Lesion Segmentation in Breast Ultrasound Images using Optimized Marked Watershed Method
Background: Ultrasound is the most popular tool for early detection of breast cancer because of its non radiation and low cost. However, breast ultrasound(BUS) images have low resolution and speckle noise, which make lesion segmentation become a challenge. Most of deep learning(DL) models applied on images segmentation don't have good generalization ability for BUS images. Therefore, it is time to go back to the classical method and consider combining it with DL to achieve more accurate and efficient effect in a semi-automatic way.
Methods: This paper mainly proposed an effective and efficient semi-automatic BUS images segmentation method, Adaptive morphological snake and marked watershed( AMSMW). It includes two parts: preprocessing and segmentation. In the first part, we combine contrast limited adaptive histogram equalization(CLAHE) and side window filtering(SWF) methods for the first time. In the second part, We use the proposed adaptive morphological snake algorithm (AMS) to provide a mark for marked watershed(MW) method.
Results: we tested on 500 BUS images, whose ratio of benign and malignant is 1:1. After quantitative and qualitative analysis, AMSMW is proven to outperform existing classical methods on the effectiveness and efficiency. Furthermore, we compared with Zhuang’s RDAU-NET on both our dataset and theirs. Experimental result showes AMSMW achieved better performance on most of indicators, including loss, accuracy, sensitivity, dice and F1-score.
Conlusions: The new image preprocessing method proposed by us has obvious effect on segmentation of breast ultrasound image. In addition, the proposed adaptive morphology snake method and optimized marked watershed turn out to be more efficient and effective than some relative classical method and the advanced DL method at present. Moreover, by studying on the algorithm’s sensitivity in segmenting benign and malignant tumors, we found that AMSMW is more sensitivity to malignant tumors, and more stable to benign tumors, which is significant for further research of precision medicine.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the latest manuscript can be downloaded and accessed as a PDF.
Posted 31 Dec, 2020
On 27 Dec, 2020
On 27 Dec, 2020
On 27 Dec, 2020
On 27 Dec, 2020
Lesion Segmentation in Breast Ultrasound Images using Optimized Marked Watershed Method
Posted 31 Dec, 2020
On 27 Dec, 2020
On 27 Dec, 2020
On 27 Dec, 2020
On 27 Dec, 2020
Background: Ultrasound is the most popular tool for early detection of breast cancer because of its non radiation and low cost. However, breast ultrasound(BUS) images have low resolution and speckle noise, which make lesion segmentation become a challenge. Most of deep learning(DL) models applied on images segmentation don't have good generalization ability for BUS images. Therefore, it is time to go back to the classical method and consider combining it with DL to achieve more accurate and efficient effect in a semi-automatic way.
Methods: This paper mainly proposed an effective and efficient semi-automatic BUS images segmentation method, Adaptive morphological snake and marked watershed( AMSMW). It includes two parts: preprocessing and segmentation. In the first part, we combine contrast limited adaptive histogram equalization(CLAHE) and side window filtering(SWF) methods for the first time. In the second part, We use the proposed adaptive morphological snake algorithm (AMS) to provide a mark for marked watershed(MW) method.
Results: we tested on 500 BUS images, whose ratio of benign and malignant is 1:1. After quantitative and qualitative analysis, AMSMW is proven to outperform existing classical methods on the effectiveness and efficiency. Furthermore, we compared with Zhuang’s RDAU-NET on both our dataset and theirs. Experimental result showes AMSMW achieved better performance on most of indicators, including loss, accuracy, sensitivity, dice and F1-score.
Conlusions: The new image preprocessing method proposed by us has obvious effect on segmentation of breast ultrasound image. In addition, the proposed adaptive morphology snake method and optimized marked watershed turn out to be more efficient and effective than some relative classical method and the advanced DL method at present. Moreover, by studying on the algorithm’s sensitivity in segmenting benign and malignant tumors, we found that AMSMW is more sensitivity to malignant tumors, and more stable to benign tumors, which is significant for further research of precision medicine.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the latest manuscript can be downloaded and accessed as a PDF.