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Abstract
c-Jun N-terminal kinases (JNKs) are a family of protein kinases that can be activated by numerous
stimuli and regulate a broad spectrum of biological processes in the Central Nervous System. JNK3, a
speci�c isoform in the brain, have been shown to be involved in neurodegenerative conditions. Even
though JNK over-activation has been observed in human brains affected with Alzheimer’s disease (AD),
its role in AD pathology development is still unclear.

One of the early regions of neuronal volume loss in AD is the Entorhinal Cortex (EC). Indeed, the loss of
projections from EC to hippocampus (Hp) in the early phases of AD has raised the idea that the
connection between EC and Hp could be deteriorated in AD. Thus, the main aim of the current work is to
address if JNK3 overexpression in the EC could spread to the hippocampus, leading to cognitive
de�ciencies, similar to what occurs in early stages of AD.

Data acquired in the current study suggest that JNK3 overexpression in the EC is also observed in the Hp
and this leads to cognitive impairment. Moreover, pro-in�ammatory cytokines expression and Tau
immunoreactivity appeared to be increased both in the EC and Hp. Therefore, activation of in�ammatory
signaling and induction of Tau aberrant misfolding caused by JNK3 could be the underlying mechanism
of the observed cognitive impairment. Altogether, JNK3 overexpression may disseminate from EC to Hp
inducing cognitive dysfunction in vulnerable brain regions and may underlie the alterations observed in
early stages of AD.

1. Introduction
Cells constantly interact with their environment by receiving and sending signals. These cues that the cell
receives control many functional aspects by activating different signaling pathways, such as the
mitogen-activated kinases called MAPK (Mitogen-Activated Protein Kinases) that are subdivided into
three families: p38, ERK and c-Jun N-terminal kinases (JNK) [1, 2].

The JNK family proteins can be activated by numerous stimuli. When activated, they in turn modify the
activity of other proteins by adding phosphate groups [3]. In this way JNK regulates important functions
in a broad spectrum of biological processes in the cytoplasm, mitochondria and also in the nucleus,
especially in the central nervous system (CNS) [1].

JNK kinase is encoded by three genes, namely Jnk1 (also known as Mapk8), Jnk2 (Mapk9) and Jnk3
(Mapk10) [4, 5], but due to the alternative splicing, ten different splice variants can be generated [1, 6, 7].
The ten different variants are grouped depending on the homologous protein regions in the three known
isoforms of JNK: JNK1, JNK2 and JNK3. Albeit JNK1 and JNK2 are widely distributed throughout the
different tissues, JNK3 principally is found in the CNS [8].

JNK3 is responsible of regulating the functions of the brain in both healthy and pathological conditions.
JNK3 is involved in brain maturing [9], neurite creation and �exibility [10, 11], and it is implicated in
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memory capacity and learning [12, 13]. In pathological circumstances, JNK3 has been proposed as a
deletereous transducer signal, and it seems to be over-stimulated in the adult brain after pernicious
stress-stimuli, like hypoxia, ischemia or epilepsies [8, 14–18].

Neuroin�ammation is a defense mechanism of the brain, initiated in the CNS by the immune system to
protect it from infections and other threats. However, when it becomes chronic, it produces metabolic
changes that lead to tissue and cognitive degeneration potentially resulting in pathologies such as
Parkinson's disease (PD), Alzheimer's disease (AD) and others [19, 20]. It has been reported that the total
amount of nuclear JNK is rapidly and transiently increased after neuroin�ammatory stimulus, leading to
augmented levels of inducible NO synthase (iNOS) and pro-in�ammatory mediators such as interleukins
[21–23]. These �ndings indicate that JNK plays crucial roles in the neuroin�ammatory processes
underlying various neurodegenerative disorders.

AD is a progressive CNS degenerative disease characterized by neuro�brillary tangles [24] and amyloid-β
(Aβ) deposits [25]. It has been shown that post-mortem brains of patients with this disease exhibit
anomalously elevated concentrations of JNK activity [26–28] and preclinical research using animal
models evinces that JNK can have a signi�cant impact on AD pathology increasing Aβ plaque load [28,
29] and Tau hyperphosphorylation [17, 30]. JNK activity is enhanced in AD mouse models that carry the
Swedish mutant variant of amyloid precursor protein (APP) and/or harbor a mutated presenilin 1
(engaged in APP cleavage) [28, 31, 32]. Application of JNK inhibitors to brain slices of AD mouse models
(Tg2576/PS1P264L) in vitro decreases degeneration of pyramidal neurons [33] and chronic
administration of a JNK inhibitor peptide to TgCRND8 mice (with multiple mutations in APP) restores
memory impairment and LTP abnormalities [34]. Furthermore, genetic deletion of Jnk3 in familial AD
mice decreases Aβ plaque load [28].

Aside from glycogen synthase kinase 3 (GSK3), p38 and ERK, Tau could be phosphorylated by JNK on
various locations that are hyperphosphorylated in paired helical fragments [30, 35]. Patients with AD have
shown incremented activity of JNK in neuro�brillary tangles in brain tissue [36]. In addition, JNK activity
is enhanced in tangles in Tg2576/PS1P264L and traumatic brain injury mouse models, where JNK is co-
localized with phosphorylated Tau [31, 32]. Of note, a peptide inhibitor of JNK, D-JNKI-1, reduces Tau
phosphorylation and aggregation [32].

One of the �rst regions undergoing neuronal cell loss in AD cases is the Entorhinal Cortex (EC) [37, 38]. In
both primates and rodents, the EC is located in the temporal lobe and nearby the hippocampus (Hp). Two
major divisions can be distinguished: the medial EC (MEC) and the lateral EC (LEC). The EC innervates
the Hp through the perforant pathway projection. Indeed, in early phases of AD the loss of the projection
from EC to Hp has led to the idea that the connection between EC and Hp could be deteriorated in AD [38,
39], leading to cognitive de�ciencies.

Taking into account the relationship between JNK3, neuroin�ammation, hiperphosphorylation of tau and
AD, the present work aims to explore whether an overexpression of JNK3 in the EC could spread to the
hippocampus, leading to a cognitive de�ciency, similar to that observed in early phases of AD.
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2. Material And Methods

2.1. Animals
In this study, 12 weeks old ICR mice were used (Envigo, Huntingdon, UK). Animals were housed in a
temperature (21 ± 1ºC) and humidity (55 ± 1%) controlled room on a 12h light/dark cycle, with ad libitum
access to a standard chow diet and water. Experimental procedures were conducted in accordance with
the European and Spanish regulations (2003/65/EC; 1201/2005) for the care and use of laboratory
animals and approved by the Ethical Committee of University of Navarra (ethical protocol number 038 − 
17).

2.2. Cells
BHK-21 cells (ATCC: CCL-10) and derived stable cell lines were cultured in BHK-21 Glasgow MEM (Gibco
BRL, UK) supplemented with 5% FCS, 10% tryptose phosphate broth, 2 mM glutamine, 20 mM HEPES,
100 µg/ml streptomycin and 100 IU/ml penicillin (BHK complete medium). HuH-7 (Japanese Collection of
Research Bioresources Cell Bank: 0403) and HEK-293T (ATCC® CRL-3216™) cells were grown in DMEM
(Gibco BRL) supplemented with 10% FBS, 2 mM glutamine, and 100 µg/mL streptomycin and 100 U/mL
penicillin.

2.3. Plasmid
A synthetic gene containing the coding sequences of mouse JNK3 isoform (NCBI Reference Sequence:
NP_001075036.1) and green �uorescent protein (GFP) linked by the IRES (internal ribosome binding site)
sequence of the encephalomyocarditis virus was generated. The IRES sequence allows JNK3 and GFP to
be translated from the same mRNA, which allows us to identify cells that express recombinant JNK3 in
vivo. The synthesis of this gene was entrusted to the company GenScript (Piscataway, USA). The
synthetic cassette was subcloned into the pAAV-CAG-GFP plasmid (Pignataro et al., 2017), substituting
the GFP gene. In this way, the plasmid pAAV-CAG-JNK3-GFP was generated in which the JNK3-IRES-GFP
sequence is under the transcriptional control of the constitutive CAG promoter. This promoter has been
shown to be highly effective for expression in neurons [40].

2.4. Viral Vector Production
Recombinant single-stranded AAV8 vectors were puri�ed from HEK-293T cells that had been co-
transfected using linear polyethylenimine 25 kDa (Polysciences, Warrington, PA, USA) with two different
plasmids: a plasmid containing ITR-�anked transgene constructs (pAAV-CAG-JNK3-GFP) and a plasmid
containing the adenoviral helper genes AAV8 cap (named pDP8.ape, Plasmid Factory, Bielefeld,
Germany). Seventy-two hours post-transfection the supernatant was collected and treated with
polyethylene glycol solution (PEG8000, 8% v/v �nal concentration) for 48–72 h at 4°C. Supernatant was
then centrifuged at 1500 g for 15 min. Cells containing AAV particles were collected and treated with lysis
buffer (50 mM Tris-Cl, 150 mM NaCl, 2 mM MgCl2, 0.1% Triton X-100) and kept at − 80°C. Three cycles of
freezing and thawing were applied to both supernatant and cell lysate. Viral particles obtained from cell
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supernatant and lysate were puri�ed by ultracentrifugation at 350,000 g for 2.5 h in a 15–57% in an
iodixanol gradient according to the method of Zolotukhin et al. (1999). The viral batches were then
concentrated further by passage through Amicon Ultra Centrifugal Filters-Ultracel 100 K (Millipore,
Burlington, MA, USA) All vector stocks were kept at − 80°C until used.

AAV vector titers (viral particles (vp)/ml) were determined by quantitative PCR for viral genome copies
extracted from DNAase-treated viral particles (High Pure Viral Nucleic Acid Kit, Roche). The primers used
in the q-PCR were Forward-eGFP: 5′-GTCCGCCCTGAGCAAACA-3′ and Reverse-eGFP: 5′
TCCAGCAGGACCATGTGATC-3′. Vector titers obtained was > 1012 viral genomes (VG)/ml.

2.5. Analysis of JNK3 expression in vitro
BHK and HuH-7 cells were transfected with 2, 4 and 6 µg of pAAV-CAG-JNK3-GFP plasmids using
lipofectamine 2000 (Thermo Fisher). Cells were �xed at 24 h and pJNK and total JNK expression was
detected by immunoblotting and immuno�uorescence using a primary mouse monoclonal antibody
speci�c for anti-pJNK (1:1000, Cell Signalling Technology, Beverly, MA, USA), anti-totalJNK (1:1000, Cell
Signalling Technology, Beverly, MA, USA). A donkey anti-rabbit Alexa-546-conjugated antiserum
(Invitrogen ref. A21202, 1:1000) was used for detection.

2.6. Intraentorhinal injection
Intraentrorhinal injection of JNK3-AAV (1 x 1010 vp) was stereotaxically performed in both lateral (LEC) (1
µL) and medial (MEC) (0.5 µL) entorhinal cortex (n = 14). The coordinates for targeting the LEC were
anterior-posterior, -4.1; medial-lateral, +/- 4.3; dorso-ventral, -4.9 from bregma [41]. Coordinates for the
MEC were anterior-posterior, -4.1; medial-lateral, +/- 3.5; dorso-ventral, -5.1 from bregma [41]. Sham
animals (n = 12) received equivalent amounts of sterile phosphate buffer saline. Mice were sacri�ced 3
months after the injection.

2.7. Behavioral Tests

2.7.1. Open Field Test
Locomotor activity was measured for 30 min in an open �eld (35 × 35 cm, 45 cm height) made of black
wood, using a video-tracking system (Ethovision 11.5, Noldus Information Technology B.V., The
Netherlands), in a dimly illuminated room. Total path distance (cm) was analyzed.

2.7.2. Novel Object Recognition Task (NORT)
The open �eld consisted of a square divided into four sections (35 cm × 35 cm × 45 cm each) with black
walls. On the previous day to the experiment, animals were familiarized with the square for 30 min.
During the �rst trial (sample phase), two identical objects were placed inside the cubicle, and the mice
were allowed to freely explore for 5 min. For the second task, which took place 1 h later, one object was
replaced by another and the exploration time was recorded for 5 min. Results were expressed as
percentage of time spent exploring the new object with respect to the total exploration time
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(discrimination index). This behavioral test was carried out using a video-tracking system (Ethovision
11.5; Noldus Information Technology B.V, Wageningen, Netherlands).

2.7.3. Morris Water Maze (MWM)
The MWM, a hippocampus-dependent learning task, was used to test spatial memory and to evaluate the
working and reference memory. The water maze was a circular pool (diameter of 145 cm) �lled with
water (21–22°C) and virtually divided into four equal quadrants identi�ed as northeast, northwest,
southeast, and southwest.

Hidden-platform training was conducted with the platform placed in the northeast quadrant 1 cm below
the water surface over 9 consecutive days (4 trials/day). Several large visual cues were placed in the
room to guide the mice to the hidden platform. Each trial was �nished when the mouse reached the
platform (escape latency) or after 60 s, whichever came �rst. Mice failing to reach the platform were
guided onto it. After each trial mice remained on the platform for 15 s. To test memory, probe trials were
performed at the 4th, 7th and last day of the test (10th day). In the probe trials the platform was removed
from the pool and mice were allowed to swim for 60 s. The percent of time spent in the target quadrant
was recorded. All trials were monitored by a video camera set above the center of the pool and connected
to a video tracking system (Ethovision 3.0; Noldus Information Technology B.V, Wageningen,
Netherlands).

2.8. Biochemical Measurements

2.8.1. Tissue collection
Mice were euthanized by decapitation. Brains were immediately extracted and dissected on ice to obtain
the EC and the hippocampus, and stored at − 80°C.

For immunohistochemistry assays, right hemispheres from 5 mice per group were �xed by immersion in
4% paraformaldehyde in 0.1 M PBS (pH 7.4) for 24 h followed by 30% sucrose solution. Brains were cut
into series of 40 µm slices.

2.8.2. Immuno�uorescence (IF)
For immuno�uorescence, free-�oating brain sections were washed (3×10 min) with PBS 0.1 M (pH 7.4)
and incubated in blocking solution (PBS containing 0.3% Triton X-100, 0.1% BSA and 2% normal donkey
serum) for 2 h at room temperature. Primary and secondary antibodies were diluted in the blocking
solution. Sections were incubated with the primary antibody overnight at 4°C, washed with PBS and
incubated with the secondary antibody for 2 h at room temperature, protected from light. The primary
antibodies used were anti-GFP (1:1000, Invitrogen, Carlsbad, California, USA), anti-GFAP (1:1000, Cell
Signalling Technology, Beverly, MA, USA) and anti-Iba1 (1:1000, Wako, Wako, Osaka, Japan). Secondary
antibody used was Alexa Fluor 546 goat anti-mouse for GFAP and Alexa Fluor 488 goat anti-rabbit for
GFP and Iba1 (1:400, Invitrogen–Molecular Probes, Eugene, OR, USA). To ensure comparable
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immunostaining, sections were processed together under identical conditions. Fluorescence signals were
detected with confocal microscope LSM 510 Meta (Carl Zeiss, Oberkochen, Germany).

2.8.3. Immunohistrochemistry
Immunohistochemical examination of brains was performed using mouse monoclonal antibodies
against Tau MC1 epitope (1:100, donated by Peter Davies, Department of Pathology, Albert Einstein
College of Medicine), Tau ALZ50 epitope (1:100, donated by Peter Davies, Department of Pathology,
Albert Einstein College of Medicine), Asp421 cleaved Tau clone C3 (1:250, Merck, Darmstadt, Germany)
and Ser422 phospho-Tau (1:250, ThermoFisher, Waltham, Massachusetts, USA). Antibody binding was
detected with a biotinylated secondary antibody and the antibodies were visualized using an avidin–
biotin–peroxidase complex with 3,3’-diaminobenzidine tetrahydrochloride (DAB) as the chromogen.

2.8.4. Quantitative Reverse Transcription Polymerase Chain
Reaction (qRT-PCR)
For qRT-PCR analysis total RNA was extracted from respective tissues using Trizol reagent. Isolated total
RNA was reverse-transcribed into cDNA using commercially available kits (Applied Biosystems). All
subsequent qRT-PCR reactions were performed on a QuantStudio 7 Flex Real-Time PCR System (Applied
Biosystems). For normalization threshold cycles (Ct-values) of all replicate analyses were normalized to
Gapdh within each sample to obtain sample-speci�c ΔCt values (= Ct gene of interest - Ct Gapdh). The
following Taqman probes (Applied Biosystems) were used: MAPK10 (Mm00436518_m1), TNFα
(Mm00443258_m1), IL-1β (Mm00434228_m1) and IL-6 (Mm00446190_m1).

2.8.5. Western Blotting (WB)
Total protein homogenates were obtained by homogenizing the dissected EC or Hp in ice-cold lysis buffer
(NaCl 200mM, HEPES 100mM, Glycerol 10%, NaF 200mM, Na4P2O7 2mM, EDTA 5mM, EGTA 1mM, DTT
2mM, PMSF 0.5mM, Orthovanadate 1mM and NP-40, Inhibitors of Proteases and Inhibitors of
Phosphatases at 1%) and centrifuged at 13 000 rpm 4°C for 20 min. The supernatant was aliquoted and
frozen at − 80°C until use. Homogenates (30 µg of protein) were separated by electrophoresis on
polyacrylamide gels (7.5%). Membranes were probed overnight at 4°C with the following primary
antibodies: anti-GFAP (1:1000, Cell Signalling Technology, Beverly, MA, USA), anti-CD11b (1:1000, NB110-
89474, Minneapolis, MN, USA), anti-pJNK (1:1000, Cell Signalling Technology, Beverly, MA, USA), anti-
totalJNK (1:1000, Cell Signalling Technology, Beverly, MA, USA), Tau MC1 epitope (1:1000, donated by
Peter Davies, Department of Pathology, Albert Einstein College of Medicine), Tau ALZ50 epitope (1:1000,
donated by Peter Davies, Department of Pathology, Albert Einstein College of Medicine), Asp421 cleaved
Tau clone C3 (1:1000, Merck, Darmstadt, Germany) and Ser422 phospho-Tau (1:1000, ThermoFisher,
Waltham, Massachusetts, USA). Secondary antibodies conjugated to IRDye 800CW or IRDye 680CW (LI-
COR Biosciences, Lincoln, NE) were diluted to 1:5000 in TBS with 5% BSA. Bands were visualized using
Odyssey Infrared Imaging System (LI-COR Biosciences, Lincoln, NE). Optical density (OD) was quanti�ed
for each band using Image Studio Lite software and normalized with β-actin (mouse monoclonal,
1:10000, Sigma-Aldrich) that was used as an internal control.
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2.9. Statistical Analysis
Results, reported as means ± SEM, were analyzed by Graph Pad Prism 6.0 and normality was checked by
Shapiro–Wilk’s test (p < 0.05). In the acquisition phase of the MWM, over-all treatment effects were
examined by two-way repeated measures ANOVA (treatment x trial). Differences between trials within
groups were analyzed using a factorial ANOVA with replicates. Data in the retention phase and
neurochemical data were analyzed with Student’s t test. In all cases, the signi�cance level was set at p < 
0.05.

3. Results

3.1. Analysis of AAV transduction e�cacy
After demonstrating a successful JNK3 expression in vitro (Suppl Fig. 1), a dose of 1×1010 VG of AAV8-
JNK3-GFP vector (AAV-JNK3 group) or PBS (Sham group) was injected bilaterally into medial and lateral
EC by stereotactic injection in vivo. Mice did not display any adverse reaction or behavioral changes after
the intracranial surgery or during the subsequent period until sacri�ce. Three months after vector
injection, mice were euthanized and GFP expression was analyzed. GFP expression was detected in the
targeted area of all AAV-JNK3 treated mice, but no �uorescence was observed in the Sham group
(Fig. 1a). Neurons in the EC interact extensively with hippocampal neurons, a key brain area that features
pathological signs and abundant amyloid plaques in AD. Interestingly, we found that some hippocampal
areas of AAV-JNK3 treated mice, which seem to correspond with the molecular layer of the dentate gyrus,
expressed GFP (Fig. 1a). A closer analysis of these areas revealed that while somatic-like �uorescent
shapes are observed in the injection site at the EC (Fig. 1b, medial EC and lateral EC panels), however
�ber-like �uorescent shapes are observed in the Hp (Fig. 1b, Hp panel), which could indicate that the AAV
delivered into the EC reaches the Hp through EC axonal projections (Fig. 1b, EC-Hp panel).

To further verify the viral expression of GFP and JNK3 in the EC and Hp of the AAV-injected mice, qRT-
PCRs were performed three months after the injections and compared to similar qRT-PCRs conducted
with Sham-injected mice tissue. Our data showed a signi�cant increase of GFP not only in the EC but also
in Hp (Fig. 1c). In a similar way, JNK3 expression was markedly increased in the EC and the Hp in the AAV
injected group (Fig. 1d).

Western blot analysis of EC and Hp protein extracts obtained from Sham- or AAV-injected mice
euthanized three months after injection revealed that entorhinal AAV-JNK3 administration resulted in a
marked accumulation of JNK protein compared to Sham-injected animals not only in the injection site,
i.e. EC (Fig. 1e), but also in the Hp (Fig. 1f) and that this accumulation was still present after 3 months.

3.2. Behavioral consequences of JNK3 overexpression in
the EC
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The memory capacity of AAV-JNK3 treated mice was assessed using the NORT and the MWM paradigm,
three months after the AAV injection. Of note, no differences were observed in the locomotor activity
between groups, indicating that behavioral performance differences between Sham- and AAV-injected
mice are not due to locomotor activity alterations (Fig. 2a).

In the NORT, the percentage of time that mice invested exploring the new object against the old one
(discrimination index) was the parameter used to evaluate cognitive performance. As shown in Fig. 2b,
AAV-JNK3 mice displayed cognitive de�cits in the NORT, as indicated by a signi�cantly decreased
discrimination index, failing to distinguish between an old and a novel object one hour after exposure to
the old object.

The lack of differences observed among the groups in the escape latency during the visible platform
phase indicates that all the animals are able to perform the task (data not shown). Moreover, swimming
speed did not differ between groups (data not shown). As shown in Fig. 2c, no signi�cant differences
were observed among the groups during the invisible platform phase. The memory retention was
evaluated at the beginning of the fourth, seven and tenth day and no signi�cant differences were
observed in any of those probe trials, in parallel with the results obtained in the adquisition phase
(Fig. 2d).

3.3. Effect of JNK3 overexpression on gliosis and
neuroin�ammation
It has been described that chronic glial activation is a key factor contributing to cognitive impairment, and
that activation of JNK results in neuroin�ammation and subsequent neurodegeneration Thus, the impact
of JNK3 overexpression in glial reactivity and markers of neuroin�ammation were studied.

To address astrogliosis we focused on GFAP, a major intermediate �lament protein speci�c to astrocytes.
Our data showed a signi�cant increase in GFAP immunoreactivity in AAV-JNK3 treated mice compared to
Sham mice (Fig. 3a), not only in the injected area, i.e. the EC (Fig. 3a, medial EC and lateral EC panels),
but also in the projection site, i.e. the Hp (Fig. 3a, Hp panel). When protein levels were assessed by
immunoblotting, the same increase was observed in the EC (Fig. 3b), however the increase observed in
the Hp did not reach statistical signi�cance (Fig. 3c).

To address microgliosis, we focused on Iba1 for immunohistochemistry and CD11b for immunoblotting.
In parallel with GFAP, Iba1 immunoreativity was increased in EC (Fig. 4a, medial EC and lateral EC panels),
as well as the Hp (Fig. 4a, Hp panel). Again, when measured by immunoblotting, while a marked increase
was observed in the EC (Fig. 4b), the increase in the Hp was not signi�cant (Fig. 4c).

In order to address the implication of JNK3 in the release of in�ammatory mediators, pro-in�ammatory
cytokines (TNFα, IL-1β and IL-6) mRNA expression was measured in both EC and Hp. All the cytokines
studied showed a marked increase not only in EC but also in Hp (Fig. 5a, b and c), however, in the Hp only
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the increase in IL-6 expression reached statistical signi�cance (Fig. 5c), probably due to the high
variability of the data obtained in TNFα and IL-1β (Fig. 5a and b).

3.5. Effect of JNK3 overexpression on Tau pathology
JNK3 can be autophosphorylated and subsequently it can induce Tau hyperphosphorylation [35]. In the
present study, two different Tau conformations (ALZ50 and MC1) were analyzed, in an attempt to study
the role of JNK3 in Tau aberrant misfolding [42–47]. Moreover, tauopathy brains present truncated Tau
forms. Those truncated forms either at the N-terminus or at both the N- and C- termini have been
demonstrated to be able to adopt pathological conformations [48]. Speci�cally, in this study, the
truncated form analyzed was Asp421, which has been demonstrated to be very prone to aggregation [49,
50]. Furthermore, Asp41 truncation is usually preceded by Tau Ser422 phosphorylation [51], that has also
been analyzed in this work.

In the EC, AAV-JNK3 treated mice exhibited a strong increase on ALZ50 immunoreactivity (Fig. 6a), which
was further corroborated by an augmented signal in immunoblotting (Fig. 6b). The same result was
obtained for the other Tau conformational form, i.e. MC1 (Fig. 6c and d). In the same line, truncated
Asp421 (Fig. 6e and f) and the preceding Ser422 phosphorylation (Fig. 6g and h) also appeared to be
signi�cantly increased. Consistent with a post-transcriptional regulation of Tau, total protein levels,
normalized using actin, remained unaltered.

The same conformational changes were studied in the Hp and although a marked immunostaining
increase was observed in ALZ50 (Fig. 7a and b), MC1 (Fig. 7c and d) and Asp421 (Fig. 7e and f), only Tau
Ser422 reached signi�cant increased levels (Fig. 7g and h). Once again, consistent with a post-
transcriptional regulation of Tau, total Tau protein levels, normalized using actin, remained unaltered.

4. Discussion
A broad variety of illnesses involve the JNK family [52, 53]. Indeed, JNKs are thought to be a critical
mediator of neuronal response to stress, involving both neuronal survival and death under a variety of
conditions [54]. There are at least ten JNK isoforms expressed from three genes, exhibiting differences in
substrate and binding protein speci�city [6]. Knock-out animal models disclosed different gene product
features [16, 9], yet evidence for selective activation of endogenous JNKs is absent. Indeed, although
many studies in the literature have addressed the cognitive and molecular consequences of JNK3
ablation in AD, to our knowledge, currently there is no study that analyzes the consequences of JNK3
overexpression on cognitive performance. Thus, the main aim of the present study was to assess the
consequences of JNK overexpression, more speci�cally overexpression of the JNK3 isoform, i.e. the main
isoform in the brain.

This work focuses on the EC as it is considered to be one of the key sites for the development of
neurodegeneration. The EC is an essential area located in the medial temporal lobe, whose functions
include long-term-memory. Interestingly, EC projects to Hp and it receives inputs from other cortical areas.
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The EC is divided in two main areas: the medial EC (MEC) and the lateral EC (LEC). Both MEC and LEC
has shown to have different functional characteristics. The MEC super�cial layers comprise several
spatially modulated cell types, whereas the LEC's adjacent neurons exhibit only sparse spatial
modulation [55–57] and somatosensory information [58–61]. The spatial information coming from the
MEC together with the non-spatial information processed from the LEC are integrated in the EC [62–65].
EC is one of the earliest affected areas in neurodegenerative disorders such as AD, indicating the
essential participation of EC in cognition [66]. Although the reason behind this early EC impairment in AD
is still unknown, a speci�c vulnerability to aging and AD of the EC neurons is hypothesized [67], that
induces a signi�cant neuronal death in this area during the �rst stages of the disease [68]. Noteworthy,
amyloid protein and hyperphosphorylated Tau aggregation, i.e. the main AD histopathological
characteristics, appear �rst in the EC in mild AD and are not disseminated to other areas such as the Hp
until more advance stages of the disease [69]. Hence, it has been suggested that the neurodegeneration
that starts in EC neurons is transferred to the Hp, inducing the disruption of the cortical-hippocampal
network in AD patients. In light of these important �ndings, in this study it was decided to induce JNK3
overexpression in both MEC and LEC, in order to elucidate if increased levels of JNK3 could lead to a
cortical-hippocampal network dysfunction and ultimately to cognitive alterations. Furthermore, JNK3
overexpression was induced in wild type mice, in an attempt to mimic early stages of AD when amyloid
plaque or neuro�brillary tangle accumulations are still absent.

Our results showed that although viral infection was conducted in EC (MEC and LEC), JNK3
overexpression is also observed in the Hp, concluding that changes in the EC can lead directly to
downstream modi�cations in its main afferent areas, such as the Hp, leading to aberrant network activity
as it has been observed in mouse models and human AD patients [70, 71]. More importantly, we
demonstrated that JNK3 overexpression was associated with a behavioral impairment of associative
memory, assessed by the NORT. A signi�cant role in object recognition and novelty detection has already
been assigned to the EC [72]. In particular, information from EC can be acquired in the Hp through the
complex integration of spatial information coming from MEC with non-spatial input from the LEC [64, 65].
Speci�cally, a population of LEC cells have been identi�ed, some of them �ring at the objects and other
cells �ring at places where objects were located on previous trials [72]. In addition, LEC is needed to
recognize items encountered in a particular context [73] and the speci�c lesion of the LEC impairs the
capacity to discriminate either novel object-place or novel object-place-context associations [73].
Therefore, in light of our results, it seems that the induction of JNK3 overexpression in the EC affects the
integration of information in the Hp, leading to cognitive de�ciencies. On the contrary, no alterations were
observed in the MWM task after JNK3 overexpression. The MWM is a classical test to assess spatial and
thus hippocampus-dependent memory performance [74]. Therefore, our results suggest that the increase
of JNK3 obtained in the Hp is not strong enough to induce a spatial learning impairment, as it occurs in
early stages of AD. Probably, a higher JNK3 dissemination in the hippocampus is necessary to induce
de�cits in spatial learning

The proof that JNK accumulation is associated with in�ammatory pathway activation [75] raises the
main question of whether brain neuroin�ammation is involved in the early behavioral de�cits found in the
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present study after JNK3 overexpression induction. In�ammation is the �rst reaction from our body's
immune system to pathogens or irritation and it is a two-edged sword. It protects tissue against invading
agents under acute circumstances and encourages healing. On the other hand, it can cause severe
damage to the host's own tissue if it is chronically maintained. While the CNS is recognized as an
immune-privileged organ, there is growing evidence that in�ammation is directly involved in the
pathogenesis of a number of neurodegenerative diseases, including AD, multiple sclerosis (MS), and HIV-
associated dementia [76, 77, 78]. Chronic in�ammation-mediated tissue injury can be particularly
damaging to the brain, as neurons are usually irreplaceable. In particular, it has been extensively
demonstrated the involvement of astrocytes and microglia in the pathological process of AD. Indeed, it
has been observed in AD animal models and patients that the cognitive de�ciencies are accompanied by
chronic glial activation and pro-in�ammatory cytokine production [79]. Consequently, pathological
markers indicative of astrogliosis and microgliosis are correlated with cognitive disturbances in AD [80,
81, 82]. Increased levels of pro-in�ammatory cytokines are detected in early phases of clinical AD patients
and it is suggested that those cytokines contribute to the neurotoxicity observed in AD late stages [83, 84,
85, 86]. In agreement with those studies, our data demonstrated that overexpression of JNK3 induced all
the pathological markers observed in early-stages of AD brains, i.e., microgliosis, astrogliosis and pro-
in�ammatory cytokine (IL-1β, IL-6, TNFα) release that could contribute to the cognitive de�ciencies
observed in the JNK3-induced mice. Interestingly, although all those markers were strongly increased in
the EC (the injection area), neuroin�ammation was milder in the Hp. This could also explain the absence
of cognitive alterations in the MWM.

Apart of its central role in neuroin�ammation, JNK kinase can participate in AD pathology by its
implication in Tau phosphorylation and subsequent neuro�brillary tangles formation [87]. It has been
demonstrated by in vitro experiments that JNK3 isoform can be autophosphorylated and then, it can
contribute to Tau hyperphosphorylation [88]. Tau hyperphosphorylation induces its aberrant misfolding,
following by its dissociation from microtubules and aggregation in neuro�brillary tangles. In order to
study the implication of JNK3 on the conformation of Tau aberrant misfolding, two different
conformations were studied: ALZ50 and MC1. ALZ-50 has been detected in brain homogenates [89]
inside susceptible neurons [43, 89–92]. MC1 appeared to be a good marker for early aggregation of Tau
protein, before the appearance of neuro�brillary tangles [93–95]. Another modi�cation associated with
Tau deposition in AD is truncation [96, 97]. Several authors consider that Tau truncation in the C-terminus
precedes Tau assembly in paired helical �laments [49, 50, 96–99] and truncation has been associated
with early as well as late stages of AD pathology [100, 101, 102, 103]. Interestingly, Tau truncation is
frequently preceded by Tau Ser422 phosphorylation. In our hands, all the aberrant conformations studied
(ALZ50, MC1, truncated Asp421 Tau and Tau Ser422) appeared to be strongly increased after JNK3
overexpression, suggesting that Tau misfolding and subsequent microtubule disaggregation could be
also underlying the cognitive de�ciencies observed in AAV-JNK3 mice. Noteworthy, the fact that in the Hp
Tau misfolding assessment did not reach statistical signi�cance might ground the lack of cognitive
impairment in the MWM task.
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In summary, the data obtained in the present study indicate that activation of in�ammatory signals and
induction of Tau in vivo misfolding triggered by an enriched JNK3 environment is a signi�cant early event
during the progressive EC dysfunction. Therefore, JNK3 overexpression can lead to the triggering of
cognitive dysfunction resulting in the dissemination of neurodegeneration from EC to Hp and may be at
the origin of the changes observed in early stages of AD.
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Figure 1

Analysis of the transduction e�cacy of the AAV. a) Serial slices representative of GFP expression in
Sham and AAV-JNK3 injected mice. White boxes indicate key areas magni�ed in �gure 4B. b) GFP
expression in medial EC, lateral EC, Hp and the projections from EC to Hp. Scale bar: 100 μM. c) GFP
mRNA relative expression in EC (Student’s t test, t=3.552, **p<0.01; n=5) and Hp (Student’s t test, t=2.887,
*p<0.05; n=5). d) MAPK10 mRNA relative expression in the EC (Student’s t test, t=2,825, *p<0.05; n=5) and
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Hp (Student’s t test, t=3.670, *p<0.05; n=5). e) JNK protein presence in EC (Student’s t test, t=3.110,
*p<0.05; n=6). f) JNK protein presence in Hp (Student’s t test, t=2.315, *p<0.05; n=6). Results are shown
as mean ± SEM. In panels e and f �gures show optical density (O.D.) values percentage and an illustrative
image of the blotting. EC: entorhinal cortex; Hp: hippocampus; O.D.: optical density.

Figure 2

Behavioral consequences of JNK3 overexpression in the EC. a) Locomotor activity (n=14-15). b)
Cognitive performance in novel object recognition test (NORT). Data displays discrimination index (time
exploring the new object / total exploration time × 100) (Student’s t test, t=2.582, *p<0.05; n=14-15). c)
and d) cognitive performance assessed by Morris water maze (MWM) acquisition phase and retention
phase respectively (n=14-15). Data are showed as mean ± SEM. EC: entorhinal cortex.
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Figure 3

Effect of JNK3 overexpression on astrogliosis. a) GFAP expression in Sham and AAV-JNK3 injected mice
and magni�cation images of medial EC, lateral EC and Hp. Scale bar: 100 μM. b) GFAP protein levels in
the EC (Student’s t test, t=2.256, *p<0.05; n=6). c) GFAP protein levels in the Hp (Student’s t test, t=1.065,
p>0.05; n=6). Results are shown as mean ± SEM. In panels b and c �gures show density (O.D.) values
percentage and an illustrative image of the blotting. EC: entorhinal cortex; Hp: hippocampus; O.D.: optical
density.
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Figure 4

Effect of JNK3 overexpression on microgliosis. a) Iba1 expression in Sham and AAV-JNK3 injected mice
and magni�cation images of medial EC, lateral EC and Hp. Scale bar: 100 μM. b) CD11b protein levels in
the EC (Student’s t test, t=2.619, *p<0.05; n=6). c) CD11b protein levels in the Hp (Student’s t test, t=1.397,
p>0.05; n=6). Results are shown as mean ± SEM. In panels b and c �gures show optical density (O.D.)
values percentage and an illustrative image of the blotting. EC: entorhinal cortex; Hp: hippocampus; O.D.:
optical density.
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Figure 5

Effect of JNK3 overexpression on neuroin�ammation. a) TNFα mRNA relative expression in the EC
(Student’s t test, t=2.782, *p<0.05; n=5) and Hp (Student’s t test, t=1.703, p>0.05; n=5). b) IL1β mRNA
relative expression in the EC (Student’s t test, t=2.207, p=0.06; n=5) and Hp (Student’s t test, t=1.065,
p>0.05; n=5). c) IL6 mRNA relative expression in the EC (Student’s t test, t=3.445, *p<0.05; n=5) and Hp
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(Student’s t test, t=4.123, p>0.05; n=5). Results are shown as mean ± SEM and expressed as 2-ΔΔCt. EC:
entorhinal cortex; Hp: hippocampus; TNFα: tumor necrosis factor α; IL1β: interleukin 1β; IL6: interleukin 6.

Figure 6
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Effect of JNK3 overexpression on Tau in the EC. a) Tau ALZ50 expression in Sham and AAV-JNK3
injected (upper panels) mice and magni�cation images (lower panels) of EC. Scale bar: 200 μM. b) Tau
ALZ50 protein presence in EC (Student’s t test, t=2.459, *p<0.05; n=6). c) Tau MC1 expression in Sham
and AAV-JNK3 injected mice (upper panels) and magni�cation images (lower panels) of EC. Scale bar:
200 μM. d) Tau MC1 protein presence in EC (Student’s t test, t=2.458, *p<0.05; n=6). e) Asp421 truncated
Tau expression in Sham and AAV-JNK3 injected mice (upper panels) and magni�cation images (lower
panels) of EC. Scale bar: 200 μM. f) Asp421 truncated Tau protein presence in EC (Student’s t test,
t=2.694, *p<0.05; n=6). g) pTau Ser 422 expression in Sham and AAV-JNK3 injected mice (upper panels)
and magni�cation images (lower panels) of EC. Scale bar: 200 μM. h) pTau Ser 422 presence in EC
(Student’s t test, t=3.211, *p<0.05; n=6). Results are shown as mean ± SEM. In panels b and d �gures
show optical density (O.D.) values percentage and a illustrative image of the blotting. 
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Figure 7

Effect of JNK3 overexpression on Tau in the Hp. a) Tau ALZ50 expression in Sham and AAV-JNK3
injected (upper panels) mice and magni�cation images (lower panels) of Hp. Scale bar: 200 μM. b) Tau
ALZ50 protein presence in the Hp (Student’s t test, t=1.310, p>0.05; n=6). c) Tau MC1 expression in Sham
and AAV-JNK3 injected mice (upper panels) and magni�cation images (lower panels) of Hp. Scale bar:
200 μM. d) Tau MC1 protein presence in the Hp (Student’s t test, t=2.011, p=0.07; n=6). e) Asp421



Page 31/31

truncated Tau expression in Sham and AAV-JNK3 injected mice (upper panels) and magni�cation images
(lower panels) of Hp. Scale bar: 200 μM. f) Asp421 truncated Tau protein presence in the Hp (Student’s t
test, t=1.977, *p=0.07; n=6). g) pTau Ser 422 expression in Sham and AAV-JNK3 injected mice (upper
panels) and magni�cation images (lower panels) of Hp. Scale bar: 200 μM. h) pTau Ser 422 presence in
the Hp (Student’s t test, t=9.460, *p<0.05; n=6). Results are shown as mean ± SEM. In panels b, d and f
�gures show optical density (O.D.) values percentage and an illustrative image of the blotting. 
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