 163.1232 164.3455 
P35 199.284  197.528 199.599 170.2403 164.8000 200.0000 194.3976 200.0000 199.9941 164.8031 164.8015 200.0000 200.0000 164.8051 191.6152 195 195 198.2541 

P36 198.165  196.971 199.751 198.9897 164.8054 200.0000 200.0000 200.0000 200.0000 164.9387 164.8051 200.0000 194.3978 164.8105 196.1763 194.3345 194 193.8754 
P37 109.291  109.161 109.973 110.0000 110.0000 110.0000 110.0000 110.0000 109.9988 109.9974 109.9998 100.0000 110.0000 110 90.0101 110 100 109.2514 
P38 109.087  109.900 109.506 109.3405 110.0000 110.0000 110.0000 110.0000 109.9994 109.9856 109.9998 110.0000 110.0000 110 37.5421 110 109 107.1548 

P39 109.909  109.855 109.363 109.9243 110.0000 110.0000 110.0000 110.0000 109.9974 109.9995 109.9996 110.0000 110.0000 110 89.423 110 110 89.4234 
P40 512.348  510.984 511.261 468.1694 511.2800 510.9800 511.2794 511.2800 511.2800 511.2813 511.2797 511.2794 511.2794 511.2946 471.4405 482.2143 481.3421 481.6645 
Fuel cost*105 $ 1.22323 1.21788 1.22044 1.216492 1.214101 1.214630 1.214035 1.217419 1.21412 1.214187 1.214147 1.214208 1.214035 121415.09 1.210745 1.2121 1.2117 1.2104 

CPU(s) 35.851 15.6988 22.5841 63.5147 123.54 25.6984 45.2698 35.3652 15.26 12.999 39.2514 19.2884 22.364 20.258 48.365 14.1002 12.3374 11.5841 
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Table 8 Simulation results for UTS-4  
 

PD ℎ Power outputs (MW) GA PSO FPA WOA GA-WOA  nPSO nDE ihPSODE 

400 (MW) 43.55981 

P1 102.617  102.612 102.4468 102.4887  102.5355 101.6157 101.0747 101.6155 

P2 153.825  153.809 153.8341 153.8043  153.7200 151.2972 151.8354 151.2563 

P3 151.011  150.991 151.1321 151.1278  151.1046 147.0871 147.0899 147.1282 

PL 7.41324  7.41173 7.4126 7.4208  7.4182 7.4184 7.4122 7.4102 

Fuel cost ($) 20840.1  20838.3 20838.1 20838  20836 20839.4512 20838.1544 20837.2154 

Emission (kg) 200.256  200.221 200.2238 200.2316  200.1748 200.2210 200.2204 200.2193 

Total cost($) 29563.2  29559.9 29559.81 29560  29556 29559.6854 29558.6500 29557.3589 

CPU(s) 0.282  0.235 0.175 0.297   0.783327 0.212 0.189 0.115 

500(MW) 44.07915 

P1 128.997  128.984 128.8074 128.5434 128.5344 125.8785 125.2001 125.997 
P2 192.683  192.645 192.5906 192.6543 192.7451 187.0074 186.6855 185.5519 
P3 190.11  190.063 190.2958 190.2876 190.2784 187.1141 188.1144 188.4511 
PL 11.6964  11.6919 11.6938 11.6954 11.6811 11.6964  11.7854  11.6964  
Fuel cost ($) 25499.4  25495 25494.7 25495.744 25494.568 25493.4145  25495.1522  25499.4  
Emission (kg) 311.273  311.15 311.155 311.165 311.1485 311.1152 311.1093  311.1021 
Total cost($) 39220.1  39210.2 39210.15 39219.210 39218.541 39209.125  39210.168  39208.181  

CPU(s) 0.172  0.156 0.126 0.183 0.177 0.162  0.154  0.122 

 

Table 9 Simulation results for UTS-5 
 

Outputs(MW)  MODE NSGAII  PDE SPEA-2 GSA ABC_PSO EMOCA FPA nPSO nDE ihPSODE  

P1 54.9487  51.9515 54.9853 52.9761 54.9992 55  55 53.188 52.9215 52.1522 52.9755  
P2 74.5821  67.2584 79.3803 72.813 79.9586 80 80 79.975 72.8131 72.8131 72.8541  
P3 79.4294  73.6879 83.9842 78.1128 79.4341 81.14 83.5594 78.105 78.1122 78.2511 78.1185  
P4 80.6875  91.3554 86.5942 83.6088 85.0000 84.216 84.6031 97.119 83.6785 83.5412 83.6085  
P5 136.8551  134.0522 144.4386 137.2432 142.1063 138.3377 146.5632 152.74 137.2455 137.1542 137.1522  
P6 172.6393  174.9504 165.7756 172.9188 166.5670 167.5086 169.2481 163.08 172.9145 172.8214 172.9128  
P7 283.8233   289.4350 283.2122 287.2023 292.8749 296.8338 300 258.61 287.2154 287.2514 287.2154  
P8 316.3407  314.0556 312.7709 326.4023 313.2387 311.5824 317.3496 302.22 326.4153 324.4985 326.4469  
P9 448.5923  455.6978 440.1135 448.8814 441.1775 420.3363 412.9183 433.21 448.8824 449.8785 448.8258  
P10 436.4287  431.8054 432.6783 423.9025 428.6306 449.1598 434.3133 466.07 423.9045 425.9125 423.9025  
Fuel cost*105 ($) 1.13484  1.13539 1.1351 1.1352 1.1349 1.1342 1.13445 1.1337 1.1351 1.1349 1.1335  
Emission (lb) 4124.9 4130.2 4111.4 4109.1 4111.4 4120.1 4113.98 3997.7 3998.7452 3996.0222 3994.2514  
Loses (MW) 84.33  84.25 83.9 84.1 83.9869 84.1736 83.56 84.3 84.103 84.274 84.012  ℎ 8.2877 8.2398 8.9955 8.23567 8.54322 8.96788 8.99078 8.99967 8. 22284 8.21887 8. 21255  
CPU(s) 3.82  6.02 4.23 7.53 3.68 3.65 2.90 2.23 3.56 3.25 2.22  

 

Table 10 Simulation results for UTS-6 
 

Outputs (MW) MODE  PDE NSGA-II SPEA-2 GSA MABC/D/Cat WOA  MABC/D/Log FPA GA-WOA nPSO nDE ihPSODE 

P1 113.5295  112.1549 113.8685 113.9694 113.9989 110.7998 103.5252 110.7998 43.405 103.42601 113.1254 113.2581 113.5214 
P2 114  113.9431 113.6381 114 113.9896 110.7998 102.8142 110.7998 113.95 102.9235 113.4851 113.7854 113.9158 
P3 120  120 120 119.8719 119.9995 97.3999 93.399 97.3999 105.86 92.01605 119.9999 119.1524 119.5562 
P4 179.8015  180.2647 180.7887 179.9284 179.7857 174.5504 181.2391 174.5486 169.65 183.828 179.8547 179.3584 179.7211 
P5 96.7716  97 97 97 97 87.7999 88.6654 97 96.659 84.01458 97.0000 97.2514 97.0000 
P6 139.2760  140 140 139.2721 139.0128 105.3999 123.93 105.3999 139.02 123.9824 139.1145 139.1542 139.1452 
P7 300  299.8829 300 300 299.9885 259.5996 258.589 259.5996 273.28 259.9376 299.7896 299.7854 299.9885 
P8 298.9193  300 299.0084 298.2706 300 284.5996 282.982 284.5996 285.17 294.4696 300.0000 300.0000 300.0000 
P9 290.7737  289.8915 288.8890 290.5228 296.2025 284.5996 288.395 284.5996 241.96 289.805 296.2845 296.7541 296.2514 
P10 130.9025  130.5725 131.6132 131.4832 130.3850 130 221.951 130 131.26 248.272 130.358 130.3581 130.3854 
P11 244.7349  244.1003 246.5128 244.6704 245.4775 318.1921 188.5985 318.2129 312.13 198.1655 245.4859 245.7854 245.1526 
P12 317.8218  318.2840 318.8748 317.2003 318.2101 243.5996 128.7994 243.5996 362.58 123.955 318.2052 318.7845 318.2055 
P13 395.3846  394.7833 395.7224 394.7357 394.6257 394.2793 451.763 394.2793 346.24 441.354 394.6025 394.6985 394.6569 
P14 394.4692  394.2187 394.1369 394.6223 395.2016 394.2793 394.28 394.2793 306.06 398.9032 395.2154 395.1458 395.2115 
P15 305.8104  305.9616 305.5781 304.7271 306.0014 394.2793 354.081 394.2793 358.78 382.0418 306.0015 306.0008 306.0078 
P16 394.8229  394.1321 394.6968 394.7289 395.1005 394.2793 334.28 394.2793 260.68 342.2716 395.1007 395.1485 395.1005 
P17 487.9872  489.3040 489.4234 487.9857 489.2569 399.5195 429.2798 399.5195 415.19 469.7822 489.2567 489.2569 489.3588 
P18 489.1751  489.6419 488.2701 488.5321 488.7598 399.5195 489.128 399.5195 423.94 445.1378 489.1752 489.1751 489.1158 
P19 500.5265  499.9835 500.8 501.1683 499.2320 506.1985 451.2306 506.1716 549.12 462.328 500.5268 500.7854 500.5562 
P20 457.0072  455.4160 455.2006 456.4324 455.2821 506.1985 461.88 506.2206 496.7 482.812 457.0021 457.3598 457.0152 
P21 434.6068  435.2845 434.6639 434.7887 433.4520 514.1472 523.2803 514.1105 539.17 513.198 434.6845 434.2541 434.6085 
P22 434.5310  433.7311 434.15 434.3937 433.8125 514.1455 485.28 514.1472 546.46 499.9768 434.5584 434.2541 434.5521 
P23 444.6732  446.2496 445.8385 445.0772 445.5136 514.5237 521.458 514.5664 540.06 528.032 444.6485 444.6732 444.6895 
P24 452.0332  451.8828 450.7509 451.8970 452.0547 514.5386 493.311 514.4868 514.5 469.3765 452.4851 445.0732 452.4851 
P25 492.7831  493.2259 491.2745 492.3946 492.8864 433.5196 523.28 433.5195 453.46 499.1242 492.7877 492.7131 492.2514 
P26 436.3347  434.7492 436.3418 436.9926 433.3695 433.5195 481.2801 433.5196 517.31 499.8282 436.3377 438.3847 436.3589 
P27 10  11.8064 11.2457 10.7784 10.0026 10 12.33 10 14.881 15.7668 10.0000 10.0000 10.0000 
P28 10.3901  10.7536 10 10.2955 10.0246 10 21 10 18.79 18.06882 10.3901 10.3971 10.3988 
P29 12.3149  10.3053 12.0714 13.7018 10.0125 10 14.17 10 26.611 12.98864 12.3158 12.1349 12.3188 
P30 96.9050  97 97 96.2431 96.9125 97 88.7611 87.8042 59.58 88.05685 96.1548 96.9108 96.9888 
P31 189.7727  189.4826 190.0000 189.4826 190.0000 189.9689 190 159.733 183.48 162.1605 189.7154 189.7727 184.7757 
P32 174.2324  175.3065 174.7971 174.2163 175 159.733 190 159.7331 183.39 188.2118 173.7524 174.2898 174.2154 
P33 190  190 189.2845 190 189.0181 159.733 190 159.733 189.02 181.089 186.4856 189.4589 189.1544 
P34 199.6506 200 200 200 200 200 161.834 200 198.73 174.1796 199.3355 199.7895 199.4851 
P35 199.8662  200 199.9138 200 200 200 163.891 200 198.77 195.0134 199.1548 199.1485 199.1593 
P36 200  200 199.5066 200 199.9978 200 169.8054 200 182.23 194.884 198.6348 197.8952 199.0541 
P37 110  109.9412 108.3061 110 109.9969 89.1141 109.389 89.1141 39.673 98.4301 110.0000 110.0000 110.0000 
P38 109.9454  109.8823 110 109.6912 109.0126 89.1141 110.12 89.1141 81.596 109.5671 109.1648 109.9458 109.5841 
P39 108.1786  108.9686 109.7899 108.5560 109.4560 89.1141 110.91 89.1141 42.96 108.8450 108.6586 108.1214 108.1658 
P40 422.0628  421.3778 421.3778 421.5609 421.8521 421.9987 511.28 506.1879 537.17 505.7928 421.1528 421.7845 421.8855 
Total cost*105 ($) 1.2579  1.2573 1.2583 1.2581 1.2578 1.2449090 1.23644 1.24491161 1.23170 1.22862 1.2365 1.2236 1.2225 
Emission*105(ton) 2.1119  2.1177 2.1095 2.1110 2.1093 2.5656026 2.1324 2.56560267 2.0846 2.06850 2.1094 2.1025 2.0985 

CPU(s)  5.39  6.15 7.32 8.57 5.69 6.25  5.02 5.65 4.92 5.51 4.55 4.25 3.25 

 
As specified in these tables the best cost created by- (i) presented nPSO for UTS-1, UTS-2 and UTS-3 

of ELD problems are 3619.88 ($/hr), 8368.8401($/hr) and 1.2121×105($/hr) respectively and for UTS-4 
(400 and 500 MW load demand), UTS-5 and UTS-6 of CEED problems are 29559.6854 ($/hr), 
39209.125($/hr), 1.1351×105 ($/hr) and 1.2365×105 ($/hr) separately. (ii) proposed nDE for UTS-1, UTS-
2 and UTS-3 of ELD problems are 3619.55($/hr), 8359.2141($/hr), and 1.2117×105($/hr) respectively 
and for UTS-4 (400 and 500 MW load demand), UTS-5 and UTS-6 of CEED problems are 29558.6500 
($/hr), 39210.168 ($/hr), 1.1349×105($/hr) and 1.2236×105($/hr) correspondingly. (iii) proposed 
ihPSODE for UTS-1, UTS-2, and UTS-3 of ELD problems are 3619.45($/hr), 8356.1545($/hr) and 
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1.2104×105($/hr) respectively and for UTS-4 (400 and 500 MW load demand), UTS-5 and UTS-6 of 
CEED problems are 29557.3589 ($/hr), 39208.181($/hr), 1.1335×105($/hr) and 1.2225×105($/hr) 
individually. 

According to the reported cost results, the proposed nPSO, nDE, and ihPSODE algorithms have the 
lowest fuel cost and emission when compared to other compared algorithms for all unit test systems. 
Furthermore, CPU average times for each unit test system are noted in the associated tables, 
demonstrating that the proposed algorithms produce better solutions in less time than others. As a result, 
the proposed algorithms outperform and outlast other compared algorithms in terms of reducing total 
cost in the shortest amount of time. This indicates that the presented algorithm has higher 
reliability/robustness, stability and convergence when compared to other algorithms. 

The convergence curves of presented and other algorithms are plotted in Fig. 7(a-g) for UTS-1, UTS-2, 
UTS-3, UTS-4, UTS-5 and UTS-6 in terms of total cost versus iterations. These figures show that presented 
algorithms (nPSO, nDE, and ihPSODE) has better convergence performance. 
 

 

(a) UTS-1 (b) UTS-2 (c) UTS-3 

 

(d) UTS-4(400 MW) (e) UTS-4 (500MW) (f) UTS-5 

 

(g) UTS-6 
Fig. 7(a-g) Cost convergence characteristic for different test systems  

 

Moreover, fuel cost variations for all test systems presented in Fig. 8 (a-g). It shows and confirmed 
effectiveness of the proposed nPSO, nDE and ihPSODE for decreasing the fuel cost. Also, these figures 
demonstrate that the supremacy of the presented algorithm in attaining minimum fuel cost compared to 
others with different demands. Therefore, presented algorithms are economically competent. At large, it 
can be stating that (from the all above result investigation) presented algorithms (nPSO, nDE and 
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ihPSODE) are performing better and/or similar with others. Still, between three presented algorithms 
hybrid algorithm i.e. ihPSODE have greater capability.  
 

  
(a). UTS-1 (b). UTS-2 

  
(c). UTS-3 (d). UTS-4 (400 MW) 

  
(e). UTS-4 (500 MW) (f). UTS-5 

 
(g). UTS-6 

 

Fig. 8(a-g) Fuel cost variations for different unit test systems 

4.2 Complexity analysis 

In this section some complexity examination of the presented algorithms is specified as below.  

i). time complexity 

      Presented ihPSODE has the following time complexity (according to the steps).   
a). 𝑛𝑝-population initialization needs O(𝑛𝑝.D) time.  
b). evaluation and sorting (as per fitness function values) population wants O(𝑡𝑚𝑎𝑥 × 𝑛𝑝) time. 
c). partition of population (𝑝𝑜𝑝1 and 𝑝𝑜𝑝2) requires O(𝑡𝑚𝑎𝑥 × 𝑛𝑝) time.  

d). calculation of 𝑝𝑜𝑝1 (by nDE) and 𝑝𝑜𝑝2 (by nPSO) takesO(𝑡𝑚𝑎𝑥 × 
𝑛𝑝2 ×

𝑛𝑝2 ) =O(𝑡𝑚𝑎𝑥 × 
𝑛𝑝24 ) time. 
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e). population integration and execution of algorithm involves O(𝑡𝑚𝑎𝑥 × 𝑛𝑝 × 𝑛𝑝)=O(𝑡𝑚𝑎𝑥 × 𝑛𝑝2) 
time. 

So, for maximum number of iterations the total time complexity of ihPSODE is- 

O(𝑛𝑝.D)+O(𝑡𝑚𝑎𝑥 × 𝑛𝑝) +O(𝑡𝑚𝑎𝑥 × 𝑛𝑝)+O(𝑡𝑚𝑎𝑥 × 
𝑛𝑝24 )+O(𝑡𝑚𝑎𝑥 × 𝑛𝑝2)=O(𝑡𝑚𝑎𝑥 × 𝑛𝑝2 × 𝐷) 

ii). space complexity 

 The space complexity is the maximum volume of space which is used by presented ihPSODE 
algorithm. Thus, the total space complexity of proposed ihPSODE algorithm is O(max(𝑛𝑝, 𝑛𝑝, 𝑛𝑝, 𝑛𝑝24 ,𝑛𝑝2) × 𝐷)=O(𝑛𝑝2 × 𝐷). 

5.  Conclusion with future perspectives 

In this paper, to promote the performance of PSO and DE algorithm, a novel PSO (namely nPSO), 
novel DE (called nDE) and their innovative hybrid (titled ihPSODE) is presented for solving combined 
economic and emission dispatch (CEED) problems. Presented nPSO has a new acceleration coefficient, 
inertia weight and position improve equation (to alleviate the stagnation) as well as nDE has a new 
mutation approach and crossover rate (to prevent premature convergence). After population evaluation 
(in ihPSODE) best half member has been recognized and nPSO employed (which enhanced local and 
global search capacity) then nDE (which ensures bring solutions with higher quality), in each iteration 
process. In addition, because of suitable implementation of nPSO and nDE, particle can learn not only 
from the globally based individuals, but also from the best individuals of each problem in ihPSODE. 
Altogether, quality of ‘memorizing (by nPSO)’ and ‘diversity maintaining (by nDE)’ brands ihPSODE 
more robust. Likewise, related novel presented control parameters of nPSO and nDE makes extra 
support for the success of ihPSODE.  

The presented algorithms (nPSO, nDE and ihPSODE) have been tested over 23 unconstrained 
benchmark functions then applied to solve two large scale power engineering optimization problem 
namely economic load dispatch (ELD) and combined economic emission dispatch (CEED) problem. 
These problem include 3 test systems (3, 6 and 40-unit test system) of ELD and 3 test systems (3, 10 
and 40-unit test system) of CEED problem. The performance of presented methods compared with the 
classical DE and PSO with their existed variants and hybrids plus other state-of-the-art methods.  

The simulation results prove that presented algorithms are more effective than or at least competitive 
to the compared algorithms in case of unconstrained benchmark functions. Moreover, presented 
algorithms are successfully used to solve ELD and CEED power system engineering optimization 
problems. The optimization results confirm that presented algorithms can achieve better solutions than 
other compared methods in case of power system engineering optimization problems. Therefore, 
presented algorithms are economically competent. All in all, it can be summarized that the proposed 
algorithms (nPSO, nDE and ihPSODE) can be seen as an effective algorithm to solve power system 
engineering optimization problems. Lastly, between three presented algorithms hybrid algorithm i.e. 
ihPSODE have greater capability. 

Furthermore, the presented algorithms do have higher time complexity than some PSO, DE and 
hybrid variants. The matrix operation evaluation is the primary cause of the presented algorithms' time-
consuming nature. This operation is repeated for each individual on each iteration, which increases the 
algorithm's running time in some extent. Besides, the presented algorithms may not be appropriate for 
all complex optimization problems. 

Some novel parameters will be designed for the presented nDE, nPSO, and ihPSODE as part of our 
future work for finding more precise solutions and falling time complexity. Finally, this paper is 
expected to devote in a fruitful analysis i.e. complete mathematical convergence analysis of the 
presented algorithm which may done in the coming paper with inspecting how to advance the strength 
for multifaceted optimization problems. 
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