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Abstract 9 

This study evaluates and compares the performance of Coupled Model Intercomparison Project 10 

Phase 6 (CMIP6) and CMIP5 in simulating the runoff on global scale and eight large-scale basins, over 11 

the period 1981–2005 using percent bias (PBIAS), correlation coefficient (CC), root mean square error 12 

(RMSE), Theil-Sen median trend, and the Taylor diagram. The CMIP models are ranked by 13 

comprehensive rating index (MR), which is determined by PBIAS, CC and RMSE three metrics. LORA, 14 

GRUN and ERA5-Land were selected as reference data sets. LORA was used as the main reference data 15 

to evaluate the historical runoff results of CMIP from 1981 to 2012 for three aspects: trend, PBIAS and 16 

uncertainty. Results reveal that: (i) CMIP6 models have obviously overvalued on the global and basins 17 

(except Amazon and Lena basin), this phenomenon was more prominent in arid and semi-arid areas 18 

(Murray-Darling and Nile basin). (ii) Compared with CMIP5 models, CMIP6 models have less 19 

uncertainty on the global scale, but it has not made outstanding progress on the basin scale. (iii) CMIP6 20 

multi‐model ensemble mean (CMIP6_MMEs) has better simulation effect than most individual models, 21 

which reduces the uncertainty among different models to some extent. (iv) There were differences in 22 

trends and PBIAS between the three reference data sets at both the global and basin scale. However, the 23 

interannual fluctuations of the three data sets were basically the same and have high correlation 24 

coefficient (except for ERA5 in the world and Nile basin), which shows that LORA data set has high 25 

reliability. The global comprehensive rating metric (GR) of CMIP6_MMEs was better than 26 

CMIP5_MMEs in all metrics, but this result was not found in eight basins. This shows that CMIP6 27 

models has better effect in simulating global runoff and related diagnostic indicators. Implying further 28 

improvements are needs for the runoff simulation capability at the basin scale. 29 
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models performance in simulating the runoff 34 

1.Introduction 35 

With global warming, the water crisis is further aggravated and the changes in runoff may result in 36 

many environmental and hydrological problems (Gosling and Arnell, 2013; Padrón et al., 2020). 37 

Simulation and prediction of runoff is the key to cope with water crisis and adapt to global warming, 38 

which is also one of the research hotspots in the climate change community (Adnan et al., 2017; Seibert 39 

and Beven, 2009; Wen et al., 2019).  40 

In recent years, with the improvement of global climate models (GCMs), product quality and 41 

usability, many researchers have started to use GCMs products to simulate and predict runoff 42 

(Dobrovolski et al., 2019; Kooperman et al., 2018; Wen et al., 2018). GCMs have been the primary 43 

tools for the simulation and prediction of global runoff, which provide an alternative way to achieve 44 

large-scale runoff data (Gain et al., 2013; Teklesadik et al., 2017; Vaze et al., 2010). The Coupled 45 

Model Intercomparison Project (CMIP) has become a central element of national and international 46 

climate change assessment. CMIP Phase 6 (CMIP6) aims to solve new scientific problems in the field of 47 

climate change, and 33 research institutions around the world have registered to participate (Eyring et 48 

al., 2016a). Compared with CMIP5, the atmospheric and ocean resolution of CMIP6 seems to be 49 

improved, it also includes new and more complex processes, including more complex land surface 50 

processes, ice fields, and permafrost, etc. (Simpkins, 2017), which improve the hydrological processes.  51 

Although each phase of CMIP has made progress, GCMs have uncertainties owing to imperfect 52 

boundary conditions, poor parameterization, misrepresentation of physical processes, etc. (Giuntoli et al., 53 

2015; Knutti and Sedláček, 2012; Mockler et al., 2016; Wang et al., 2014). To simulate and predict the 54 

climate change, and to understand some factors that lead to the uncertainty of GCMs, model evaluation 55 

is a key step in the development and application of any model of the environment (Chen et al., 2012; 56 

Dankers and Kundzewicz, 2020; Eyring et al., 2016b). A number of previous studies have assessed the 57 

effectiveness of runoff simulations using global model output archived in the CMIP3 and CMIP5. Milly 58 

et al. (2005) compared the output of CMIP3 models with observational runoff over 165 basins, finding 59 

that the correlations between trends computed from individual models and the observed trends are all 60 

positive, ranging from 0.05 to 0.28. Alkama et al. (2013) examined the simulation of runoff in 14 CMIP5 61 

models at the global scale during 1958-2100. The results show that CMIP5 model can well simulate the 62 

average state of runoff (simulated runoff = observed runoff ±25%) on a global scale. With the advent of 63 

CMIP6, more and more studies are using runoff data from CMIP. Gao et al. (2021) used CMIP6 to project 64 

future glacier variation and its impact on runoff under two climate scenarios (RCP2.6 and RCP8.5). And 65 

Yin et al. (2021) used a high-end emission scenario (RCP 8.5) of CMIP6 simulated future rain-induced 66 

runoff extremes in future warming climates. However, the accuracy of CMIP6 runoff simulation has not 67 

been verified. Moreover, there is great uncertainty in the simulation of CMIP data at global and watershed 68 

scales. Dobrovolski et al. (2019) compared observational data with 28 CMIP5 models and found that 69 

although there were differences between models, reanalysis and observations, such differences were 70 

much smaller than differences between basins. It is very important to understand the improvement of 71 

runoff simulation of the existing CMIP6 models at global and basin scales and to evaluate their 72 

performance, which will provide strong support for the runoff simulation results of CMIP6 models. 73 

In this study, multi-model ensemble is used to analyze the runoff simulation of CMIP6 model in the 74 



 

 

world and eight basins. The paper is organized as follows: Section 2 describes the reference data sets, 75 

CMIP5 model, CMIP6 models, and the methodology used. Section 3 shows results of the CMIP6 models 76 

evaluation, which are the main results of this study. In Section 4, our results are discussed and analyzed, 77 

while conclusions are drawn in Section 5. 78 

2. Study area and data 79 

2.1 Study area 80 

To further evaluate the adaptability of CMIP6 model in basin scale, this study selects eight basins 81 

for evaluation while evaluating the global runoff characteristics. The eight basins (Fig. 1) located in 82 

different hydrologic and climatic regions were selected: Amazon basin in Af, Am, Aw climate region, 83 

Lena basin in the Ds, Dw, Df climate region, Mekong basin in Aw, Cw, ET climate region, Mississippi 84 

basin in Df, Cf, Cs climate region, Murray-Darling basin in BW, BS, Cf climate region, Nile basin in Aw, 85 

BW, BS climate region, Rhine basin in Cf, Df climate region and Yangtze basin in Cw, Cf, ET climate 86 

region. Moreover, the temperature difference was significant due to the latitude differences in basins. 87 

The average annual temperature of Amazon, Mekong, and Nile basins was above 20℃, while the average 88 

annual temperature of the Lena basin was below 0℃. The average annual precipitation ranges from more 89 

than 2000 mm in the Amazon basin to less than 500mm in Lena and Murray-Darling basins. Krysanova 90 

et al. (2017) shows that the runoff coefficient of Amazon and Rhine basins is above 0.7, while that of 91 

Murray-Darling and Nile basins is less than 0.12. The largest basin is the Amazon basin with an area of 92 

6.915 million km2, and the smallest basin is the Rhine basin with an area of 173 thousand km2. Different 93 

meteorological conditions lead to altering runoff conditions. The diversity of climatic and hydrological 94 

characteristics of the eight selected typical basins ensures that they represent various conditions for the 95 

generation of global runoff.  96 

 97 

Fig. 1 Location map of the eight basins. According to Beck et al. (2018), the world can be divided into 13 climate 98 

zones: Af (Tropical, rainforest), Am (Tropical, monsoon), Aw (Tropical, savannah), BW (Arid, desert), BS (Arid, 99 

steppe), Cs (Temperate, dry summer), Cw (Temperate, dry winter), Cf (Temperate, no dry season), Ds (Cold, dry 100 

summer), Dw (Cold, dry winter), Df (Cold, no dry season), ET (Polar, tundra), and EF (Polar, frost). 101 

2.2 Data 102 

For each of CMIP model and the reference data set described below, this paper primary focus on 103 

monthly runoff from 1981 to 2012. 104 

2.2.1 Model data 105 

Monthly runoff output of CMIP6 historical runs were used in this study. Historical runoff 106 



 

 

simulations from 47 CMIP6 and 34 CMIP5 models have been released through the Earth System Grid 107 

Federation (ESGF) nodes (see https://esgf-node.llnl.gov/search/). The selected CMIP5 models have both 108 

historical and RCP8.5 experiments. Combining the historical experiment from 1980 to 2005 with the 109 

RCP8.5 experiment data from 2006 to 2012. For each phase of CMIP, the average value (A) and 110 

diagnostic standard deviation of the model ensemble members are estimated from all available models. 111 

Then, for each model, A±2 standard deviation interval is constructed around the set mean, and if the 112 

observed value ±20% contains the interval, the model is retained (Massonnet et al. 2012). The 14 CMIP6 113 

and 5 CMIP5 models with large global deviations were removed. On a global scale, there are 33 CMIP6 114 

and 29 CMIP5 models meet this requirement. Detailed information about these CMIP6(CMIP5) models 115 

can be viewed in Table A1(A2). The 33 CMIP6 models and 29 CMIP5 models are integrated according 116 

to the equal weight method (Massoud et al., 2019), which are labeled as "CMIP6_MMEs" and 117 

"CMIP5_MMEs", respectively. Compared with a single model, multi-model ensemble can better 118 

eliminate the uncertainty of the climate system (Abramowitz et al., 2019; Lehner et al., 2020). 119 

2.2.2 Reference data set  120 

Three reference data sets were used. The first is Linear Optimal Runoff Aggregate (LORA). It is a 121 

monthly global gridded synthesis runoff product (Hobeichi et al., 2019). It is a global gridded synthesis 122 

runoff product, that covers the period 1980-2012 on a 0.5° grid. The LORA data set has been extensively 123 

used in global and continental runoff assessment (Evans et al., 2020; Levizzani and Cattani, 2019). The 124 

second is Global Runoff Reconstruction (GRUN), It is an observation-based gridded global 125 

reconstruction of monthly runoff timeseries (Ghiggi et al., 2019), provided at 0.5° x 0.5° spatial 126 

resolution from 1902 to 2014. The third is ERA5-Land climate reanalysis data sets from European Centre 127 

for Medium-Range Weather Forecasts (ECMWF) and provided by EU-funded Copernicus Climate 128 

Change Service (C3S, 2019). This paper uses the monthly time series of ERA5-Land data set from 1981 129 

to present on a 0.1° grid. Later in the text, EAR5-Land will be omitted as EAR5 for better readability. 130 

In this paper, the overlapping time periods (1981-2012) of three reference data sets are selected to 131 

evaluate CMIP model. LORA is used as the primary reference data set, that as the reference baseline was 132 

compared with GRUN, ERA5-Land data sets and all models. 133 

3 Methodology 134 

3.1 Mann–Kendall Test 135 

The Mann–Kendall (M–K) non-parametric statistical test (Mann, 1945; Kendall, 1975), has been 136 

widely used in meteorology and hydrological variables (Sharma and Ojha, 2019; Wang et al., 2020). The 137 

Mann–Kendall significance test Z and test statistic S is calculated using the following formula: 138 
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1 1
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i j i
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A positive value of S and Z indicates an ‘upward trend’; likewise, a negative value of S and Z 143 

indicates ‘downward trend’. P-value can be calculated from the test statistic Z. 144 

3.2 Percent bias 145 

To evaluate the runoff results of CMIP models in terms of temporal and spatial variation, this study 146 

mainly adopted percent bias (PBIAS) to evaluate the capability of model runoff simulation. PBIAS was 147 

described as follows: 148 

PBIAS= �� Simi-

n

i=1

�Reci

n

i=1

�×100% �Reci

n

i=1

�  149 

where Simi and Reci are the runoff of the model and LORA reference data set, respectively. The closer 150 

PBIAS is to 0, the better the simulation results of the model. The rating of PBIAS statistics refers to 151 

(Moriasi et al., 2007) (Table 1). 152 

Table 1. Reported performance ratings for PBIAS 153 

Value Performance Rating 

PBIAS≤10% Very good 

10%< PBIAS ≤15% Good 

15%< PBIAS ≤25% Satisfactory 

PBIAS>25% Unsatisfactory 

3.3 Taylor diagram 154 

In this study, the Taylor diagram was used to perform uncertainty analysis in the simulated runoff 155 

of the CMIP model. Taylor diagram (Taylor, 2001) shows the graphical representation of the statistical 156 

relationship between simulations and reference data set in terms of correlation coefficient (CC), standard 157 

deviation (SD), and root mean square error (RMSE). It is widely used in the comparative study of 158 

geophysics and climate communities (Wang et al., 2020; Xu et al., 2016). The formula of CC, SD, and 159 

RMSE are as follows: 160 

CCXY=cov(X,Y)/σXσY 161 

where 162 

cov(X,Y)=
1

n
� (Xi-X)

n

i=1

(Yi-Y) 163 

where X and Y is the mean of variables X and Y, σXand σY is the standard deviation of X and 164 

Y. RMS difference between X and Y is 165 

RMSE(X,Y)=�1

n
� [�Xi-X)-(Y

i
-Y�]2

n

i=1

 166 

This paper uses the complete with the full Taylor diagram, which has two quadrants representing 167 

positive correlation and negative correlation, respectively. Because the different basin runoff may have 168 

widely varying numerical values, the results are normalized by LORA reference data set. The closer the 169 

position of the simulation values to that of the LORA reference value (at point REF), the better the model 170 

performance. 171 

3.4 Comprehensive rating metrics 172 

The comprehensive rating metrics (MR) is employed to effectively rank models (Jiang et al., 2015). 173 

The equation is as follows: 174 



 

 

MR=1-
1

nm
� ranki

n

i=1

 175 

Where m is the number of models and n is the number of metrics. ranki represents the ranking of 176 

the target model for index i. According to the sum of CMIP6, CMIP5 and two reference data sets, it is 177 

divided into 66 ranks per region. The model's rank is assigned based on the MR defined before. Each 178 

model is ranked from 1 (best) to 66 (worst) for BIAS, CC, and RMSE.  179 

In addition, summarizing all the rankings should be useful in evaluating the CMIP models (Kim et 180 

al., 2020). The total ranking (TR) metrics was defined  181 

TR=(GR+BR)/2 182 

where GR and BR indicate the global and basin ranking, respectively as 183 

BRi(GR)=(MRBIAS+MRCC+MRRMSE)/3 184 

BR=
1

8
�BRi

8

i=1

 185 

BRi is the ranking of each of the eight basins. 186 

3.5 Multi-model ensemble evaluation 187 

Total uncertainty was assessed using reliability, sharpness metrics and Continuous Rank Probability 188 

Score (CRSP) (Pokorny et al., 2021; Zhou et al., 2016). Reliability was defined as the percentage of 189 

overlap of the LORA reference data set (annual) and the multi-model simulated ensemble bounds (annual) 190 

for the full period (1981–2012). Sharpness refers to the concentration of the models’ outputs distributions. 191 

The average width (𝑊𝑊� ) of the confidence interval is used to measure sharpness performance: 192 

𝑊𝑊� =
1𝑇𝑇�(𝑞𝑞𝛼𝛼� ,𝑡𝑡 − 𝑞𝑞𝛼𝛼,𝑡𝑡)𝑇𝑇
𝑡𝑡=1  193 

in which 𝑞𝑞𝛼𝛼� ,𝑡𝑡 and 𝑞𝑞𝛼𝛼,𝑡𝑡 are the upper and lower bounds of the confidence interval, respectively. The 194 

more concentrated the confidence interval distributions, the sharper the simulation, and the sharper the 195 

better.  196 

The CRPS (Hersbach, 2000) is a measure of the integrated squared difference between the 197 

cumulative distribution function of the forecasts and the corresponding cumulative distribution function 198 

of the reference value: 199 

CRPS=
1

T
�� (Ft(xt)-H(xt-y))

2
dx

∞

-∞

T

i=1

 200 

where Ft(y) is the cumulative distribution function (CDF) of an ensemble forecast at time t for variable 201 

xt, y is the LORA reference value, and H is the Heaviside step function which equals 0 if xt≤y and 202 

equals 1 otherwise. The CRPS variates between 0 and+∞; smaller value indicates better performances. 203 

4. Results 204 

4.1 Annual runoff variation 205 

The annual runoff variation of CMIP6, CMIP5, and three reference data sets were shown in Figure. 206 

2. In order to clearly compare the runoff difference between eight basins, this paper uses the average 207 

annual runoff in the world or in the basins, instead of the total runoff. Figure 2a shows the global average 208 

annual runoff change from 1981 to 2012. The runoff simulation results of CMIP6 models were higher 209 

than those of CMIP5 models. The 50% (25–75%) confidence intervals of runoff simulation results of 210 



 

 

CMIP6 and CMIP5 only partially overlap. CMIP6_MMEs is about 0.1mm/day (accounting for 13% of 211 

CMIP5_MMEs) higher than CMIP5_MMEs. Although some CMIP models may capture the variation 212 

with the fluctuations of runoff, the lack of inter-annual variability consistent to all CMIP model results 213 

in a MMEs with smooth or even the absence of peaks. Moreover, because the wave phase of some CMIP 214 

models often deviates from the reference data, the amplitude is smaller than the reference data, especially 215 

in the vicinity of peaks and valleys, which is not ideal for the extreme value simulation of runoff. 216 

CMIP6_MMEs only showed the valleys corresponding to the reference data sets in 1983 and 1992, and 217 

other extreme points had a phase difference with the reference data sets. 218 

Compared with the global scale, the interannual variation of runoff is more significant in the basin. 219 

The differences of climate and hydrological conditions among the eight basins have caused great 220 

differences in runoff simulation between the two generations of CMIP models in different watersheds. 221 

Among them, the simulation results of CMIP5 and CMIP6 models were highly consistent in Lena, 222 

Mississippi, Nile, and Rhine basins. The overlapping area of 25-75% confidence intervals of CMIP6 and 223 

CMIP5 models exceeds 70% of CMIP6 area. In the other four basins (Amazon, Mekong, Murray-Darling, 224 

and Yangtze basin), the runoff simulation results of CMIP6 model were much higher than those of CMIP5 225 

model. On the basin scale, the fluctuation of annual runoff is more prominent than that of the whole 226 

world. In four basins (Amazon, Lena, Mississippi, and Rhine basins) with large runoff fluctuation, 227 

CMIP6 cannot capture the years of drought and flood. The amplitude of CMIP6_MMEs is less than 5% 228 

the amplitude of LORA reference data in Amazon and Lena basins. In other basins (Mekong Murray-229 

Darling, Nile, and Yangtze basins) where runoff fluctuation is relatively gentle. CMIP6 can capture and 230 

reproduce the fluctuation of runoff from 1990 to 2012. 231 

 232 

Fig. 2 Temporal change in annual runoff (1981–2012) derived from LORA (solid black curve), GRUN (solid green 233 

curve), ERA5 (solid orange curve) reference data set, 33 CMIP6 and 29 CMIP5 model simulations. (a) Global, (b) 234 

Amazon basin, (c) Lena basin, (d) Mekong basin, (e) Mississippi basin, (f) Murray-Darling basin, (g) Nile basin, (h) 235 

Rhine basin, (i) Yangtze basin. Red and blue dotted curve indicates CMIP6 and CMIP5 multi-model ensemble mean, 236 

respectively. The light red and blue shading respectively, denote the 50% confidence interval of the 33 CMIP6 237 



 

 

models and 50% confidence intervals of the 29 CMIP5 model. 238 

4.2 Trend from 1981 to 2012 239 

The spatial distribution of global runoff trend changes from 1981 to 2012 is shown in Figure 3. The 240 

positive values denote increasing trends, whereas negative values denote decreasing trends. The trends 241 

that are significant at the 90% confidence level of the M-K test are stippled. CMIP6_MMEs and 242 

CMIP5_MMEs show a high degree of consistency in trend simulation in most parts of the world. 243 

CMIP6_MMEs is different from CMIP5_MMEs in a regional trend of runoff simulation results. 244 

CMIP5_MMEs only had an increasing trend in the equatorial region of South Asia and no obvious change 245 

trend in other regions. CMIP6_MMEs can simulate the increasing trend of runoff in the southern 246 

Himalayas and Indonesia, and the decreasing trend in the Yangtze basin. These changes were reflected 247 

in three reference data sets. However, CMIP6_MMEs had an increasing trend in Central Africa, reference 248 

data sets were basically stable or slightly decreasing. The analytical results for the M-K test are displayed 249 

in detail (Table 2). The test quantifies the overall trend on a global and basin scale in annual values of 250 

the average runoff. On the global, the trend of runoff simulation results of CMIP6_MMEs and 251 

CMIP5_MMEs show an increasing trend. The Z values of CMIP6_MMEs and CMIP5_MMEs were 252 

4.330 and 3.649, respectively, with high reliability (p<0.01). In eight basins, CMIP6_MMEs passed the 253 

significance test (p<0.05) in Lena, Mississippi, Murray-Darling, Nile, and Yangtze five basins, while 254 

CMIP5_MMEs only passed in Lena and Nile basins. 255 

 256 

Fig. 3 Spatial distribution of runoff trends over the global land averaged from 1981 to 2012 for (a) CMIP5_MMEs;(b) 257 

CMIP6_MMEs;(c) GRUN reference data set;(d) ERA5 reference data set;(e) LORA reference data set, black dots 258 

indicate statistically significant (p< 0.05). 259 

Table 2. Changes in the annual average values of runoff according to the Mann–Kendall (Z) test from 1981 to 260 

2012 261 

 CMIP6_MMEs CMIP5_MMEs LORA GRUN ERA5 



 

 

 Z p Z p Z p Z p Z p 

global 4.330 0.000** 3.649 0.000** 3.227 0.001** -0.924 0.355 -3.584 0.000** 

Amazon -0.308 0.758 1.249 0.212 1.735 0.083 -0.892 0.372 -1.151 0.250 

Lena 5.465 0.000** 4.816 0.000** 2.059 0.039* -0.016 0.987 -0.373 0.709 

Mekong 1.054 0.292 1.800 0.072 -0.049 0.961 0.308 0.758 -1.930 0.054 

Mississippi -4.719 0.000** 0.795 0.427 -0.859 0.390 -0.730 0.466 -2.838 0.005** 

Murray-Darling -2.449 0.014* -1.541 0.123 -1.573 0.116 -1.314 0.189 -1.346 0.178 

Nile 4.849 0.000** 2.708 0.007** 1.346 0.178 -0.665 0.506 -4.200 0.000** 

Rhine -1.346 0.178 -0.114 0.910 -1.022 0.307 -1.443 0.149 -1.735 0.083 

Yangtze -3.714 0.000** -0.146 0.884 -1.378 0.168 -0.827 0.408 -3.487 0.000** 

** indicates p value < 0.01 and * indicates p value < 0.05 262 

4.3 PBIAS of runoff  263 

PBIAS measures the average tendency of CMIP models to be larger (positive PBIAS) or smaller 264 

(negative PBIAS) than their reference data set. Fig. 4a-b shows the PBIAS spatial distribution of the 265 

average annual runoff from LORA data set for CMIP6_MMEs and CMIP5_MMEs. Note that the 266 

PBIAS≤10% (green), 10%< PBIAS ≤15% (orange), 15%< PBIAS ≤25% (yellow), PBIAS>25% (gray) indicate 267 

performance very good, good, satisfactory and unsatisfactory, respectively. The positive (dark) and negative 268 

(light) PBIAS indicate overestimation and underestimation, respectively. The fraction (in %) of land area 269 

with positive and negative PBIAS is provided in the bottom corner. Fig. 4f shows the spatial distribution 270 

of multi-year average runoff from LORA data set. 271 

Figures 1a and 1b show that the simulated runoff tends to be higher than LORA. According to Figure 272 

1a and 1b, 58% (56%) of the land area shows a positive bias in CMIP6(5)_MMEs. The performance of 273 

PBIAS is satisfactory in northern Asia and Europe, eastern North America, southeast China and central 274 

Africa. It is known from Figure 4f in these areas that the average runoff is between 0.5 and 2.4 mm/day. 275 

When the runoff is in other ranges (below 0.5 mm/day or over 2.4 mm/day), the PBIAS of CMIP6_MMEs 276 

is unsatisfactory (PBIAS ≥ 25%), which means that CMIP6 has poor ability to capture extreme runoff. 277 

For example, the areas with low runoff: northern and southern Africa, Australia, western Argentina, 278 

western United States and northern China. And the areas with large runoff: Amazon and Indonesia. The 279 

performance of PBIAS in these areas is unsatisfactory. 280 



 

 

 281 
Fig. 4 The PBIAS for (a) CMIP6_ MMEs, (b) CMIP5_ MMEs, (c) GRUN, and (d) ERA5 relative to LORA; (e) 282 

PBIAS of CMIP6_ MMEs relative to CMIP5_ MMEs in 1981-2012 average annual runoff; (f) Global annual 283 

averages of the runoff in LORA data set from 1981-2012. For a-d, the percentage of land area showing negative 284 

(red) and positive (blue) PBIAS is denoted by the values in the bottom-right corner. 285 

Due to the obvious seasonal variation of runoff, this study not only analyzed the annual PBIAS of 286 

runoff, but also analyzed the seasonal PBIAS. This paper breaks the analysis into four 3-month seasons: 287 

December–February (DJF), March–May (MAM), June–August (JJA), and September–November (SON) 288 

to calculate the PBIAS of the CMIP models and LORA reference data set. 289 

Fig. 5 illustrates the PBIAS of runoff during the period 1980-2012 for global. CMIP6 models were 290 

less different and better performance than CMIP5 on a global scale. The PBIAS of CMIP6_MMEs and 291 

CMIP5_MMEs were good performance, which were 5.6% and -7.8%, respectively. The 25th and 75th 292 

percentile of CMIP6 (5) were 0.7% (-17.8%) and 10.4% (1.7%), respectively. PBIAS had a notable 293 

improvement in CMIP6 compared to CMIP5, as the MMEs was closer to 0, the whiskers were shorter 294 

and the interquartile model ranges was smaller. The runoff simulation results of CMIP6 and CMIP5 in 295 

the northern hemisphere were better than those in the southern hemisphere. In the northern hemisphere, 296 

the PBIAS of CMIP6_MMEs in DJF, MAM, JJA, and SON and annual were -8.8%, 14%, -6%, 0.6% 297 

and -0.4%, respectively. It was better than the PBIAS of CMIP5_MMEs were -15%, 18%, -28%, -15% 298 

and -12%, respectively. In the southern hemisphere, The PBIAS of CMIP6(5)_MMEs in DJF, MAM, 299 

JJA, and SON and annual were 46.8%(31.3%), 21.8%(0.2%), -25.8%(-49.2%), 29.3%(2.5%) and 300 

20.8%(-0.1%), respectively. Overall, the PBIAS of CMIP5 models were better than CMIP6 models in 301 

the southern hemisphere. However, CMIP6 whiskers were shorter, and the quartile range was smaller 302 



 

 

than CMIP5 in the southern hemisphere. The same was true in the northern hemisphere and on a global 303 

scale.  304 

 305 

Fig. 5 Box-and-whisker plots for runoff PBIAS calculated from 33 CMIP6 (red) and 29 CMIP5 (blue) models. Upper 306 

panel is the northern hemisphere, the middle panel is the southern hemisphere, and the bottom panel is global. The 307 

box marks the median and interquartile range, the line marks the 5%–95% range，circle represents the average of 308 

multiple models. The reference data sets are indicated by different colored arrows of GRUN (green) and ERA5 309 

(Orange). 310 

On the basin scale, the PBIAS of CMIP cannot all achieve satisfactory performance (Fig. 6). The 311 

annual PBIAS of CMIP6(5)_MMEs in Lena, Mississippi, Nile, and Rhine basin were -30.6% (-30.6%), 312 

2.1% (-3.9%), 35.1 % (48.3%), 7.9% (16.9%), respectively. This result means that the annual PBIAS of 313 

CMIP6 models were better than CMIP5 in these basins. The PBIAS of CMIP6 and CMIP5 models were 314 

the best in Mississippi basin. The PBIAS of CMIP6(5)_MMEs in DJF, MAM, JJA and SON were -8.3% 315 

(-2.4%), 11.1% (1.3%), 9.5% (-9.0%) and -9.0% (-12.6%), respectively. This result means that the PBIAS 316 

in seasons were not as optimistic as the annual. The same situation also occurs in other basins. In Amazon、317 

Mekong、Murray-Darling, and Yangtze basin, the annual PBIAS of CMIP6(5)_MMEs were -34.5% (-318 

49.9%), 24.9% (-16.9%), 517.4% (208.1%) and 36.9% (9.4%), respectively. The performance of CMIP6 319 

is not better than CMIP5, even worse than CMIP5. Figure 6a,6b shows that runoff was obviously 320 

underestimated in Amazon and Lena basin. In the Amazon basin, the PBIAS of CMIP6(5)_MMEs were 321 

-17.6% (-27.9%), -38.3% (-51.8%) ,-61.1% (-80.5%), -28.1% (-44.1%) and -34.2% (-52.3%) in DJF, 322 

MAM, JJA, SON and annual, respectively. In Lena basin, they were -86.5% (-94.0%), -38.0% (-27.1%), 323 

-25.5% (-46.3%), -12.0% (-25.1%) and -31.3% (-32.6%), respectively. It should be noted that the runoff 324 

of the Murray-Darling and Nile basin was low, the result of PBIAS was often larger, the scale of the X 325 

axis is adjusted here (Fig 6e, 6h). In these two basins, the simulation results of CMIP model tend to be 326 



 

 

higher, which is more prominent in winter. The 25th and 75th percentile PBIAS of CMIP6(5) in DJF in 327 

Murray-Darling basin were 150.5% (13.7%) and 922.0% (656.2%), respectively. 328 

To summarize, compared with the global scale, CMIP model has greater differences, longer beard 329 

and wider quartile range in basin scale. The PBIAS of CMIP6 models has been improved in winter 330 

(except Murray-Darling basin). 331 

  332 

Fig. 6 Box-and-whisker plots for runoff percent bias from CMIP models in eight basins. 333 

4.4 Taylor diagram analysis 334 

PBIAS can well evaluate the differences in multi-year average state of runoff, but it has some 335 

limitations in evaluating temporal changes. Taylor diagram is used to represent the statistical variables 336 

of CC and RMS together, and the uncertainty caused by the temporal and spatial is analyzed. 337 

Fig 7 the normalized Taylor diagrams of the average runoff from the historical simulations (1981-338 

2012) of CMIP model and 2 reference data sets. Note that 33 CMIP6 models and 29 CMIP5 models in 339 

the paper are represented by red and blue dots in Figure 7. The simulation result is assumed close to the 340 

reference value, when there would be relatively high correlation, low RMS errors and minimum 341 

difference of standard deviation with respect to the reference value. 342 

On a global scale (Fig 7a), most CMIP6 models had the CC between 0 and 0.4, the RMSE between 343 

1 and 1.5, and the SD between 0.8 and 1.2. Compared to the CMIP models, the simulation results of 344 

MMEs were superior to other models, especially CC was much higher than any single model. The CC of 345 

CMIP6(5)_MMEs was 0.536 (0.590), which passed the significance test of 99% reliability (i.e., α = 346 

0.01,CC=0.436). The SD and RMSE were the smallest, about 1.1 (1.3) and 1 (1.1) respectively. 347 

However, in eight basins, CMIP6 models have the CC between -0.3 and 0.3. The best CC was 0.304 348 

in Lena basin cannot pass the significance test of 95% reliability (i.e., α = 0.05, CC=0.339). The CC of 349 

CMIP5_MMEs passed the significance test of 95% reliability in Amazon and Nile basin, which were 350 



 

 

0.364 and 0.411, respectively. The RMSE of CMIP model was mainly between 1 and 1.5, but in Mekong, 351 

Rhine and Yangtze basin was between 1.25 and 1.75. The SD of CMIP models in eight basins was 352 

between 0.7 and 1.3. Among them, the SD of most models in Amazon, Lena, and Mississippi basin was 353 

less than 1, which indicates that the CMIP models have lower variability in these basins. 354 

 355 

Fig. 7 Taylor diagram of the average runoff from the historical simulations (1981-2012) of 33 CMIP6 models (red 356 

dot), 29 CMIP5 models (blue dot) and 2 reference data sets (triangle) compared with the LORA data set. The 357 

azimuthal angle denotes the correlation coefficient between model and LORA reference results (gray solid line), the 358 

radial values are normalized spatial standard deviations of the runoff time series referenced or modeled (where 359 

referenced or modeled correspond to the ‘‘REF’’ or reference value of 1.0). 360 

4.5 Ranking of climate model 361 

In this section, CMIP models are ranked according to PBIAS, CC, and RMSE three metrics (Fig. 362 

8). The global ranking (GR) and basin ranking (BR) were the comprehensive ranking of three metrics in 363 

the global and eight basins, respectively (Please refer to appendix 1 for the ranking of the three metrics 364 

in the basin). The total ranking (TR) was the average of BR and GR. The blue line shows a higher ranking 365 

in most metrics and the red line shows lower ranking.  366 

In CMIP6, the FGOALS-f3-L, CNRM-CM6-1, and TaiESM1 were ranked in the top three in TR 367 

(Fig. 8). In CMIP5, the CCSM4, CESM1-BGC and BNU-ESM models were ranked in the top three in 368 

TR. The top models do not have good rankings for all global and basins. For example, GR and BR in 369 

TaiESM1 are ranked 3,25 respectively. By analyzing the global model ranking of each diagnostic metric, 370 

it was found that there was nine of the top ten in BIAS are in CMIP6 model. The RMES performance is 371 

satisfactory in TaiESM1, INM-CM5-0 and CAS-ESM2-0 models. However, CC ranked higher in the 372 

MPI-ESM-MR and CCSM4 from CMIP5, which also participate in CMIP6 (Gettelman et al., 2019; 373 

Mauritsen et al., 2019). The GR, BR, and TR of CMIP6_MMEs (CMIP5_MMEs) are 2 (30), 9 (8) and 374 

2 (11), respectively. In general, the runoff simulation results of MME were excellent and consistently 375 

shows better performance than most single models. Strong evidence of Fig. 8 was found that CMIP6 has 376 

obvious improvement in BIAS and RMSE. The blue line appears more frequently in CMIP6 than in 377 

CMIP5, indicating that the models of CMIP6 show good performance regardless of the metrics. Thus, 378 



 

 

the model performance in CMIP6 is superior overall to that in CMIP5. 379 

 380 

Fig.8 The portrait diagram for the rankings of PBIAS, CC and RMSE. between runoff for CMIP6 (left), CMIP5 (Top 381 

right) and reference data set (bottom right). The global comprehensive rating metrics (GR) was the comprehensive 382 

ranking of three indicators on a global scale, the basins comprehensive rating metrics (BR) was the comprehensive 383 

ranking of three indicators in eight basins, TR was the average of BR and GR. Color denotes the model’s rank for 384 

each index. 385 

5. Discussion 386 

This paper results show that CMIP6_MMEs has a good ability to capture runoff during the period 387 

1981-2012, particularly on a global scale. Importantly, the simulated trend change range of CMIP6 is 388 

more obvious than CMIP5 (Fig .2), which can better simulate the trend change of runoff in Yangtze Basin 389 

and Qinghai-Tibet Plateau. However, compared with the reference data set, the trend change is still small. 390 

Due to the sharp reduction of Arctic glaciers and sea ice, the runoff in the high latitudes of the northern 391 

hemisphere has increased significantly (Jahfer et al., 2017; Lutz et al., 2014), and this trend CMIP6 has 392 

also been well captured. 393 

In this article, the seasonal runoff simulation results of CMIP model are obviously worse than the 394 

annual, especially in JJA. The results show that the runoff simulation results of CMIP6 model on a global 395 

scale are better than those at the basin scale. Previous studies have shown that CMIP models have greater 396 

uncertainty on regional scale than global scale (Fiedler et al., 2020; Waliser et al., 2020; Watterson, 2015). 397 

Most CMIP models obviously underestimate the annual average runoff in the Amazon basin because of 398 

underestimation of precipitation in the Amazon basin (Coppola et al., 2021; Zhou et al., 2012). Beck et 399 

al. (2017) pointed out that CMIP5 models underestimate of simulated runoff occurred in snow-dominated 400 

areas (Lena basin), this situation has not been improved in CMIP6. The runoff capture capacity of CMIP6 401 

is poor in Murray-Darling and Nile basins. Poor vegetation coverage and soil hydrophobicity may lead 402 

to serious higher runoff results of CMIP models in arid and semi-arid areas (Deb et al., 2019; Kling et 403 



 

 

al., 2015). It may also be related to the hydrological structure defects of CMIP models in arid and semi-404 

arid areas (Schewe et al., 2014; Zhang et al., 2016). Gudmundsson and Seneviratne (2015) showed that 405 

global hydrological models (GHMs) struggle in reproducing the seasonality of runoff. The CMIP model’s 406 

selection were determined according to standard deviation interval of the global reference runoff, which 407 

also results in better simulation results on a global scale. Therefore, the reference data of the 408 

corresponding basin can also be used to screen out the CMIP model more suitable for simulating the 409 

basin.  410 

When calculating the comprehensive rating index (CMR), the trend index (Z) is not added. The 411 

trend of runoff time series simulated by CMIP calculated by MK method in the world and eight basins 412 

only has a few models passed the statistical significance of student's T standard. Some articles also 413 

pointed out that the interannual variation of runoff lacks obvious trend (Gelfan et al., 2020). Usually, 414 

models with higher horizontal spatial resolution tend to produce better simulations (Sarmadi et al., 2019; 415 

Travis et al., 2016), but they are not shown in runoff simulation. In this paper, CNRM-CM6-1-HR, 416 

E3SM-1-0, E3SM-1-1, E3SM-1-1-ECA, EC-Earth3, EC-Earth3-Veg, HadGEM3-GC31-MM and 417 

CMCC-CM (CMIP5) were high-resolution models (Table A1 and A2), but they have no high ranking on 418 

a global or basin scale (Fig. 8).  419 

5.1 Uncertainty of the CMIP  420 

It is known that CMIP data sets are uncertain due to many reasons, such as convective 421 

parameterization, tunable parameters, model resolution. In this paper, the uncertainty of CMIP model is 422 

analyzed from two aspects: the uncertainty between model and model and the uncertainty between model 423 

and reference data set. 424 

For the uncertainty between model and reference data set, this paper used objective functions PBIAS, 425 

CC and RMS were taken into consideration.  426 

The PBIAS of CMIP6 has been significantly improved on a global scale (Fig. 5). However, PBIAS 427 

still cannot reach the satisfactory performance (PBIAS ≤25%) on some basins (Fig.6). Figure 9 is 428 

obtained by calculating the area ratio of PBIAS in performance rating from Figure 4. Results show that 429 

the ratio of PBIAS with very good and satisfactory performance in CMIP6_MMEs is higher than that in 430 

CMIP5_MMEs (except Murray-Darling basin). In CMIP6_MMEs, the area (in %) of PBIAS for very 431 

good, good, and satisfactory performance was 11.62%, 17.26%, and 27.68%, respectively in the world. 432 

The PBIAS performance of CMIP5_MMEs (-16.9% and 9.36%) is better than that of CMIP6_MMEs 433 

(24.94% and 36.9%) in Mekong and Yangtze basins, respectively (Fig. 6). However, the satisfactory area 434 

ratio of CMIP6_MMEs (32.47% and 44.74%) is higher than CMIP5_MMEs (22.51% and 21.93%) in 435 

these two basins. This shows that although CMIP6 is captured accurately in some areas (for example: 436 

lower Yangtze basin), but the greater uncertainty caused by overestimation in some areas. Compared with 437 

CMIP5, CC and RMSE of CMIP 6 do not improve Compared with CMIP5, CC and RMSE of CMIP6 438 

have not improved in the world and eight basins. The uncertainty in temporal and spatial has not been 439 

reduced. 440 



 

 

 441 

Fig.9 The area (in %) of PBIAS from CMIP6_MMEs, CMIP5_MMEs, GRUN, and ERA5 in performance rating.  442 

For the uncertainty between model and model, this paper used reliability (the coverage of LORA 443 

reference data set), sharpness (CMIP simulation interval width) and CRPS. The smaller the CRPS, the 444 

lower the uncertainty. The results of these functions are presented in Fig.10. Compared with CMIP5 445 

models, CMIP6 models have been significantly improved on a global scale. The reliability of 10% 446 

confidence interval of CMIP6 model is 19% and the interval width is 0.014 mm/day, which has greatly 447 

improved. The CRPS of CMIP6 models is 0.034 mm/day, which is better than 0.046 of CMIP5.Among 448 

the eight basins, the CPRS of CMIP6 is best (0.065) in Mississippi Basin. The CPRS of CMIP6 and 449 

CMIP5 in Murray-Darling and Nile basins are also less than 0.1, which is mainly caused by the low 450 

annual average runoff. The CPRS is worst performance in Amazon basin. It can be seen from Fig.10 that 451 

not only the confidence interval width is large, but also the reliability is low in Amazon basin.  452 

Compared with CMIP5, CMIP6 model has less uncertainty in Amazon, Mississippi, and Rhine 453 

basins and the whole world. This is a particularly reassuring result.  454 



 

 

455 

 456 

Fig.10 (a) The average width of the confidence interval of CMIP6 models and CMIP5 models during 1980-2012. 457 

(b) The reliability of confidence interval of CMIP model, in which the outer number represents CRPS. 458 

5.2 Uncertainty of the reference data set 459 

In the model evaluation, the uncertainty of the reference data set is often ignored by some scientists. 460 

Some scientists assume that the uncertainty of the model is dominant and ignore the uncertainty of the 461 

reference data set (Knutti et al., 2017). Or other thinks that the reference data set is true and accurate 462 

(Lloyd, 2012). Ignoring data set uncertainty can thus lead to false or distorted conclusions (Zumwald et 463 

al., 2020). In the past studies of evaluation variables, only one or two different data sets were usually 464 

used (Flato et al., 2013).  465 

In this paper, there are great differences among the three reference data sets in evaluating runoff. 466 

For the trend, the biggest difference from the spatial distribution of the three reference data sets is in the 467 

Amazon basin of South America (Fig. 2). The trend of LORA was increased significantly in the northern 468 

and decreased slightly in the southern Amazon basin. Similar trends have been reported by Espinoza 469 

Villar et al. (2009) in their work on regional discharge evolutions in the Amazon basin. In other regions, 470 

the trend of LORA and GRUN is roughly consistent, but EAR5 has a downward trend in central Africa 471 



 

 

and southeast China. For PBIAS, the PBIAS of GRUN and ERA5 are -8.3% and 14.6%, respectively, on 472 

the global scale (Fig.5). In the northern hemisphere, the PBIAS of GRUN in each season is stable at 473 

about -14%, and that of ERA5 is about 8%. Compared with the northern hemisphere, the PBIAS of 474 

GRUN and EAR5 were increased by about 20% in each season (except ERA5 in JJA) from the southern 475 

hemisphere. This shows that the runoff results of LORA in the southern hemisphere may be lower than 476 

the measured values. The PBIAS of ERA5 has obvious fluctuation in different seasons, which was similar 477 

to that of CMIP6_MMEs. The PBIAS of ERA5 (CMIP6_MMEs) in DJF, MAM, JJA, SON and annual 478 

were 53.3% (46.8%), 27.8% (21.8%), -9.5% (-25.8%), 32.3% (29.3%) and 28.6% (20.8%) respectively. 479 

Among the eight basins, the annual PBIAS of GRUN and ERA5 were less than |15%| (performance good) 480 

in Amazon, Rhine and Mississippi basins. Only the PBIAS of GUNR in Rhine performed good in each 481 

season. This shows that the reference data has great uncertainty on PBIAS. Excluding the influence of 482 

PBIAS, the three reference data sets are highly consistent in terms of interannual variation in 8 basins 483 

and the world (Fig. 2). Except for a few years, the occurrence time and the increase and decrease of the 484 

drought and flood years are the same. Fig.7 shows a strong CC of GRUN and LORA on a global scale 485 

and eight basins, and the lowest CC value was 0.545 (i.e., α = 0.01, CC=0.436) in Nile basin. The CC of 486 

ERA5 and LORA (except global and Nile basin) passed the significance test of 99% reliability (i.e., α = 487 

0.01, CC=0.436). There were high CC of GRUN and ERA5 in Rhine basin, which were 0.967 and 0.947, 488 

respectively. In terms of rankings, GRUN and ERA5 reference data sets ranked 1 and 2 respectively on 489 

the basin scale but ranked 11 and 62 respectively on a global scale. This reflects that the simulation effect 490 

of some CMIP models on the global scale can be comparable to the reference data sets, but they still need 491 

to be strengthened the capture ability at the basins. 492 

To sum up, LORA data set has better reproduced the historical trend of runoff change and the 493 

average climate state from 1980 to 2012, which has a good correlation with GRUN and ERA5 data sets. 494 

Therefore, LORA data set is selected as the primary reference data set in this paper. 495 

6. Conclusion 496 

This study evaluated the capability of simulated runoff from MMEs of CMIP6 and CMIP5 models. 497 

Model trend and biases on global scale and basin scale were compared between CMIP6 and CMIP5 and 498 

with three reference data sets (LORA, GRUN, and ERA5). Besides the MMEs, this paper has shown the 499 

differences and uncertainties of individual models as well as those of the reference data sets. The main 500 

findings of the study are: 501 

The results of this study suggest that CMIP6 models can well capture the characteristics of annual 502 

and seasonal runoff on global, especially CMIP6_MMEs. The simulation results of some CMIP6 models 503 

were better than the reference data set.  504 

In the eight basins, the simulation results of CMIP6 were not as good as those on a global scale. 505 

Mississippi and Rhine basins were the best ones, while Murray-Darling and Nile basins were not ideal. 506 

This is highly consistent with CMIP5. 507 

In the three reference data sets selected in the article, we cannot conclude which data set is the best. 508 

We encourage using an ensemble of observations from different sources and centers to estimate runoff 509 

and better assess their associated uncertainties. 510 

In total, CMIP6 has improved the simulation performance of runoff compared with CMIP5. 511 

However, GCMs still have great potential of further improvement in arid regions. Although the deviation 512 

still exists, it is gradually decreasing. It shows that with the development of the climate model, it is 513 

increasingly suitable to analyze the changes on a large scale. 514 

 515 
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Appendix A:  723 

Table A1 Model names, institution, and resolution for CMIP6 models used in the paper 724 

No. Model ID/acronym Resolution institution country 

1 ACCESS-CM2 192 x 144 CSIRO-ARCCSS Australia 

2 ACCESS-ESM1-5  192 x 145 CSIRO Australia 

3 BCC-CSM2-MR 320 x 160 BCC China 

4 CanESM5 128 x 64 CCCma Canada 

5 CanESM5-CanOE 128 x 64 CCCma Canada 

6 CAS-ESM2-0 256 x 128 CAS China 

7 CESM2 288 x 192 NCAR USA 

8 CESM2-FV2 144 x 96 NCAR USA 

9 CESM2-WACCM 288 x 192 NCAR USA 

10 CIESM 288 x 192 THU China 



 

 

11 CNRM-CM6-1 256 x 128 CNRM-CERFACS France 

12 CNRM-CM6-1-HR 720 x 360 CNRM-CERFACS France 

13 CNRM-ESM2-1 256 x 128 CNRM-CERFACS France 

14 E3SM-1-0 360 x 180 E3SM-Project USA 

15 E3SM-1-1 360 x 180 E3SM-Project USA 

16 E3SM-1-1-ECA 360 x 180 E3SM-Project USA 

17 EC-Earth3 512 x 256 EC-Earth-Consortium Many Countries in Europe 

18 EC-Earth3-Veg 512 x 256 EC-Earth-Consortium Many Countries in Europe 

19 FGOALS-f3-L 288 x 192 CAS China 

20 FIO-ESM-2-0 288 x 192 CAS China 

21 GISS-E2-1-G 144 x 90 NASA-GISS USA 

22 GISS-E2-1-G-CC 144 x 90 NASA-GISS USA 

23 GISS-E2-1-H 144 x 90 NASA-GISS USA 

24 HadGEM3-GC31-LL 192 x 144 MOHC, NERC UK 

25 HadGEM3-GC31-MM 432 x 324 MOHC, NERC UK 

26 INM-CM4-8 180 x 120 INM Russia 

27 INM-CM5-0 180 x 120 INM Russia 

28 MIROC6 256 x 128 MIROC Japan 

29 MRI-ESM2-0 320 x 160 MRI Japan 

30 NorESM2-LM 144 x 96 NCC Norway 

31 NorESM2-MM 288 x 192 NCC Norway 

32 TaiESM1 288 x 192 AS-RCEC Taiwan 

33 UKESM1-0-LL 192 x 144 MOHC, NERC, NIMS-KMA, NIWA UK, Korea, New Zealand 

Table A2 CMIP5 models used in the paper, details are the same as table A1 725 

No. Model ID/acronym Resolution institution country 

1 BCC-CSM1-1 320 x 160 BCC China 

2 BCC-CSM1-1-M 128 x 64 BCC China 

3 BNU-ESM 128 x 64 GCESS China 

4 CanESM2 128 x 64 CCCma Canada 

5 CCSM4 288 x 192 NCAR USA 

6 CESM1-BGC 288 x 192 NSF-DOE-NCAR USA 

7 CESM1-CAM5 288 x 192 NSF-DOE-NCAR USA 

8 CMCC-CESM 96 x 48 CMCC Italy 

9 CMCC-CM 480 x 240 CMCC Italy 

10 CMCC-CMS 192 x 96 CMCC Italy 

11 CNRM-CM5 256 x 128 CNRM-CERFACS France 

12 CSIRO-Mk3-6-0 192 x 96 CSIRO-QCCCE Australia 

13 FGOALS-g2 128 x 60 LASG-CESS China 

14 FIO-ESM 128 x 64 FIO China 

15 GFDL-CM3 144 x 90 NOAA GFDL USA 

16 GFDL-ESM2G 144 x 90 NOAA GFDL USA 

17 GFDL-ESM2M 144 x 90 NOAA GFDL USA 

18 INM-CM4 180 x 120 INM Russia 

19 IPSL-CM5A-LR 96 x 96 IPSL France 



 

 

20 IPSL-CM5A-MR 144 x 143 IPSL France 

21 MIROC5 256 x 128 MIROC Japan 

22 MIROC-ESM 128 x 64 MIROC Japan 

23 MIROC-ESM-CHEM 128 x 64 MIROC Japan 

24 MPI-ESM-LR 192 x 96 MPI-M Germany 

25 MPI-ESM-MR 192 x 96 MPI-M Germany 

26 MRI-CGCM3 320 x 160 MRI Japan 

27 MRI-ESM1 320 x 160 MRI Japan 

28 NorESM1-M 144 x 96 NCC Norway 

29 NorESM1-ME 144 x 96 NCC Norway 

Appendix B: Model Ranking in Basin 726 

 727 

Figure B The portrait diagram for the rankings of PBIAS, CC, RMSE. Upper panel is the CMIP6 model, the middle 728 

panel is the CMIP5 model, and the bottom panel is reference data set. The AR, LR, MEKR, MISR, M-DR, NR, RR 729 

and YR are the comprehensive rating metrics of Amazon, Lena, Mekong, Mississippi, Murray-Darling, Nile, Rhine 730 

and Yangtze basin, respectively. The basins comprehensive rating metrics (BR) is the comprehensive ranking of 731 

three indicators in eight basins. 732 
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