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ABSTRACT 20 

In this study, we develop a real-time connected vehicle (CV) speed advisory application, which 21 

we refer to as “Serverless CloSA”, using commercial cloud services and present case studies for a 22 

signalized corridor for different roadway traffic conditions.  First, we develop a highly scalable serverless 23 

cloud computing architecture using Amazon Web Services (AWS) to support the requirements of a real-24 

time CV application. Second, we develop an optimization-based real-time CV speed advisory algorithm 25 

that is deployable in the cloud. Third, we develop a cloud-in-the-loop simulation testbed using AWS and 26 

an open-source microscopic roadway traffic simulator called Simulation of Urban Mobility (SUMO). 27 

Then, we conduct three case studies for three different roadway traffic conditions, i.e., low, medium, and 28 

high-density traffic. Our analyses show that Serverless CloSA can reduce the average stopped delays at 29 

signalized intersections in a corridor by 77% while reducing the aggregated risk of collision by 21% 30 

compared to the baseline scenario, i.e., no speed advisory for the CVs. Our experiments show an average 31 

end-to-end delay of 452 ms, which is well under the 1000 ms delay threshold of real-time CV mobility 32 

applications. Thus, this study also demonstrates the feasibility of deploying a real-time CV mobility 33 

application using commercial cloud services. 34 

 35 

Keywords: Amazon web services, connected vehicles, internet of things, serverless architecture, 36 

transportation cyber-physical systems 37 

 38 

1 INTRODUCTION 39 

 40 

In transportation cyber-physical systems (TCPS), the interaction between cyber and physical 41 

systems makes it possible to develop real-time CV applications [1]. However, to develop a real-time 42 

feedback-based interaction between cyber systems and physical systems, high-performance computing 43 

infrastructure is required to process the heterogeneous data from different sources. While edge or fog 44 
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computing offers a viable solution to deploy real-time applications in a TCPS environment [2], there are 45 

issues related to edge computing-based CV application deployments, such as wireless communication 46 

range [3] and maintenance costs. The recent evolution of commercial cloud computing services has made 47 

it possible to support real-time TCPS applications in the cloud [4]. Additionally, most commercial cloud 48 

service providers now offer serverless solutions (e.g., Lambda [5] offered by Amazon Web Services 49 

(AWS), Azure Functions [6] offered by Microsoft Azure) that remove the burden of establishing server 50 

instances and enable developers to focus primarily on application development, such as CV and Internet 51 

of Things (IoT) applications.  52 

In a server-based cloud application, the application developers are required to establish server 53 

instances (e.g., AWS EC2 [7]) and configure coding platforms in the cloud that will support the 54 

application. On the other hand, in a serverless cloud-based application, the application developers do not 55 

need to establish the server instances as the computational resources are managed by the cloud itself 56 

based on the computing requirement of an application. Thus, serverless cloud is an attractive option to 57 

develop highly scalable real-time CV applications [4]. However, deploying a real-time CV application in 58 

a serverless cloud requires developing a feasible serverless cloud architecture utilizing the available cloud 59 

services as well as developing an algorithm for the CV application that is deployable through the 60 

serverless cloud architecture while meeting the latency requirements of a real-time CV application. 61 

In this paper, we develop a CV speed advisory application (i.e., an application that provides each 62 

CV with an advised speed that changes dynamically based on various factors, such as the CV’s location, 63 

surrounding traffic condition and signal phase and timing of the traffic signal at the intersection that the 64 

CV is approaching) using serverless cloud infrastructure with a goal to minimize the stopped delay 65 

experienced by CVs while passing through a signalized corridor, i.e., a roadway with traffic signals 66 

deployed at its intersections. In this TCPS environment, commercial serverless cloud infrastructure (as 67 

cyber systems) interacts with CVs and connected traffic signals (both as parts of physical systems), as 68 

shown in Fig. 1. The serverless cloud infrastructure has three types of service: (i) Function as a Service 69 



  

4 

 

(FaaS), where a CV application, such as a speed advisory algorithm, can run, (ii) Platform as a Service 70 

(PaaS), where computing, data streaming, and database management services operate, and (iii) 71 

Infrastructure as a Service (IaaS), which is managed by the cloud service providers in a serverless 72 

architecture. The serverless architecture features a pay-as-you-go model without having to manage the 73 

underlying computing infrastructure. It is defined as Function as a Service (FaaS), which are serverless 74 

functions triggered by events as required by the application [8, 9]. 75 

The primary contributions of this study are (i) to develop a serverless cloud computing 76 

architecture using AWS for a CV speed advisory application in a TCPS environment, which we refer to as 77 

“Serverless CloSA” in this paper, and (ii) to develop an optimization-based real-time CV speed advisory 78 

application which is deployable in the cloud in terms of end-to-end latency requirement. Similar 79 

serverless architectures can also be used to develop other types of CV mobility applications, such as 80 

queue warnings and eco-driving advisories, where the maximum end-to-end latency threshold is 81 

 

Fig. 1. Serverless cloud architecture of CV speed advisory in TCPS. 
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considered to be 1000 ms [10]. In our Serverless CloSA, CVs and connected traffic signals send their 82 

state information, i.e., basic safety messages of CVs, and traffic signal phase and timing information of 83 

connected traffic signals, into the serverless cloud computing infrastructure. These messages 84 

automatically trigger the execution of the serverless functions that support the speed advisory application. 85 

Our Serverless CloSA is more scalable in terms of communication coverage area (as CVs directly 86 

communicate with the cloud to receive real-time speed advisories) and number of CVs compared to an 87 

application supported by traditional edge computing. We also develop a cloud-in-the-loop simulation 88 

testbed using AWS and Simulation of Urban Mobility (SUMO) [11], which is a widely used open-source 89 

microscopic roadway traffic simulator. Finally, we evaluate the feasibility of Serverless CloSA through a 90 

cloud-in-the-loop simulation.  91 

 92 

2 RELATED WORK 93 

Cloud infrastructures can effectively communicate with CVs and transportation 94 

infrastructures through vehicle-to-infrastructure (V2I) and infrastructure-to-infrastructure (I2I) 95 

communication, respectively, using wireless communication technologies, such as Cellular 96 

Vehicle-to-Everything (C-V2X), Long-Term Evolution (LTE), and 5G, or wired communication 97 

technologies, such as optical fiber-based communication technology. Services in the cloud then 98 

aggregate and analyze these data and generate appropriate information corresponding to the 99 

cloud applications. For instance, Ning et al. [12] utilized a cloud-based Fog Computing 100 

architecture to implement real-time roadway traffic management. Li et. al. [13] provided a 101 

maximum value density-based heuristic algorithm through vehicular edge cloud computing to 102 

achieve energy usage efficiency for roadway traffic. Jin et. al. [14] presented a method of 103 

constructing cloud-based mobility services for connected and automated vehicle (CAV) highway 104 

systems. All these studies used a traditional server-based architecture to develop real-time CV 105 
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applications. More recently, Deng et al. [4] utilized AWS serverless infrastructure to develop a 106 

traffic surveillance application to compute the average speed of CVs in a TCPS environment. 107 

However, to our knowledge, no study has used a serverless architecture in a commercial cloud 108 

for a real-time CV application that requires the cloud infrastructure to perform computation 109 

using data coming from both CVs and transportation infrastructure in real-time while meeting 110 

the strict latency requirement of the CV mobility applications. 111 

On the other hand, optimal speed advisory algorithms, that help CVs navigate through a 112 

signalized corridor efficiently in terms of reduced stopped delay, fuel consumption, and CO2 113 

emission, have been studied extensively in the literature. Many studies referred to this type of 114 

algorithm as the Green Light Optimal Speed Advisory (GLOSA) algorithm [15–20]. For 115 

instance, Suzuki and Marumo [18] developed a GLOSA system that projects a green rectangle 116 

on the roadway through the head-up display of a GLOSA-enabled vehicle. Stebbins et al. [16] 117 

combined model predictive control (MPC) with state-space reduction and GLOSA to yield 118 

efficient trajectories for the CVs. However, few studies considered platoon formation in 119 

GLOSA. Among them, Stebbins et al. [17] developed a platoon-based optimization technique for 120 

GLOSA. The authors included a safety constraint in their optimization model considering that 121 

the human drivers may not follow an advised speed if they feel that they will not be able to stop 122 

if needed while approaching an intersection. Zhao et al. [21] developed a platoon-based MPC to 123 

optimize fuel consumption which enables a platoon of vehicles to pass an intersection within a 124 

traffic signal system’s green interval, where the model’s efficacy was evaluated for different CV 125 

penetration rates. However, none of these studies considered a real-time implementation of the 126 

platoon-based GLOSA system for speed advisories in a signalized corridor that is “deployable” 127 

in a commercial cloud-based TCPS environment. In this study, we develop a platoon-based real-128 
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time CV speed advisory application to minimize the stopped delay experienced by the CVs that 129 

is deployable in the commercial clouds in terms of the strict latency requirement of the CV 130 

mobility applications. 131 

 132 

3 CLOUD-BASED SERVERLESS ARCHITECTURE 133 

AWS maintains a vast cloud infrastructure and services catalog, which makes it secure, 134 

scalable, and highly available for developing real-time CV mobility applications [4]. Besides, 135 

AWS offers various serverless services, such as AWS Lambda [5], that can be used to develop 136 

applications without being concerned about establishing or maintaining any server instances. 137 

Such serverless services generally follow pay-as-you-go billing models that make the serverless 138 

architectures cost-effective as we mentioned before [22]. Thus, in this study, we develop a 139 

serverless cloud-based CV application utilizing the serverless services offered by AWS, such as 140 

AWS Lambda. In Fig. 2, we present a serverless cloud architecture showing the computing 141 

resources, databases, and streaming services integrated to support a real-time speed advisory 142 

application for CVs using AWS. The serverless architecture removes the need for developers to 143 

manage traditional server infrastructure. Thus, we only need to focus on developing the 144 

application using relevant AWS services. 145 
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The serverless architecture (shown in Fig. 2) employs the following AWS services: 1) 146 

DynamoDB, 2) Kinesis Data Stream (KDS), and 3) AWS Lambda. We use DynamoDB, i.e., a 147 

NoSQL database service with a key-value structure [23], for creating our databases. We create a 148 

CV trajectory database to update the CVs’ trajectory information, and a speed advisory database 149 

to store speed advisory results from which the CVs can download their corresponding speed 150 

advisories in real-time. For each traffic signal, we create a historical database to save and update 151 

the distances between CVs and the traffic signal in real-time. We utilize Kinesis Data Stream 152 

(KDS), a real-time data stream service [24] in AWS, to send a message from each traffic signal 153 

to the cloud every second to trigger (i.e., launch the target program automatically) the serverless 154 

 

Fig. 2. Details of the Serverless CloSA architecture using AWS services. 
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functions in CV advisory cluster. AWS Lambda [5] is the serverless compute service at the core 155 

of this serverless architecture. We design a group of AWS Lambda functions to form a serverless 156 

CV advisory cluster that gets triggered by KDS for each traffic signal. Each cluster contains 157 

multiple serverless CV advisory modules that process information from the CVs. To meet the 158 

latency requirement of a real-time CV mobility application, i.e., less than or equal to 1000 ms 159 

[10, 25], we define the capacity of each serverless CV advisory module in terms of the maximum 160 

number of CVs to be processed, which is 50 CVs per module in our AWS implementation, and 161 

run all the CV advisory modules in parallel. The usage of parallel computing in a cluster makes 162 

our Serverless CloSA fast and scalable. 163 

There are two types of programs in each serverless CV advisory module: 1) a CV platoon 164 

assigner, and 2) a set of CV platoon optimizers. A CV platoon assigner is an AWS Lambda 165 

function that has the necessary information related to its corresponding traffic signal and 166 

intersection, such as the physical location, signal phase duration of the traffic signal, and the 167 

posted speed limit on the roadway approaching that intersection. Once the cluster is triggered, 168 

the CV platoon assigner performs the following tasks: 1) collect information from both traffic 169 

signals and CVs, 2) split the CVs into platoons based on the CVs’ gap information (based on the 170 

method discussed in subsection A of section 4), 3) compute a speed advisory for only the leader 171 

CV of each platoon (based on the method discussed in subsection 4.2), and 4) save the speed 172 

advisory for the leader CV of each platoon into the speed advisory database. Then, for each 173 

platoon, the CV platoon assigner invokes a CV platoon optimizer. A CV platoon optimizer is 174 

also a serverless process, i.e., an AWS Lambda, that is responsible for its corresponding CV 175 

platoon. It computes speed advisories for the follower CVs in that platoon to help them pass the 176 

intersection while maintaining the minimum safety distances and operating within the roadway 177 
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speed limit. The results, i.e., the speed advisories for the follower CVs, generated from the CV 178 

platoon optimizer are then stored in the speed advisory database.  179 

In the real world, each CV generates Basic Safety Messages (BSMs) and each traffic 180 

signal generates signal phase and timing messages. In the Serverless CloSA, each CV uploads a 181 

filtered BSM including the CV’s ID, location, speed, and the gap with its immediate leading CV 182 

into the CV trajectory database. Each traffic signal sends a filtered signal phase and timing 183 

message every second containing the current traffic signal phase and the remaining time of that 184 

phase through KDS. Our optimization-based speed advisory algorithm deployed in each 185 

serverless CV advisory cluster utilizes these BSMs and signal phase and timing messages to 186 

generate speed advisories for the CVs in real-time. 187 

4 CLOUD-BASED SPEED ADVISORY APPLICATION 188 

In this section, we present an optimization-based speed advisory application (i.e., 189 

Serverless CloSA) running in AWS to minimize the stopped delay for CVs at signalized 190 

intersections. The Serverless CloSA consists of three parts: 1) CV platoon identification, 2) 191 

optimization-based speed advisory algorithm for the leader CVs of the platoons, and 3) 192 

optimization-based speed advisory algorithm for the follower CVs of the platoons. Fig. 3 and 193 

Table 1 present all the relevant symbols that we use to develop the application. 194 

4.1 CV Platoon Identification 195 

We form CV platoons based on whether they can pass a signalized intersection within the available time 196 

of the current green time or the next green time, i.e., 𝑡𝑎𝑣𝑎𝑖𝑙(𝑘), measured at the 𝑘𝑡ℎ timestamp. Therefore, 197 

to be identified as a platoon of 𝑁 number of CVs, the last or 𝑁𝑡ℎ CV of the platoon must be able to pass 198 

the intersection within the available time, i.e., meet the following criterion:  199 min 𝑡𝑁,𝑖𝑛𝑡(𝑘)  ≤ 𝑡𝑎𝑣𝑎𝑖𝑙(𝑘) (1) 
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where, 𝑡𝑁,𝑖𝑛𝑡(𝑘)  denotes the estimated time taken by the 𝑁𝑡ℎ  CV to reach the intersection from its 200 

location at the 𝑘𝑡ℎ timestamp. To estimate the minimum of 𝑡𝑁,𝑖𝑛𝑡(𝑘), we consider the total time required 201 

by the 𝑁𝑡ℎ CV to accelerate from its current speed (𝑆𝑁(𝑘)) to the maximum speed based on the roadway 202 

speed limit (𝑆𝑚𝑎𝑥) using its maximum acceleration (𝑎𝐴𝑐𝑐) and then continue to travel at 𝑆𝑚𝑎𝑥 until it 203 

reaches the intersection, which is given by the following equation (according to Newton’s equations of 204 

motion), 205 

min 𝑡𝑁,𝑖𝑛𝑡(𝑘) = 𝑆𝑚𝑎𝑥−𝑆𝑁(𝑘)𝑎𝐴𝑐𝑐 + 1𝑆𝑚𝑎𝑥 [𝑑𝑁,𝑖𝑛𝑡(𝑘) − (𝑆𝑚𝑎𝑥)2−𝑆𝑁2 (𝑘)2𝑎𝐴𝑐𝑐 ]  (2) 

First part of the above equation gives the minimum time required by the 𝑁𝑡ℎ CV to accelerate 206 

from 𝑆𝑁(𝑘) to 𝑆𝑚𝑎𝑥, and the second part of the equation gives the time required by the 𝑁𝑡ℎ CV to reach 207 

the intersection at a constant speed (i.e., 𝑆𝑚𝑎𝑥) after it achieves 𝑆𝑚𝑎𝑥. Thus, (2) estimates the minimum 208 

time required by the 𝑁𝑡ℎ CV of the platoon to reach the intersection. We explain how the time spent in 209 

constant speed is obtained for the leader CV of a platoon in the next subsection.  210 

 211 

Fig. 3. Relevant symbols related to the speed advisory algorithm. 
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Table 1. Symbols used in the speed advisory algorithm 212 

Symbol Meaning  Symbol Meaning 𝐿 Subscript 𝐿 refers to the leader CV of a platoon  𝑑𝑖,𝑖𝑛𝑡(𝑘) Distance from the 𝑖𝑡ℎ follower CV in a platoon 
to the target intersection at the 𝑘𝑡ℎ timestamp 𝑖 Subscript 𝑖 refers to the 𝑖𝑡ℎ follower CV in a 

platoon, i.e., 𝑖 ∈ {1,2,3,……𝑁} for a platoon of (𝑁 + 1) CVs consisting one leader CV and 𝑁 
follower CVs 

𝑑𝐿,𝑖𝑛𝑡(𝑘) Distance from the leader CV of a platoon to the 
target intersection calculated at the 𝑘𝑡ℎ 
timestamp 𝑥𝑖(𝑘) Location of the 𝑖𝑡ℎ follower CV at the 𝑘𝑡ℎ 

timestamp with respect to the target intersection 
𝑑𝐿,𝑐𝑜𝑛𝑠𝑡𝐴𝑐𝑐(𝑘) Estimated (at the 𝑘𝑡ℎ timestamp) distance 

covered by the leader CV of a platoon while 
accelerating from 𝑆𝐿(𝑘) to achieve a target 
speed (𝑆𝐿,𝑡𝑎𝑟(𝑘)) 𝑥𝐿(𝑘) Location of the leader CV at the 𝑘𝑡ℎ timestamp 

with respect to the target intersection 
𝑑𝐿,𝑐𝑜𝑛𝑠𝑡𝑆𝑝𝑑(𝑘) Estimated (at the 𝑘𝑡ℎ timestamp) distance 

covered by the leader CV of a platoon while 
operating at a target speed (𝑆𝐿,𝑡𝑎𝑟(𝑘)) from the 

moment it achieves 𝑆𝐿,𝑡𝑎𝑟(𝑘) 𝑙𝐶𝑉 Length of the CV 𝑡𝑁,𝑖𝑛𝑡(𝑘) Estimated total time required (from the 𝑘𝑡ℎ 
timestamp) by the last (i.e., 𝑁𝑡ℎ) follower CV 
of a platoon to reach the intersection from its 
location (𝑥𝑁(𝑘)) 

𝑔𝑖(𝑘) Gap between the 𝑖𝑡ℎ follower CV at the 𝑘𝑡ℎ 
timestamp with its immediate leading CV  𝑡𝐿,𝑐𝑜𝑛𝑠𝑡𝐴𝑐𝑐(𝑘) Estimated time required by the leader CV of a 

platoon from the 𝑘𝑡ℎ timestamp to accelerate 
from 𝑆𝐿(𝑘) to a target speed (𝑆𝐿,𝑡𝑎𝑟(𝑘)) 𝑔𝑖,𝑡𝑎𝑟(𝑘) Target gap of the 𝑖𝑡ℎ follower CV at the 𝑘𝑡ℎ 

timestamp 𝑔𝑠𝑡𝑎𝑛𝑑 Constant standstill gap 𝑇𝑔 Constant time gap 𝑡𝐿,𝑐𝑜𝑛𝑠𝑡𝑆𝑝𝑑(𝑘)   Time required (estimated at the 𝑘𝑡ℎ timestamp) 
by the leader CV of a platoon to reach the 
intersection while operating at a target speed 
(𝑆𝐿,𝑡𝑎𝑟(𝑘)) from the moment it achieves 𝑆𝐿,𝑡𝑎𝑟(𝑘) 

𝑆𝑖(𝑘) Speed of the 𝑖𝑡ℎ follower CV at the 𝑘𝑡ℎ timestamp 𝑆𝐿(𝑘) Speed of the leader CV of a platoon at the 𝑘𝑡ℎ 
timestamp 𝑆𝑖,𝑎𝑑𝑣(𝑘) Speed advisory for the 𝑖𝑡ℎ follower CV at the 𝑘𝑡ℎ 
timestamp 

𝑡𝑟𝑒𝑚𝑎𝑖𝑛(𝑘) 
 

Remaining time of the current green interval 
calculated at the 𝑘𝑡ℎ timestamp 𝑆𝐿,𝑎𝑑𝑣(𝑘) Speed advisory for the leader CV of a platoon at 

the 𝑘𝑡ℎ timestamp 𝑡𝑎𝑣𝑎𝑖𝑙(𝑘) Available time to pass an intersection calculated 
at the 𝑘𝑡ℎ timestamp 𝑆𝑚𝑎𝑥 Maximum speed, which is same as the roadway 

speed limit 𝑎𝐴𝑐𝑐 Maximum acceleration 𝑡𝐺 (Minimum) green interval  𝑎𝐵𝑟𝑘 Maximum braking deceleration 𝑡𝐴𝑅 All red interval 𝑎𝑐𝑜𝑛𝑠𝑡 Constant acceleration; 𝑎𝑐𝑜𝑛𝑠𝑡 = 𝑎𝐴𝑐𝑐 if the CV is 
accelerating, and 𝑎𝑐𝑜𝑛𝑠𝑡 = 𝑎𝐵𝑟𝑘 if the CV is 
decelerating 

𝑡𝑌 Yellow interval 

𝑑𝑒𝑙𝑎𝑦𝐿(𝑘) Additional estimated delay calculated from the 𝑘𝑡ℎ 
timestamp experienced by the leader CV of a 
platoon while following 𝑆𝐿,𝑎𝑑𝑣(𝑘) compared to 
following 𝑆𝑚𝑎𝑥 
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We assume 100% CV penetration on the signalized corridor considered in this study. There are 213 

two cases to consider based on the current phase of the traffic signal at the target intersection that the CVs 214 

are approaching; case I: the platoon can pass the intersection within the current green interval, and case II: 215 

the platoon can pass the intersection in the next green interval. For case I, the available time to reach the 216 

intersection before the signal turns red is, 217 

𝑡𝑎𝑣𝑎𝑖𝑙(𝑘) = 𝑡𝑟𝑒𝑚𝑎𝑖𝑛(𝑘)  (3) 

where, 𝑡𝑟𝑒𝑚𝑎𝑖𝑛(𝑘) is the remaining green interval, whereas, for case II, this available time is an aggregate 218 

of the remaining green interval and the other intervals till the next green interval, i.e., sum of the 219 

minimum green intervals (∑𝑡𝐺) and yellow intervals (∑𝑡𝑌) for the other approaches in the intersection, 220 

and sum of the all-red intervals (∑ 𝑡𝐴𝑅); 221 

𝑡𝑎𝑣𝑎𝑖𝑙(𝑘) = 𝑡𝑟𝑒𝑚𝑎𝑖𝑛(𝑘) + ∑ 𝑡𝐺 + ∑𝑡𝑌 + ∑𝑡𝐴𝑅  (4) 

4.2 Speed Advisory for the Leader CVs of the Platoons 222 

For the leader CV of a platoon, the speed advisory is determined based on whether the platoon is a case I 223 

platoon or a case II platoon. For the case I platoons, the speed advisory algorithm attempts to assist the 224 

CVs to cross the intersection as fast as possible while operating within the roadway speed limit, 𝑆𝑚𝑎𝑥. 225 

Therefore, for case I, the leader CVs are simply advised with the roadway speed limit, 𝑆𝑚𝑎𝑥, as the speed 226 

advisory. For the case II platoons, the speed advisories for the leader CVs are found through an 227 

optimization with an objective to reduce the estimated delay to pass the intersection. 228 

 For a case II platoon, our objective function of the optimization for determining the advisory 229 

speed for the leader CV is the estimated delay experienced by the leader CV while traveling from its 230 

current state till it reaches the target intersection. In this context, “delay” is estimated as the additional 231 

time required by the leader CV to reach the intersection using the advised speed, 𝑆𝐿,𝑎𝑑𝑣, compared to the 232 

lowest possible time to reach the intersection using the maximum speed, i.e., 𝑆𝑚𝑎𝑥, which is set to be the 233 
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same as the speed limit. Thus, the objective function for this optimization is considered as this additional 234 

estimated delay for the leader CV, which is given by the following expressions, 235 min𝑆𝐿,𝑎𝑑𝑣 𝑑𝑒𝑙𝑎𝑦𝐿(𝑘) (5) 

where, 𝑑𝑒𝑙𝑎𝑦𝐿(𝑘) = (𝑡𝐿,𝑐𝑜𝑛𝑠𝑡𝐴𝑐𝑐(𝑘) + 𝑡𝐿,𝑐𝑜𝑛𝑠𝑡𝑆𝑝𝑑(𝑘))𝑓𝑜𝑟 𝑆𝐿,𝑎𝑑𝑣 −                          (𝑡𝐿,𝑐𝑜𝑛𝑠𝑡𝐴𝑐𝑐(𝑘) + 𝑡𝐿,𝑐𝑜𝑛𝑠𝑡𝑆𝑝𝑑(𝑘))𝑓𝑜𝑟 𝑆𝑚𝑎𝑥 

 

(6) 

(𝑡𝐿,𝑐𝑜𝑛𝑠𝑡𝐴𝑐𝑐(𝑘) + 𝑡𝐿,𝑐𝑜𝑛𝑠𝑡𝑆𝑝𝑑(𝑘))𝑓𝑜𝑟 𝑆𝐿,𝑎𝑑𝑣  and (𝑡𝐿,𝑐𝑜𝑛𝑠𝑡𝐴𝑐𝑐(𝑘) + 𝑡𝐿,𝑐𝑜𝑛𝑠𝑡𝑆𝑝𝑑(𝑘))𝑓𝑜𝑟 𝑆𝑚𝑎𝑥  both consist of 236 

two periods:  237 

1) acceleration period, 𝑡𝐿,𝑐𝑜𝑛𝑠𝑡𝐴𝑐𝑐(𝑘): the time required to accelerate from the leader CV’s current 238 

speed, 𝑆𝐿(𝑘), to 𝑆𝐿,𝑎𝑑𝑣(𝑘) or 𝑆𝑚𝑎𝑥; and 239 

2) constant speed period, 𝑡𝐿,𝑐𝑜𝑛𝑠𝑡𝑆𝑝𝑑(𝑘): the time required to reach the intersection at a constant 240 

speed, 𝑆𝐿,𝑎𝑑𝑣(𝑘) or 𝑆𝑚𝑎𝑥, after achieving 𝑆𝐿,𝑎𝑑𝑣(𝑘) or 𝑆𝑚𝑎𝑥. 241 

Here, we only discuss how to estimate the above two periods for 𝑆𝐿,𝑎𝑑𝑣(𝑘) as the same steps are 242 

followed to estimate the two periods for 𝑆𝑚𝑎𝑥. The required time to accelerate from 𝑆𝐿(𝑘) to 𝑆𝐿,𝑎𝑑𝑣(𝑘) is 243 

given by, 244 

𝑡𝐿,𝑐𝑜𝑛𝑠𝑡𝐴𝑐𝑐(𝑘) = 𝑆𝐿,𝑎𝑑𝑣−𝑆𝐿(𝑘)𝑎𝑐𝑜𝑛𝑠𝑡    (7) 

where, 𝑎𝑐𝑜𝑛𝑠𝑡 = 𝑎𝐴𝑐𝑐 if 𝑆𝐿,𝑎𝑑𝑣(𝑘) > 𝑆𝐿(𝑘), and 𝑎𝑐𝑜𝑛𝑠𝑡 = 𝑎𝐵𝑟𝑘 if 𝑆𝐿,𝑎𝑑𝑣(𝑘) < 𝑆𝐿(𝑘)). Then, we estimate 245 

the distance covered during the acceleration period. Distance covered while accelerating from 𝑆𝐿(𝑘) to 246 𝑆𝐿,𝑎𝑑𝑣(𝑘), 247 

𝑑𝐿,𝑐𝑜𝑛𝑠𝑡𝐴𝑐𝑐(𝑘) = (𝑆𝐿,𝑎𝑑𝑣(𝑘))2−𝑆𝐿2(𝑘)2𝑎𝑐𝑜𝑛𝑠𝑡     (8) 

To determine 𝑡𝐿,𝑐𝑜𝑛𝑠𝑡𝑆𝑝𝑑(𝑘), first, we need to estimate the distance covered (i.e., 𝑑𝐿,𝑐𝑜𝑛𝑠𝑡𝑆𝑝𝑑(𝑘)) 248 

while operating at a constant speed, 𝑆𝐿,𝑎𝑑𝑣(𝑘), which can be obtained by subtracting 𝑑𝐿,𝑐𝑜𝑛𝑠𝑡𝐴𝑐𝑐(𝑘) from 249 

the distance of the leader CV from the target intersection (i.e., 𝑑𝐿,𝑖𝑛𝑡(𝑘)), 250 
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𝑑𝐿,𝑐𝑜𝑛𝑠𝑡𝑆𝑝𝑑(𝑘) = 𝑑𝐿,𝑖𝑛𝑡(𝑘) − 𝑑𝐿,𝑐𝑜𝑛𝑠𝑡𝐴𝑐𝑐(𝑘) = 𝑑𝐿,𝑖𝑛𝑡(𝑘) − (𝑆𝐿,𝑎𝑑𝑣(𝑘))2−𝑆𝐿2(𝑘)2𝑎𝑐𝑜𝑛𝑠𝑡     (9) 

Now, we can estimate 𝑡𝐿,𝑐𝑜𝑛𝑠𝑡𝑆𝑝𝑑(𝑘) for 𝑆𝐿,𝑎𝑑𝑣(𝑘) as follows, 251 

𝑡𝐿,𝑐𝑜𝑛𝑠𝑡𝑆𝑝𝑑(𝑘) = 𝑑𝐿,𝑐𝑜𝑛𝑠𝑡𝑆𝑝𝑑(𝑘)𝑆𝐿,𝑎𝑑𝑣(𝑘) = 1𝑆𝐿,𝑎𝑑𝑣(𝑘) [𝑑𝐿,𝑖𝑛𝑡(𝑘) − (𝑆𝐿,𝑎𝑑𝑣(𝑘))2−𝑆𝐿2(𝑘)2𝑎𝑐𝑜𝑛𝑠𝑡 ]     (10) 

Similarly, 𝑡𝐿,𝑐𝑜𝑛𝑠𝑡𝐴𝑐𝑐(𝑘) and 𝑡𝐿,𝑐𝑜𝑛𝑠𝑡𝑆𝑝𝑑(𝑘) for 𝑆𝑚𝑎𝑥 can be written as follows, 252 

𝑡𝐿,𝑐𝑜𝑛𝑠𝑡𝐴𝑐𝑐(𝑘) = 𝑆𝑚𝑎𝑥−𝑆𝐿(𝑘)𝑎𝑐𝑜𝑛𝑠𝑡   (11) 

𝑡𝐿,𝑐𝑜𝑛𝑠𝑡𝑆𝑝𝑑(𝑘) = 𝑑𝐿,𝑐𝑜𝑛𝑠𝑡𝑆𝑝𝑑(𝑘)𝑆𝑚𝑎𝑥 = 1𝑆𝑚𝑎𝑥 [𝑑𝐿,𝑖𝑛𝑡(𝑘) − (𝑆𝑚𝑎𝑥)2−𝑆𝐿2(𝑘)2𝑎𝑐𝑜𝑛𝑠𝑡 ]     (12) 

Therefore, we can now estimate the delay experienced by the leader CV while traveling from its 253 

current state until it reaches the target intersection by substituting the terms derived in (7), (10), (11) and 254 

(12) into (6), 255 

𝑑𝑒𝑙𝑎𝑦𝐿(𝑘) = (𝑑𝐿,𝑖𝑛𝑡(𝑘) + 𝑆𝐿2(𝑘)2𝑎𝑐𝑜𝑛𝑠𝑡) [ 1𝑆𝐿,𝑎𝑑𝑣(𝑘) − 1𝑆𝑚𝑎𝑥] − 𝑆𝐿,𝑎𝑑𝑣(𝑘)−𝑆𝑚𝑎𝑥2𝑎𝑐𝑜𝑛𝑠𝑡      (13) 

For this speed advisory optimization for the case II platoons’ leader CV, we consider the 256 

following constraint, 257 

𝑆𝑚𝑎𝑥 − 10 𝑚𝑝ℎ ≤ 𝑆𝐿,𝑎𝑑𝑣 ≤ 𝑈𝐵      (14) 

where, 𝑈𝐵 = {min (𝑆𝑚𝑎𝑥, 𝑑𝐿,𝑖𝑛𝑡(𝑘)𝑡𝑎𝑣𝑎𝑖𝑙(𝑘))  𝑖𝑓 𝑑𝐿,𝑖𝑛𝑡(𝑘)𝑡𝑎𝑣𝑎𝑖𝑙(𝑘) ≥ (𝑆𝑚𝑎𝑥 − 10 𝑚𝑝ℎ) (𝑆𝑚𝑎𝑥 − 10 𝑚𝑝ℎ)  𝑖𝑓 𝑑𝐿,𝑖𝑛𝑡(𝑘)𝑡𝑎𝑣𝑎𝑖𝑙(𝑘) < (𝑆𝑚𝑎𝑥 − 10 𝑚𝑝ℎ)   

This constraint sets lower and upper bounds to the speed advisory for the case II platoons’ leader 258 

CVs. The lower bound makes sure that the case II platoons’ leader CVs are not advised speeds that are 259 

too low compared to the roadway speed limit. To ensure this, the lower bound is set to 10 miles per hour 260 

(mph) below the roadway speed limit, 𝑆𝑚𝑎𝑥. We chose this threshold to be 10 mph because a threshold 261 

less than 10 mph, for example, 5 mph below the speed limit) would leave a small window to select the 262 

advisory speeds, and a threshold greater than 10 mph, for example, 15 mph below the speed limit, might 263 

cause selecting advisory speeds that are too low compared to the roadway speed limit. On the other hand, 264 
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the upper bound ensures that 1) the advised speeds do not exceed the roadway speed limit, 𝑆𝑚𝑎𝑥, and 2) 265 

the leader CVs do not arrive at the intersection early before the signal turns green again. 266 

Note that, if 
𝑑𝐿,𝑖𝑛𝑡(𝑘)𝑡𝑎𝑣𝑎𝑖𝑙(𝑘) < (𝑆𝑚𝑎𝑥 − 10 𝑚𝑝ℎ), then the leader CV needs to slow down to a speed that 267 

is lower than (𝑆𝑚𝑎𝑥 − 10 𝑚𝑝ℎ) to reach the intersection before the signal turns green again. However, as 268 

we mentioned above, an advised speed lower than (𝑆𝑚𝑎𝑥 − 10 𝑚𝑝ℎ) may seem too low considering the 269 

speed of other vehicles on the roadway and the drivers may not want to or able to follow that. In that case, 270 

the leader CV is advised a speed equal to (𝑆𝑚𝑎𝑥 − 10 𝑚𝑝ℎ), as this will be the only solution that meets 271 

the constraint (14). On the other hand, if 
𝑑𝐿,𝑖𝑛𝑡(𝑘)𝑡𝑎𝑣𝑎𝑖𝑙(𝑘) ≥ (𝑆𝑚𝑎𝑥 − 10 𝑚𝑝ℎ), then we set the minimum value 272 

between 𝑆𝑚𝑎𝑥 and 
𝑑𝐿,𝑖𝑛𝑡(𝑘)𝑡𝑎𝑣𝑎𝑖𝑙(𝑘) as the upper bound, which leads the optimization to pick a solution that would 273 

minimize the delay defined in (13) by allowing the leader CV to operate at a speed within the speed limit 274 

so that it can arrive at the intersection when it would turn green again. Thus, the constraint defined in (14) 275 

helps to find speed advisory solutions for the leader CVs that would minimize the stopped delay by 276 

slowing the CVs down. On the other hand, the objective function defined in (13) pushes the advisory 277 

speed solutions toward the speed limit, 𝑆𝑚𝑎𝑥 (note that, 𝑆𝐿,𝑎𝑑𝑣 = 𝑆𝑚𝑎𝑥 yields 𝑑𝑒𝑙𝑎𝑦𝐿(𝑘) = 0 in (13)) and 278 

the optimization determines 𝑆𝐿,𝑎𝑑𝑣 that is optimum in terms of the above two opposing conditions. 279 

As we mentioned before, this part of the algorithm (i.e., subsection 4.2 in this paper) runs in the 280 

“CV Platoon Assigner”, a serverless process, i.e., AWS Lambda, as shown in Fig. 2. Once the CV 281 

Platoon Assigner assigns the CVs into platoons and determines the advisory speeds for the corresponding 282 

leader CVs, it saves the results into the Speed Advisory Database. Then, it invokes CV Platoon 283 

Optimizers (i.e., one CV Platoon Optimizer for one CV platoon) to run another algorithm of speed 284 

advisory optimization for the follower CVs in the platoons, which we explain in the following subsection. 285 

4.3 Speed Advisory for the Follower CVs in the Platoons 286 

While the leader CVs of the platoons are advised speeds to help the CVs quickly pass the 287 

intersection (for case I) or to reduce the stopped delay as much as possible (for case II), the follower CVs 288 
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are advised speeds simply to reduce the gap among the follower CVs as much as possible without causing 289 

any safety issues, such as increased collision risks compared to the case when the CVs run without any 290 

advisory speeds. We do this using a discrete-time linear model predictive control (MPC)-based 291 

optimization algorithm that is solved globally to determine the speed advisories for all the follower CVs 292 

in each platoon at each time step. In this subsection, we discuss the detailed formulation of the MPC-293 

based optimization for the follower CVs’ speed advisories. Table 1 and Fig. 3 explain the relevant 294 

symbols that are used in this formulation. 295 

First, we assume the advised speeds are achievable by the follower CVs in a platoon within a 296 

short period of time ∆𝑡  based on the CVs’ maximum acceleration, 𝑎𝐴𝑐𝑐 , or deceleration, 𝑎𝐵𝑟𝑘 , 297 

capabilities. Then, assuming constant acceleration or deceleration within this short period of time, ∆𝑡, we 298 

can write the following equations of motion for the 𝑖𝑡ℎ and the (𝑖 + 1)𝑡ℎ follower CVs in a platoon, 299 

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + (𝑆𝑖(𝑘)+𝑆𝑖,𝑎𝑑𝑣(𝑘)2 )∆𝑡 = 𝑥𝑖(𝑘) + 𝑢𝑖(𝑘)∆𝑡  (15) 

where, 𝑢𝑖(𝑘) = (𝑆𝑖(𝑘)+𝑆𝑖,𝑎𝑑𝑣(𝑘)2 ) (16) 

similarly, 𝑥𝑖+1(𝑘 + 1) = 𝑥𝑖+1(𝑘) + 𝑢𝑖+1(𝑘)∆𝑡  

Now, we estimate the gap (𝑔𝑖+1(𝑘 + 1)) for the (𝑖 + 1)𝑡ℎ  follower CV with its immediate 300 

leading follower CV, i.e., the 𝑖𝑡ℎ follower CV, as, 301 

𝑔𝑖+1(𝑘 + 1) = 𝑥𝑖+1(𝑘 + 1) − 𝑥𝑖(𝑘 + 1) − 𝑙𝐶𝑉 = 𝑔𝑖+1(𝑘) + [𝑢𝑖+1(𝑘) − 𝑢𝑖(𝑘)] ∆𝑡       (17) 

In this algorithm, we assume that the lengths of all the CVs are the same, i.e., 𝑙𝐶𝑉 is the same for 302 

all the CVs. However, individual CV length can be used as well if the information is available. Note that, 303 

(16) stands for the control input that we seek from our MPC-based optimization. Once we obtain the 304 

control inputs, we can easily determine the speed advisories for the follower CVs from (16). Now, as (17) 305 

is applicable for all the follower CVs in a platoon, we can write it in an augmented matrix form as 306 

follows, 307 
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𝑮(𝑘 + 1) = 𝑮(𝑘) + 𝑩𝑼(𝑘)        (18) 

where, 𝑮(𝑘 + 1) = [  
  𝑔𝐿(𝑘 + 1)𝑔1(𝑘 + 1)𝑔2(𝑘 + 1)…𝑔𝑁(𝑘 + 1)]  

  
(𝑁+1)×1

, 𝑮(𝑘) = [  
  𝑔𝐿(𝑘)𝑔1(𝑘)𝑔2(𝑘)…𝑔𝑁(𝑘)]  

  
(𝑁+1)×1

,   

𝑩 = [   
 0 0 0−∆𝑡 ∆𝑡 00 −∆𝑡 ∆𝑡 ⋯ 000⋮ ⋱ ⋮0 0 0 ⋯ ∆𝑡]   

 
(𝑁+1)×(𝑁+1)

,  𝑼(𝑘) = [  
  𝑢𝐿(𝑘)𝑢1(𝑘)𝑢2(𝑘)…𝑢𝑁(𝑘)]  

  
(𝑁+1)×1

 

 

Note that, although the speed advisory for the leader CV in a platoon is not sought from this 308 

MPC-based optimization, we still include the leader CV in (18) because the gap associated with 1st 309 

follower CV in a platoon is calculated with respect to the leader CV of that platoon. However, as the 310 

leader CV does not have an immediate leading CV, the dynamics of its gap cannot be formulated as in 311 

(17). Therefore, all the entries of the first row of 𝑩 are set to zeros and 𝑔𝐿(𝑘) is set to an arbitrary value. 312 

Thus, the gap for the leader CV, 𝑔𝐿(𝑘), will remain unchanged over the prediction horizon irrespective of 313 

whatever control inputs are chosen and it will not affect our MPC-based optimization. 314 

To determine the follower CVs’ target gap at each timestamp, we adopt the constant time gap 315 

(CTG) policy. In a CTG policy, all the follower CVs in a platoon are expected to maintain a constant time 316 

gap with their immediate leading CVs. Besides, in a platooning operation, CTG policy can help to reduce 317 

the collision risks by varying the target gap requirement based on the speed of the vehicles. In this study, 318 

we consider a two-second constant time gap, i.e., 𝑇𝑔 = 2 seconds, with a two-meter standstill gap, i.e., 319 𝑔𝑠𝑡𝑎𝑛𝑑 = 2 meters [26, 27]. A standstill gap is a minimum gap to avoid the chance of collisions that all 320 

CVs must maintain, even if they come to a complete stop. Therefore, the target gap for the (𝑖 + 1)𝑡ℎ 321 

follower CVs in a platoon (𝑔(𝑖+1),𝑡𝑎𝑟(𝑘 + 1)) can be written as, 322 

𝑔(𝑖+1),𝑡𝑎𝑟(𝑘 + 1) = 𝑆𝑖+1(𝑘) × 𝑇𝑔 + 𝑔𝑠𝑡𝑎𝑛𝑑        (19) 

where, 𝑔𝑠𝑡𝑎𝑛𝑑 denotes constant standstill distance. As (19) can be written for all the follower CVs in a 323 
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platoon, we can write them in an augmented form as follows, 324 

𝑮𝒕𝒂𝒓(𝑘 + 1) = 𝑮𝒕𝒂𝒓(𝑘)        (20) 

where, 𝑮𝒕𝒂𝒓(𝑘 + 1) = [   
  𝑔𝐿,𝑡𝑎𝑟(𝑘 + 1)𝑔1,𝑡𝑎𝑟(𝑘 + 1)𝑔2,𝑡𝑎𝑟(𝑘 + 1)…𝑔𝑁,𝑡𝑎𝑟(𝑘 + 1)]   

  
(𝑁+1)×1

, and 𝑮𝒕𝒂𝒓(𝑘) = [   
  𝑆𝐿(𝑘) × 𝑇𝑔 + 𝑔𝑠𝑡𝑎𝑛𝑑𝑆1(𝑘) × 𝑇𝑔 + 𝑔𝑠𝑡𝑎𝑛𝑑𝑆2(𝑘) × 𝑇𝑔 + 𝑔𝑠𝑡𝑎𝑛𝑑…𝑆𝑁(𝑘) × 𝑇𝑔 + 𝑔𝑠𝑡𝑎𝑛𝑑]   

  
(𝑁+1)×1

  

Now, we augment (18) and (20) to get the state dynamics for our MPC-based optimization, 325 

[ 𝑮(𝑘 + 1)𝑮𝒕𝒂𝒓(𝑘 + 1)] = [ 𝑮(𝑘)𝑮𝒕𝒂𝒓(𝑘)] + [ 𝑩𝟎(𝑁+1)×(𝑁+1)]𝑼(𝑘)         (21) 

where, 𝟎(𝑁+1)×(𝑁+1) is an (𝑁 + 1) × (𝑁 + 1) dimensional matrix with all zero entries. We can 326 

rewrite (21) as, 327 

𝑿𝒂(𝑘 + 1) = 𝑨𝒂𝑿𝒂(𝑘) + 𝑩𝒂𝑼(𝑘)        (22) 

where, 𝑿𝒂(𝑘 + 1) = [ 𝑮(𝑘 + 1)𝑮𝒕𝒂𝒓(𝑘 + 1)], 𝑿𝒂(𝑘) = [ 𝑮(𝑘)𝑮𝒕𝒂𝒓(𝑘)], 𝑨𝒂 = 𝑰2(𝑁+1)×2(𝑁+1), and  

𝑩𝒂 = [ 𝑩𝟎(𝑁+1)×(𝑁+1)]  

where, 𝑰2(𝑁+1)×2(𝑁+1) is an (𝑁 + 1) × (𝑁 + 1) dimensional identity matrix. As with this MPC-328 

based optimization, we want to adjust the gap among the follower CVs in a platoon based on the CTG 329 

policy, we define our measured variable as follows, 330 

𝒀𝒂(𝑘) = 𝑮(𝑘) − 𝑮𝒕𝒂𝒓(𝑘) = [𝑰(𝑁+1)×(𝑁+1) −𝑰(𝑁+1)×(𝑁+1)] [ 𝑮(𝑘)𝑮𝒕𝒂𝒓(𝑘)]          (23) 

which can be rewritten as, 331 

𝒀𝒂(𝑘) = 𝑪𝒂𝑿𝒂(𝑘) (24) 

where, 𝑪𝒂 = [𝑰(𝑁+1)×(𝑁+1) −𝑰(𝑁+1)×(𝑁+1)]  

Now, we define our cost function for the optimization. In this case, we prefer a quadratic cost 332 

function as our aim is to minimize the difference between the current gap, 𝑮(𝑘), and the target gap, 333 𝑮𝒕𝒂𝒓(𝑘), based on the CTG policy through the speed advisories. Therefore, the cost function for a single-334 
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step prediction horizon (as only one step is required to be predicted based on the state dynamics defined 335 

in (22)) can be written as, 336 

𝑱 = 𝒀𝒂𝑇(𝑘)𝒀𝒂(𝑘)          (25) 

Substituting 𝒀𝒂(𝑘) from (24) into (25), we get, 337 

𝑱 = 𝑿𝒂𝑻(𝑘)𝑪𝒂𝑻𝑪𝒂𝑿𝒂(𝑘) = 𝑿𝒂𝑻(𝑘)𝑷𝑿𝒂(𝑘)          (26) 

where, 𝑷 = 𝑪𝒂𝑻𝑪𝒂  

Now, we move on to the constraints for this MPC-based optimization. In this case, we introduce 338 

constraints for the control inputs defined in (16) and the measured variables defined in (24). First, the 339 

follower CVs should never be advised with speeds that exceed the roadway speed limit, 𝑆𝑚𝑎𝑥, nor should 340 

they be advised negative speeds, which leads us to the following constraint, 341 

0 ≤ 𝑆𝑖,𝑎𝑑𝑣(𝑘) ≤ 𝑆𝑚𝑎𝑥           (27) 

As each control input is defined as the average of each follower CV’s current speed, 𝑆𝑖(𝑘), and 342 

advised speed, 𝑆𝑖,𝑎𝑑𝑣(𝑘), in (16), we can rewrite (27) in terms of the control input as follows, 343 

𝑆𝑖(𝑘)2 ≤ 𝑢𝑖(𝑘) ≤ 12  (𝑆𝑖(𝑘) + 𝑆𝑚𝑎𝑥)            (28) 

Second, as mentioned before, we assume that the advised speeds are achievable by the follower 344 

CVs based on their maximum acceleration, 𝑎𝐴𝑐𝑐, or deceleration, 𝑎𝐵𝑟𝑘, capabilities. Therefore, we also 345 

have, 346 

𝑆𝑖(𝑘) + 𝑎𝐵𝑟𝑘∆𝑡 ≤ 𝑆𝑖,𝑎𝑑𝑣(𝑘) ≤ 𝑆𝑖(𝑘) + 𝑎𝐴𝑐𝑐∆𝑡            (29) 

Again, we can rewrite (29) in terms of the control input for the 𝑖𝑡ℎ follower CV as, 347 

𝑆𝑖(𝑘) + 12 𝑎𝐵𝑟𝑘∆𝑡 ≤ 𝑢𝑖(𝑘) ≤ 𝑆𝑖(𝑘) + 12 𝑎𝐴𝑐𝑐∆𝑡            (30) 

Then, we combine (28) and (30) to get a single equation of constraint for the control input of the 348 𝑖𝑡ℎ follower CV as, 349 
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max (𝑆𝑖(𝑘)2 , (𝑆𝑖(𝑘) + 12 𝑎𝐵𝑟𝑘∆𝑡)) ≤ 𝑢𝑖(𝑘)  ≤ min(12 (𝑆𝑖(𝑘) + 𝑆𝑚𝑎𝑥), (𝑆𝑖(𝑘) + 12 𝑎𝐴𝑐𝑐∆𝑡))            (31) 

We can write (31) into an augmented form as, 350 𝑼𝒍𝒐𝒘(𝑘) ≤ 𝑼(𝑘) ≤ 𝑼𝒉𝒊𝒈𝒉(𝑘)              (32) 

where, 𝑼𝒍𝒐𝒘(𝑘) =
[  
   
  max(𝑆𝐿(𝑘)2 , (𝑆𝐿(𝑘) + 12 𝑎𝐵𝑟𝑘∆𝑡))max(𝑆1(𝑘)2 , (𝑆1(𝑘) + 12 𝑎𝐵𝑟𝑘∆𝑡))max (𝑆2(𝑘)2 , (𝑆2(𝑘) + 12 𝑎𝐵𝑟𝑘∆𝑡))…max(𝑆𝑁(𝑘)2 , (𝑆𝑁(𝑘) + 12 𝑎𝐵𝑟𝑘∆𝑡))]  

   
  
, and 

𝑼𝒉𝒊𝒈𝒉(𝑘) =
[  
   
 min (12  (𝑆𝐿(𝑘) + 𝑆𝑚𝑎𝑥), (𝑆𝐿(𝑘) + 12 𝑎𝐴𝑐𝑐∆𝑡))min(12  (𝑆1(𝑘) + 𝑆𝑚𝑎𝑥), (𝑆1(𝑘) + 12 𝑎𝐴𝑐𝑐∆𝑡))min (12  (𝑆2(𝑘) + 𝑆𝑚𝑎𝑥), (𝑆2(𝑘) + 12 𝑎𝐴𝑐𝑐∆𝑡))…min (12  (𝑆𝑁(𝑘) + 𝑆𝑚𝑎𝑥), (𝑆𝑁(𝑘) + 12 𝑎𝐴𝑐𝑐∆𝑡))]  

   
 
  

 

Next, we introduce a lower bound for the measured variable, 𝒀𝒂(𝑘), due to safety considerations. 351 

As the optimized solution should not result in a situation where any of the follower CVs has a lower gap 352 

than its corresponding target gap based on the CTG policy, we write, 353 

𝒀𝒂(𝑘) ≥ 𝟎(𝑁+1)×1              (33) 

Now, we have all the necessary equations formulated that we need for our MPC-based speed 354 

advisory optimization for the follower CVs in a platoon. As our linear MPC formulation includes a 355 

quadratic cost function (as given in (26)), we utilize a Python-based open-source solver, i.e., CVXOPT 356 

[28], for solving quadratic programming problems to run this MPC-based optimization. As mentioned 357 

before, this part of the Serverless CloSA, i.e., subsection 4.3, runs in the CV Platoon Optimizer shown in 358 

Fig. 2. 359 

 360 

 361 

 362 
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5 CASE STUDY 363 

We conduct three case studies for different traffic conditions by developing a cloud-in-364 

the-loop simulation testbed to evaluate the feasibility of the Serverless CloSA at a system level. 365 

In addition, we compare the results obtained from the simulation with and without the Serverless 366 

CloSA to evaluate the performance improvement in terms of stopped delay of the CVs at the 367 

signalized intersections, total travel time of the CVs through the signalized roadway section, and 368 

an aggregated collision risk indicator. We also evaluate the communication and processing 369 

delays for running the Serverless CloSA application to evaluate the feasibility of our cloud-based 370 

speed advisory application in terms of latency requirement of this CV mobility application. 371 

5.1 Cloud-in-the-loop Simulation  372 

We use an open-source microscopic traffic simulator called Simulation Urban Mobility 373 

(SUMO) [11] to simulate a section of a roadway including traffic signals and CVs operating in 374 

the roadway section. In our cloud-in-the-loop simulation, AWS services (residing in the cloud) 375 

are integrated with SUMO (running in a local machine) to evaluate the Serverless CloSA (as 376 

shown in Fig. 4). Traffic Control Interface (TraCI) [29] is a Python-based interface compatible 377 

with SUMO. As Fig. 4 shows, we use TraCI to extract BSMs (e.g., CVs’ location and motion 378 

information) and signal phase and timing messages (e.g., current signal interval, remaining green 379 

time) from the CVs and the traffic signals, respectively. Data collected from the simulation are 380 

packaged and transferred to the AWS cloud through different AWS services, i.e., DynamoDB 381 

and KDS, via LTE communication. In the cloud, each KDS triggers a Serverless CV Advisory 382 

Cluster, as mentioned before. Each Serverless CV advisory Cluster gets CV trajectory 383 

information from the CV Trajectory Database. Each Serverless CV Advisory Cluster also 384 

collects and updates the distances of the CVs from its corresponding traffic signal (as shown in 385 
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Fig. 4). Inside the clusters, CV platoon identification and speed advisory optimization algorithms 386 

run using serverless processes (details are mentioned in section 3) and the results of the 387 

optimizations, i.e., the speed advisories) are saved in the Speed Advisory Database. Then, 388 

SUMO can collect the speed advisories via LTE and assign the speed advisories to the CVs 389 

through TraCI.  390 

 

Fig. 4. Dataflow in the cloud-in-the-loop simulation. 
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In Fig. 5, the simulated roadway is shown in orange-colored line, which is a 1.5-mile-391 

long 4-lane highway (2 lanes in each direction) with three traffic signals in Clemson, South 392 

Carolina, and it is a part of a CV deployment site known as South Carolina Connected Vehicle 393 

Testbed (SC-CVT) [30]. By defining the traffic flows in SUMO configuration [31], we generated 394 

50 CVs on the simulated roadway in three different traffic densities, i.e., low, medium, and high 395 

traffic densities. SUMO allows controlling the time interval within which a given number of 396 

vehicles will be generated, which we use here to create the different traffic densities. Here, low 397 

traffic density stands for 633 passenger cars per hour per lane (pc/h/ln), which is 33% of the 398 

traffic capacity, i.e., 1900 pc/h/ln, medium traffic density stands for 1267 pc/h/ln, i.e., 66% of 399 

traffic capacity, and high traffic density stands for 1900 pc/h/ln, i.e., full traffic capacity, based 400 

on the base saturation flowrate defined in [32]. All CVs operate within a roadway speed limit of 401 

35 mph, which is already included in the map data. For each condition, we evaluate two 402 

scenarios in the simulation: 1) the baseline scenario, i.e., no speed advisory, and 2) the Serverless 403 

CloSA-deployed scenario. For each traffic density defined above, we run the simulation five 404 

times with randomly generated CVs. 405 

 

Fig. 5. Route location and layout. 
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5.2 Evaluation Results and Discussions 406 

To evaluate Serverless CloSA’s performance, we compare three measures of 407 

effectiveness (MoEs): 1) stopped delay at the signalized intersections of the simulated roadway, 408 

2) total travel time to pass the simulated roadway section, and 3) time-integrated time-to-409 

collision (TTC) or TIT. Stopped delay and travel time are MoEs related to traffic flow, whereas 410 

TIT is a widely used surrogate measure for evaluating collision risks that integrates the TTC 411 

profile below a predefined threshold (i.e., TTC threshold, 𝑇𝑇𝐶∗) over time for all the CVs under 412 

collision risk evaluation. Details for calculating TIT can be found in [33, 34]. For our study, TIT 413 

for the 𝑖𝑡ℎ CV (i.e., 𝑇𝐼𝑇𝑖) can be calculated using the following equation, 414 

𝑇𝐼𝑇𝑖 = ∑ [𝑇𝑇𝐶∗ − 𝑇𝑇𝐶𝑖(𝑡)],   ∀0 ≤ 𝑇𝑇𝐶𝑖(𝑡) ≤ 𝑇𝑇𝐶∗𝑡               (34) 

where, 𝑇𝑇𝐶𝑖(𝑡) = { 𝑔𝑖(𝑡)𝑆𝑖(𝑡)−𝑆𝑖−1(𝑡) 𝑖𝑓 𝑆𝑖(𝑡) > 𝑆𝑖−1(𝑡)∞ 𝑖𝑓 𝑆𝑖(𝑡) ≤ 𝑆𝑖−1(𝑡)  (35) 

Here, 𝑡 represents a timestamp, 𝑔𝑖(𝑡) represents the gap between the 𝑖𝑡ℎ CV (i.e., a follower CV) 415 

and the (𝑖 − 1)𝑡ℎ CV (i.e., immediate leading CV of the 𝑖𝑡ℎ CV) at 𝑡, and 𝑆𝑖(𝑡) and 𝑆𝑖−1(𝑡) represent the 416 

speeds of the 𝑖𝑡ℎ and the (𝑖 − 1)𝑡ℎ CVs at 𝑡, respectively. As observed from (34) and (35), the risk of 417 

collision is only considered when the follower CV has a higher speed compared to its immediate leading 418 

CV. Once TIT for all the CVs is calculated using (35), we sum them up to get the aggregated TIT for all 419 

the CVs within the simulation run time. In this paper, we use a 𝑇𝑇𝐶∗ of 2 seconds based on the time 420 

headway requirement in our MPC-based optimization for determining the advisory speeds of the follower 421 

CVs. A 𝑇𝑇𝐶∗  of 2 seconds means that whenever the time gap between any two successive CVs is 422 

measured to be less than or equal to 2 seconds, the risk of collision is considered in calculating TIT. 423 

Fig. 6 shows box chart comparisons between our Serverless CloSA and the baseline “no speed 424 

advisory” scenario in terms of stopped delay and total travel time for three different traffic conditions, i.e., 425 

low, medium, and high-density traffic. As observed from Fig. 6(a), Serverless CloSA reduced the stopped 426 
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delay significantly for all three roadway traffic conditions, i.e., low, medium and high-density roadway 427 

traffic, compared to the baseline “no speed advisory” scenario. In Fig. 6(b), we observe a small reduction 428 

in the total travel time when using Serverless CloSA for providing speed advisories to the CVs as 429 

compared to the “no speed advisory” case. This is not unexpected because our speed advisory 430 

optimization aims to reduce the stopped delay, not the travel time. While it may seem that a reduction in 431 

the stopped delay should cause a reduction in the travel time as well, it may not be the case all the time 432 

[35]. For example, note that although the Serverless CloSA reduces the total stopped delay for the CVs 433 

significantly, it cannot entirely remove the stopped delay and the CVs may have to stop at the 434 

intersections for some time. Then, these CVs would have to start from a stopped condition when the 435 

signal turns green again in which case the benefit of having no startup lost time is not achievable. Also, 436 

our Serverless CloSA does not advise CVs with speeds considering that they can pass the intersection 437 

within the yellow interval. On the other hand, in the “no speed advisory” case, the CVs have no such 438 

conditions imposed on them. Thus, reducing the total travel time is not always guaranteed for all the CVs 439 

while using Serverless CloSA. 440 

Table 2 presents the effectiveness of Serverless CloSA in terms of percentage reduction of the 441 

MoEs on average for each CV in the simulation. We observe that the maximum reduction of the stopped 442 

(a) (b) 

Fig. 6. Box chart comparisons for (a) stopped delay and (b) total travel time. 
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delay, i.e., about 85%, was possible for low traffic density. In terms of reducing the total travel time, 443 

Serverless CloSA’s performance did not vary much based on the different traffic conditions. We also 444 

observe that Serverless CloSA is most effective in reducing the average per CV TIT, i.e., about 24%, for 445 

low-density traffic condition.  446 

We also evaluate the end-to-end delay to assess the feasibility of the Serverless CloSA as a real-447 

time CV application. The end-to-end delay is calculated using the following equation, 448 end-to-end delay = upload delay + processing delay + download delay               (36) 

 Fig. 7 presents the processing time, and the end-to-end delay reported during our experiments 449 

using box charts and Table 3 provides the averages of the processing time and the end-to-end delay for 450 

each CV in the cloud for the three traffic density conditions. From Table 3, the end-to-end delay is about 451 

452 ms (on average for all three traffic density conditions), which meets the requirement of a real-time 452 

CV mobility application, i.e., maximum allowable delay of 1000 ms [10, 25]. Besides, we observe from 453 

Fig. 7 and Table 3 that the processing delays and the end-to-end delays do not vary much across the 454 

various traffic densities, which indicates the scalability of the Serverless CloSA. 455 

Table 2. Average (per CV) reduction of the MOEs for Serverless CloSA 
 

 

Traffic Density Average of Low, 

Medium, and High 

Traffic Densities Low Medium High 

Average reduction in stopped delay 85% 80% 65% 77% 

Average reduction in total travel time 2% 3% 4% 3% 

Average reduction in TIT 24% 16% 23% 21% 
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 456 

6 CONCLUSION 457 

In this paper, we develop a highly scalable serverless cloud computing architecture using Amazon 458 

Web Services (AWS) to support the requirements of real-time CV mobility applications. Then, we 459 

develop an optimization-based real-time CV speed advisory algorithm, i.e., Serverless CloSA, which is 460 

deployable using the serverless cloud-based architecture that we developed. The Serverless CloSA assists 461 

CVs to pass through a signalized corridor with speed advisories that can help reduce the stopped delay 462 

experienced by these CVs at the signalized intersections of that corridor. We conduct case studies for a 463 

signalized corridor for three different roadway traffic conditions (low, medium, and high-density roadway 464 

(a) (b) 

Fig. 7. Box charts of (a) processing time, and (b) end-to-end delay. 
 
 

Table 3. Average (per CV) reduction of the MOEs for Serverless CloSA 
 

Delays 

Traffic Density 

Average of the 

Three Traffic 

Densities 

Allowable Delay 

Low Medium High  
 

Average reduction in 
stopped delay 

298 297 303 299 
 

Average reduction in total 
travel time 

463 447 446 452 <1000 ms 
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traffic) with a cloud-in-the-loop simulation testbed using AWS and Simulation of Urban Mobility 465 

(SUMO), which is an open-source microscopic roadway traffic simulator, to evaluate the feasibility and 466 

performance of the Serverless CloSA at a system level. Based on the evaluation results, we conclude that 467 

Serverless CloSA is effective in reducing the average stopped delay at the signalized intersections of a 468 

corridor by 77% while reducing the risk of collision and the total travel time for the CVs through that 469 

corridor when compared to the baseline “no speed advisory” scenario. 470 

 Generally, the state departments of transportation (DOTs) deploy transportation 471 

applications based on traditional server infrastructure in their traffic management centers 472 

(TMCs), which requires significant investments in computing and human resources. This study 473 

shows that cloud infrastructure offers a promising alternative for addressing the computing 474 

infrastructure needs for CV mobility applications. The commercial cloud-based CV mobility 475 

application strategy could potentially lower the costs associated with computing equipment 476 

installation, configuration, operation, and maintenance, without sacrificing any performance and 477 

reliability. 478 
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