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Abstract 

Introduction:-Unmanaged land use and land cover change are major environmental 

issues that have a significant impact on the urbanization and agricultural development 

processes. The temperature of the land surface is rising as a result of this shift in land 

cover. The current study assesses the effect of changes in land use and land cover (LULC) 

on land surface temperature in Jimma and its surroundings. LULC, Normalized Difference 

Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and Land Surface 

Temperature (LST) were extracted from Landsat 5 TM (1987), Landsat 7 ETM+ (2003), 

and Landsat 8 OLI/TIRS (2019) using digital image processing techniques. Change 

detection techniques were used to analyze LULC changes from 1987 to 2019. This study 

also analyzes the effect of NDVI and NDBI on LST between 1987 and 2019 with 368 sample 

points selected by stratified random sampling and using a multiple linear regression model. 

Result:- The result showed that during the study period 1987-2019, agricultural land was 

the dominant land use which covered 54% of the study area. Settlement and agricultural 

land areas increased from 4.4% and 54.58% in 1987 to 12.27% and 62.40% in 2019 with 

the mean increase in land surface temperature from 20.53°C and 19.59°C to 33.60°C and 

25.82°C, respectively. Forest cover, shrub land, water body, and wetland show decreasing 

trend. Correlation results of LST and NDBI have shown a strong positive relationship i.e. 

R2 = 0.754 in 1987, 0.754 in 2003, and 0.739 in 2019, whereas strong negative correlations 

were found between LST and NDVI i.e. R2 = 0.701, 0.737, and 0.746 in each year. The 

relationship between NDVI & NDBI was also developed and is showing a strong negative 

correlation i.e. R2 = 0.739, 0.860, and 0.801.  

Conclusion:- Hence, it was recommended that to reduce the land surface temperature, 

sustainable land use planning strategies that include increasing the vegetated areas and 

embracing other green initiatives such as the afforestation program should be adopted. 

Keywords: Land Surface Temperature, LULC, NDVI, NDBI, Multiple linear regression 
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1. Introduction 

Due to human-induced activity, the earth's surface has been altered over thousands of years 

(Veldkamp & Lambin, 2001). High population pressure, migration, and rapid 

socioeconomic activity exacerbate these environmental changes (Zengin, et al., 2018). 

Changes at diverse spatial scales, from local to global, have been discovered (Mahmood et 

al., 2010). Agriculture and settlement expansion are two examples of large-scale human 

activities that are reducing the amount of vegetation on the earth's surface. As a result, 

carbon dioxide concentrations in the atmosphere are rising, influencing the surface energy 

budget and causing changes in local, regional, and global climate (Lilly R. & Devadas, 

2009). 

 In many urban areas, population growth causes rapid urban expansion, resulting in changes 

in land use and land cover (LULC) (Coskun et al., 2008). With rising population and rural-

urban mobility, urbanization has risen throughout time, especially in developing countries. 

Developing countries, particularly those in Africa and Asia, are increasingly responsible 

for this fast urbanization (UN-Habitat, 2010). Specifically, between 2010 and 2015, 

urbanization in Africa is expected to increase by 56%, with an annual increase of 1.1%. 

Similarly, Ethiopia is one of the African countries whose urban dwellers have increased 

from 19% in 2014 and expected to be 38% in 2050. According to a UN (2014) study, 

Ethiopia's urban growth rate between 2010 and 2015 was 2.3%. 

According to Sahoo (2013), increasing urbanization caused plenty of eco-environmental 

problems, such as a shift in land use and the rise of land surface temperature (LST). Urban 

growth combined with inappropriate land management methods has a significant influence 

on a city's local climate. The amount of solar radiation absorbed, evaporation rates, surface 

thermal storage, and wind turbulence are all affected by rapid land cover changes 

(Polydoros, et al., 2018). Human exploitation of the natural environment via urban growth 

and expansion has a significant influence on the urban microclimate on a local and global 

scale. The increase in land surface temperature is one of the most significant effects of this 

extraction (Igun & Williams, 2018).  

Changes in LULC have a significant impact on urban surface energy budgets (Alshaikh, 

2015). It also resulted in a change in urban form and microclimate (Alqurashi & Kumar, 
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2013). The surface temperature has risen due to the transition of LULC classes to non-

evaporating surfaces (Sahana et al., 2016). 

The need to thoroughly analyze the influence of LULC changes on the overall increase in 

the LST is becoming more important. Because various LULC surfaces or types emit and 

absorb energy radiation in different ways, they have been studied in order to determine 

LST (Pongratz, et al., 2010). Estimating the cross-sectional relationship between LST and 

LULC types has also assisted researchers in investigating the impact of changing land 

cover on LST throughout time  (Liu & Zhang, 2011). Several studies in cities have been 

undertaken to investigate the variability of the LST as a result of altering urban land cover 

types. Hu and Jia (2010) discovered that a decadal reduction in vegetation caused by 

changes in urban land cover in Guangzhou, southern China, resulted in an overall rise of 

2.48 °C in LST between 1990 and 2007. A comparative study of Mumbai and Delhi 

revealed that the intensity of the UHI was greater in Mumbai than in Delhi due to changes 

in plant cover caused by urban development (Grover & Singh, 2015). The normalized 

difference vegetation index (NDVI) and the land surface temperature (LULC) were used 

to examine the land surface temperature in Bahir Dar. It has been found that converting 

LULC to urban landscaping increased LST. As a result, the maximum temperature in 1987 

was 34.93 °C, while it reached 43.01 °C in 2017. This is an 8.08°C increase in LST (Balew, 

2018). (Amiri et al., 2009) discovered that surface temperature values change when 

travelling from a densely vegetated to a sparsely vegetated location. In most urban areas, 

tree cover or vegetation has been found to be inversely associated to LST (Raynolds et al., 

2008; Weng & Lu, 2008; Weng et al., 2004). However, vegetation has long been believed 

to play an essential role in mitigating the effects of urban heating in urban contexts (Zhibin 

et al., 2015; Chen et al., 2013; Onishi et al., 2010; Ali-Toudert & Mayer, 2007). But, 

accurately identifying hotspot regions inside current metropolitan areas, as well as 

incorporating green spaces into existing built-up areas, has proven difficult (Rotem-

Mindali et al., 2015). 

As a result, tracking the trajectory of LULC change and its dynamism is critical in order to 

maintain global climate change (Aadil et al., 2014). As a result, landscape analysis is a 

useful tool for tracking various LULC patterns and their variations (Arvor et al., 2014). 
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Analyzing the effects of LULC changes on the Earth's surface, such as changes in and 

distributions of land surface temperature (LST), is also critical. Therefore, the main 

purpose of the study was to use geospatial technologies to assess the impact of changing 

forest cover on land surface temperature in Jimma and its surroundings between 1987 and 

2019. Specific objectives of this study are: (1) To analyze the relationship between LST 

and land use and land cover change; (2) To examine the temporal and spatial change in 

LST as a function of LULC changes; and (3) To examine the effects of LULC changes on 

the research area's land surface temperature. This study was hypothesis that whether (1) 

there is no association between forest cover change and land surface temperature or there 

is an association between forest cover change and land surface temperature. (2) NDVI and 

NDBI variables have no significant effect on land surface temperature or NDVI and NDBI 

variables have a significant effect on land surface temperature in the study area. 

2. Materials and Methods 

2.1. Description of the study area 

2.1.1. Location 

The study area includes Jimma city and its surroundings, which is one of the oldest and 

historic cities in Ethiopia. It is found in in Jimma zone of Oromia National regional state, 

(Figure 1) and located 346 km to the Southwest of the Ethiopian capital, Addis Ababa. The 

geographical location of the study area extends from 7º 38' 0"N to 7º 46' 0"N latitude and 

36º 42' 0"E to 36º 54' 0"E longitude. The study area has a total area of 24,915.13 ha, from 

which the terrestrial part was about 14,281.13 ha and 10,634 ha is the area of Jimma city.  
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Figure 1: Locational Map of the Study area 

Jimma city and its surroundings are located between a low point of 1676 meters above sea 

level in the south and a high point of 2581 meters above sea level in the west and east. The 

mean annual rainfall of the study area from 1987 to 2019 ranges from 913.3 mm to 2935.58 

mm, according to thirty-two years of rainfall data obtained by the western Oromia region 

meteorological center (WORMC). During the 32-year study period, the mean annual 

rainfall varied from year to year, owing mostly to changes in climate and weather 

parameters. Despite the fact that Jimma and its surrounds receive virtually all of its 

precipitation year round, the highest annual rainfall recorded was in 1996, while the lowest 

annual rainfall record was in 2018. Agro climatically, the area is mainly woina dega type, 

accounting for around 47% of the entire area, while 35%, 35%, and 18% are in dega and 

kola zones, respectively (WORMC, 2019). The mean annual temperature of the study area 

is between 12oC and 29oC with a mean daily temperature of 19.5oC. The maximum mean 

annual temperature of 26.26oC in the study area was recorded in 2003 and the minimum 

mean annual temperature of 13.7oC was recorded in 2007 (WORMC, 2019). 
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The Jimma city and its surrounds contain six primary soil classifications, according to FAO 

(2006) categorization. They are dystric nitisols (56.9%), eutricfluvisols (26.8%), dystric 

fluvisols (10.3%), chromic vertisols (3.6%), orthicacrisols (1.3%), and eutricnitisols 

(1.3%). (1.1%). At higher elevations, the soils are often reddish-brown and shallow, but at 

lower elevations, they tend to be gray and deep. 

2.2. Design of the study 

For the study, the causal research design was used since it attempted to reveal a cause-and-

effect relationship between two variables. The LULC of the study area change matrixes 

was done quantitatively, followed by the LST of the study area generated from the Landsat 

image, and lastly the two findings were combined for relationship analysis. 

The flow chart depicts the technique that was used in this study (Figure 2). It demonstrates 

the processes taken to extract the required information, beginning with the acquisition and 

classification of a multi-temporal satellite image of the study area. The initial stage was to 

analyze LULC information from Landsat 5, 7, and 8. LST estimate from Landsat imagery 

for the second step. Finally, correlation statistics for NDVI, NDBI, and LST were 

computed. Relationship analysis was performed for LULC and NDVI, as well as LULC 

and LST. 
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Figure 2: Methodological flow chart. 

2.3. Data source and type 

The study used both primary and secondary data sources to get the intended result. 

I. Primary data: Unstructured key informant interviews and a field survey were 

used in the study. With the objective of establishing the underlying source of 

forest cover change and its influence on urban temperature, unstructured key 

informant interviews were conducted with nine elders from each sampled 

village. Field surveys were done using a Global Positioning System (GPS 

Garmin 72) to generate primary data for defining the research area's existing 

land-use type. The Google Earth map was used as a base map for image 

classification. It was also used to extract reference points for inaccessible 

locations as well as for the 1987 and 2003 images. 
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II. Secondary data: Different secondary data were used in the study to identify 

the land-use type, NDVI, NDBI, and analyze the land surface temperature of 

Jimma city and its surroundings. For this study, geospatial data and literature 

survey data from various sources were used. Digital geospatial datasets in raster 

forms collected from various sources for the preparation of factor maps, 

including: - The study area's Landsat images from 1987, 2003, and 2019 were 

used to analyze LULC change, NDVI, NDBI, and LST distribution. 

During the study periods, meteorological data such as temperature and rainfall 

were used to describe the climate of the study area. 

Many data for literature reviews were collected from the internet, while others were 

collected from books and reports, and all literature was categorized according to the 

research topic. 

2.4.Meteorology Data 

The Western Oromia region Meteorology Center provided meteorological data like as 

temperature and rainfall. The climate of the study area throughout the study periods was 

described using temperature and rainfall data. 

2.5.Materials and tools 

Arc GIS 10.4.1 software was used for image digitization, split and merge polygons, zonal 

statistics, reclassification, LST mapping, and mapping NDVI and NDBI. ERDAS 

IMAGINE 2015 software was used to process multi-temporal satellite images, which 

included image correction, enhancement, and processing (classification for LULC 

mapping and change calculation, LST calculation, and NDVI and NDBI generation). SPSS 

software was used to generate correlation statistics for LST, NDVI, and NDBI. 

2.6.Methods of data collection 

2.6.1. Remote sensing data 

The three sets of remotely sensed data used for this study include: Landsat thematic mapper 

(TM), Enhanced thematic mapper (ETM+) and Landsat operational land imager (OLI), and 

Thermal infrared sensor (TIRS) images (with path/row 169/55) acquired during the month 

January 1987, February 2003, and January 2019 were used, because, these months were 

relatively free from cloud and haze. Due to the problem of poor resolution of MSS sensor 
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and data availability, the study period covered only from the year 1987 to 2019. Thus, the 

years 1987, 2003, and 2019 were selected for analysis with 16 years intervals. Detailed 

descriptions of Landsat datasets that were used for Landsat image sharpening, analyzing 

of LULC change, NDVI, NDBI, and LST distribution of Jimma city and its surroundings 

are given in Table 1. 

Table 1: Description of data and their sources 

Satellite  Sensors  Path & 

row 

 Resolution 

(m) 

Acquisitions 

date 

Source of 

data 

Landsat TM 169-055 30 01/31/1987 USGS 

 ETM+ 169-055 30 02/20/2003 “ 

 OLI 169-055 30 01/23/2019 “ 

Thermal Infrared 

(band 10) 

TIRS 169-055 100 01/23/2019 “ 

Thermal Infrared 

(band 11) 

TIRS 169-055 100 01/23/2019 “ 

DEM   12.5 (m) 2019  ASF 

2.6.2. Ground Truth Data 

In the study area, a stratified random sample technique was employed to perform a ground 

truth activity in which various LULC classes were validated. Agriculture, forest cover, 

settlement, shrub land, wetland, and water body were evaluated in the observed LULC 

from largest to smallest. The map legends were generated using these LULC classes, and 

the training data set for image classification was obtained using GPS. Furthermore, 

accuracy was measured using ground truth data. During these ground-truth activities, 

photos of areas of interest and coordinates from sampling LULC classes were collected. 

2.7.Methods of data analysis 

2.7.1. Digital image preprocessing   

Landsat images were obtained from the USGS database for 1987, 2003, and 2019 using 

the Thematic Mapper (TM), Enhanced Thematic Mapper (ETM+), operational land imager 

(OLI), and thermal infrared sensor (TIRS). Each image was geometrically and 

radiometrically adjusted as in  (Orimoloye, et al., 2018). For the purpose of LULC 

classification image analysis, the spectral bands were layer stacked to produce a composite 
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image of the study area for each year (1987, 2003, and 2019). Thermal band 6 for Landsat 

5 TM, ETM+, and bands 10 & 11 for Landsat 8 TIRS were used to calculate LST from all 

time periods. Thermal bands originally had pixel sizes of 120 m for TM and 100 m for 

TIRS images, which were resampled to 30 m using the nearest-neighbor algorithm to match 

the pixel size of other spectral bands. A land cover classification was necessary for the 

detection of LULC changes as a result of fast urbanization from 1987 to 2019 in order to 

examine the effects of human activities in the study area. Following the selection of training 

areas, the Landsat images were classified using bands 2 (green), 3 (red), and 4 (near-

infrared) via supervised classification using the maximum-likelihood algorithm . Visual 

image interpretation was performed using field knowledge and Google Earth images of the 

study area. The error matrix of the three LULC maps were generated to evaluate the 

classification result's accuracy. The projection transformation was performed and assigned 

to the WGS 1984 UTM Zone 37 N projection to make the data compatible with each other. 

2.7.2. Image classification  

Image classification is the task of extracting information classes from a multiband (multi-

spectral) raster image or extracting information based on the reflectance of an object, and 

it serves particular purposes, such as converting image data into thematic data (Gao, 2009; 

Richards & Jia, 2006). The information class can be grouped into a thematic layer of LULC 

in the image that have similar LULC. Despite the availability of automatic image 

classification techniques, a human or visual image interpretation approach was employed. 

This is due to a pixel mixing issue, particularly in low-resolution imageries like Landsat, 

which has significantly affected the study's LULC classification accuracy. 

To obtain the LULC of the study area, ERDAS imagine used a supervised classification 

method. The maximum likelihood algorithm was used for supervised classification among 

different classification techniques by taking the ground control points for six major LULC 

class categories. 

2.7.3. Accuracy assessment 

The comparison of image interpretation by a computer using ground truth data is known 

as accuracy assessment (Gao, 2009; Richards & Jia, 2006).  The training sites utilized in 

this comparison for accuracy evaluation were selected using a stratified random sampling 

method. Stratified sampling classifies groups based on the similarity of spectral features. 
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To ensure that minor but important land covers are included in the sample, stratified 

random sampling is required. Stratified random sampling is required to ensure that minor 

but important land covers are included in the sample (Russell, et al., 2019). Each LULC 

category has its own stratum. A sample of LULC classification was obtained by clustering 

many training pixels in the feature space. As specified by the operator, the clusters should 

constitute a representative data set for a specific class. The number of sample plots 

(clusters, with one cluster having a sample size of 30 n, where n is the number of bands) 

(Wim, et al., 2004). Although some adjustments were made during the fieldwork to account 

for physical obstacles and other variables, the number of samples was calculated based on 

the area percentage. The sample unit had a radius of 20 meters and was part of a cluster of 

six sample units, including the center, 200 meters apart. For the 1987, 2003, and 2019 

LULC classifications, 210 points were randomly collected from the study area, which is 

30 times the number of bands (7). 

Overall accuracy was used to calculate a measure of accuracy for the entire image across 

all classes present in the classified image (Eq. 1). The collective accuracy of a map for all 

the classes can be described using overall accuracy, which calculates the proportion of 

pixels correctly classified. 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = Sum of the diagonal elementsTotal number of accuracy sites pixels (column total)          Eq.1 

Congalton (1991) presented the Kappa coefficient (K) as an additional assessment that may 

be used in this study in addition to overall accuracy. The K technique is computed by 

increasing the total number of pixels in all the ground verification classes (N) with the sum 

of the confusion matrix diagonals (Xii) and subtracting the sum of the ground verification 

pixels during the class time. The sum of the classified pixels in that class is summed up 

over all classes (ΣXiΣ XI), where ΣXi is the row total and ΣXI is the column total, and 

divided by the total number of pixels squared minus the sum of the ground verification 

pixels in that class times the sum of the classified pixels in that class summed over the 

classes.  

            𝑘 = N ∑ 𝑥𝑖𝑖−∑ (𝑥𝑖∗𝑥𝐼)𝑘𝑖−1𝑘𝑖=1𝑁2−∑ (𝑥𝑖∗𝑥𝐼)𝑘𝑖−1                                                                                      Eq.2 
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𝑘 = (𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑚 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡)−𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑙𝑙 (𝑟𝑜𝑤 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑙𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙)Total squared−Sum of the all (row total column total)                       Eq.3 

In general, the Kappa Coefficient is generated from a statistical test to evaluate the accuracy 

of classification. Kappa essentially evaluates how well the classification performed as 

compared to just randomly assigning values, i.e. did the classification do better than 

random. The Kappa Coefficient can range from -1 to 1. A value of 0 indicated that the 

classification is no better than a random classification. A negative number indicates the 

classification is significantly worse than random. A value close to 1 indicates that the 

classification is significantly better than random. 

2.7.4. Land use land cover thematic layer 

After classification accuracy was conducted, final LULC were identified and mapped for 

the three study periods (that is, 1987, 2003, and 2019). So, Jimma city and its surroundings 

have the following LULC classes. 

Table 2: LULC classes and description of the study area 

No. LULC 

Classes 

Description 

1 Agricultural 

land 

Areas of land plowed/prepared for growing rain-fed crops. It also 

includes land with scattered or patches of trees and it is used for 

grazing and browsing of domestic animals and Areas of land prepared 

for growing crops. 

2 Forest 

Cover 

It represents both natural and fragmented plantation forest areas that 

are stocked with trees capable of producing timber or other wood 

products 

3 Settlement The area occupied by house buildings includes road network 

residential, commercial and industrial, transportation, roads, and 

mixed urban and other facilities. 

4 Shrubland land supporting an assemblage of small trees and shrubs 

5 Wetland A land area that is saturated with water 

6 Waterbody Areas covered by natural and manmade small dams, like pond and 

river 
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2.7.5. Change detection  

A change detection analysis was carried to assess the rate of increase or decrease in the 

LST over smaller areas. A statistical approach was used to carry a correlation and 

regression study to show the relationship between the LST and the various land cover types. 

This was done by calculating the percentage proportion of land cover categories and their 

mean LST in 1987, 2003, and 2019, respectively. Vegetated and non-vegetated areas were 

classified into percentage proportions of land cover types. This is due to the fact that 

classifying land cover types into vegetated and non-vegetated areas aids in estimating the 

relationship between the LST and the various land cover types. To analyze how the total 

area of LULC changed from 1987 to 2019, the initial and final LULC area coverage were 

computed following Garai & Narayana (2018) as indicated in Eq.4.  𝑅𝑎𝑡𝑒 𝑜𝑓 𝐿𝑈𝐿𝐶 𝑐ℎ𝑎𝑛𝑔𝑒 = (𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝐿𝑈𝐿𝐶 𝑎𝑟𝑒𝑎−𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐿𝑈𝐿𝐶 𝑎𝑟𝑒𝑎 )𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐿𝑈𝐿𝐶 𝑎𝑟𝑒𝑎 𝑥100                     Eq.4 

2.7.6. Multispectral radiometric correction  

Radiometric correction necessitates the conversion of a remote sensing digital number to 

spectral radiance values and data for comparison. Image processing techniques used to 

correct errors, such as converting digital number (DN) values to spectral radiance and 

subsequently reflectance, were categorized as radiometric corrections (Prata & Caselles, 

1995). To convert a digital number to a spectral radiance, equation (5) was utilized in 

ERDAS IMAGINE using the USGS formula (2019). 𝐿λ = 𝑀λ ∗ 𝑄cal + 𝐴𝐿                                                                                                        Eq.5 

Where; Lλ = Spectral radiance (W/ (m2 * sr * μm)); 𝑀λ= Radiance multiplicative scaling 

factor for the band (RADIANCE_MULT_BAND_N from the metadata); AL = Radiance 

additive scaling factor for the band (RADIANCE_ADD_BAND_N from the metadata); 

Qcal = Level 1 pixel value in DN. 

2.7.7. Thermal atmospheric correction 

In radiometric calibration, pixel values, which were represented by Q in remote sensing 

raw data and unprocessed image data, were changed into absolute radiance values. Hence, 

the spectral radiance of TM, ETM+, and OLI images was converted into radiance using the 

equation (NASA, 2000). 
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Lλ = ( LMAXλ − LMINλ𝑄𝐶𝐴𝐿𝑀𝐴𝑋 − 𝑄𝐶𝐴𝐿𝑀𝐼𝑁) (𝑄𝐶𝐴𝐿 −  𝑄𝐶𝐴𝐿𝑀𝐼𝑁) + 𝐿𝑀𝐼𝑁𝜆                                    Eq.6 

Where:   Lλ = Spectral radiance received by the sensor (W/ (m2 * sr * μm))                                                         

QCAL = the quantized calibrated pixel value in DN                                                                𝐿𝑀𝐼𝑁λ = the spectral radiance that is scaled to QCALMIN (W/ (m2 * sr * μm))                 𝐿𝑀𝐴𝑋λ = the spectral radiance that is scaled to QCALMAX (W/ (m2 * sr * μm))               

QCALMIN = the minimum quantized calibrated pixel value (corresponding to                                  𝐿𝑀𝐼𝑁λ in DN which is 1                                                                                                        

QCALMAX = the maximum quantized calibrated pixel value (corresponding to                       𝐿𝑀𝐴𝑋λ in DN which is 255  

2.7.8. Conversion of radiance into brightness temperature 

After spectral radiance was converted to radiance, the raw digital numbers of the thermal 

bands are converted to at-satellite brightness temperatures, which were the effective 

temperature viewed by the satellite under an assumption of uniform emissivity (Rajeshwari 

& Mani, 2014).  BT = K2ln (𝐾1𝐿𝜆+1)                                                                                                  Eq.7 

Where; BT = effective at-sensor brightness temperature in Kelvin                                                    𝐾1 = calibration constant 1 (W/ (m2 * sr * μm))                                                                                               𝐾2 = calibration constant 2 (W/ (m2 * sr * μm))                                                                                                                                            𝐿λ = spectral radiance at the sensor's aperture (W/ (m2 * sr * μm))                                                             

ln = natural logarithm 

The temperature values estimated using Eq.9 were converted from Kelvin (K) to Celsius 

(oC) (a standard unit of measuring temperature) by subtracting 273.15. 
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Table 3: Thermal constants of Landsat images 

Satellite sensors Categories Band 6 Band 10 Band 11 

Landsat 5  TM K1  607.76   

  K2  1260.56   

Landsat 7 ETM+ K1  666.09   

  K2  1282.71   

Landsat 8 OLI/TIRS K1   774.8853 480.8883 

  K2   1321.0789 1201.1442 

2.7.9. Normalized difference vegetation index   

Eq. 7 was used to calculate the Normalized Difference Vegetation Indices for the study 

area for 1987, 2003, and 2019. In the near-infrared part of the spectrum, vegetated areas 

reflect better (Roberts, et al., 2015). The normalized difference vegetation index is also 

used to predict general vegetation conditions and calculate the LST. The red band (high 

absorption of radiation or low reflection) and the infrared band (low absorption of radiation 

or high reflection) were used to calculate the NDVI. Green leaves have a reflectance of 

20% or less in the 0.5 to 0.7-micrometer range and about 60% in the 0.7 to 1.3 range 

(Farooq, et al., 2013). Therefore, NDVI values represent ratios ranging in value from −1.0 

to 1.0. Accordingly, NDVI can be computed as  𝑁𝐷𝑉𝐼 = NIR−RED𝑁𝐼𝑅+𝑅𝐸𝐷                                                                                         Eq.8 

NDVI=Normalized Difference Vegetation Index  

 NIR= near-infrared band 4, RED= is the red band 3. The equation was used to calculate 

NDVI for the sensor TM, ETM+, and OLI. But in the case of Landsat 8, NIR is band 5 and 

the red band is a band 4 (Weng, et al., 2004). 

2.7.10. Normalized difference built-up index 

NDBI stands for Normalized Difference Built-up Index, In comparison to the other LULC 

surfaces, built-up lands have higher reflectance in the MIR wavelength range (1.55~ 

1.75μm) than in the NIR wavelength range (0.76~ 0.90μm) (John & David, 1999). NDBI 

is very useful for mapping the urban built-up areas and has been computed using the 

equation (8) expressed as follows; 𝑁𝐷𝐵𝐼 = 𝑀𝐼𝑅−𝑁𝐼𝑅𝑀𝐼𝑅+𝑁𝐼𝑅                                                                                          Eq. 9 
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Where NIR is near-infrared reflectance 

MIR is middle infrared reflectance  

NDBI values range from -1 to 1. The greater the NDBI is, the higher the proportion of 

built-up land is, and the larger areas of construction land have. 

2.7.11. Land surface emissivity 

To estimate LST the land surface emissivity (LSE (𝜀)) must be known because LSE is a 

proportional factor that scales blackbody radiance (Planck’s law) to predict emitted 

radiance. In satellite images, pixels representing the land surface are usually mixed pixels, 

that is, they are a combination of surfaces-types such as water, vegetation, and soil. 

Therefore, the effective emissivity of a pixel can be calculated by summing up the 

contributions from those surface types because the emissivity value change from surface 

to surface. Though to estimate the emissivity from satellite thermal band data quite a lot of 

methods have been suggested, the NDVI threshold method was used in this study. Land 

surface emissivity was calculated via the following formula. 

ℇ=ℇF+ℇ𝑠 (1−F) + (1−ℇ𝑠) (1−ℇ𝑣) Fℇ𝑣                                                                        Eq. 10 

Where ℇ and ℇ𝑠 are the vegetation and soil emissivity, respectively, F = 0.55 shape factor 

considering different geometrical distributions, the fractional vegetation, F, was 

determined using the following equation (Meijun et al., 2015). F = ( NDVI−NDVIminNDVImax−NDVI𝑚𝑖𝑛)2
                                                                              Eq.11    

2.7.12. Statistical Analysis 

To determine the correlations for each pixel, Pearson’s correlation coefficients were 

calculated between the LST and the corresponding LULC indices values.  Randomly, 368 

points have been extracted from the image through ArcGIS software, finding the 

corresponding values of LST, NDVI, and NDBI for each year to estimate the relationship 

between them. The values were statistically analyzed for the creation of a model using 

multiple linear regression with the help of Statistical Package for the Social Sciences 

(SPSS) version 20. 

Y= β0+β1X1 +β2X2 +β3X3 +………+βnXn                                                          Eq. (12) 

Where: Y= the dependent variable (LST) 

β0 =Constant term of the model without the independent variables; 
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β1, β2...β10 = The Estimated influences of the specified independent variables;  

Χ1, Χ2, to X10 = Independent variables which would be the predictor of the dependent 

variable 

ANOVA and t-test were also applied to assess statistical significance between LST, NDVI, 

and NDBI. The relationship between land surface temperature and NDVI and NDBI can 

be determined by passing a multiple linear regression test. In the multiple linear regression 

test, the land surface temperature is taken as a dependent variable, while NDVI and NDBI 

are taken as independent variables for predicting the land surface temperature. 

3. Results and Discussions 

3.1. Results  

3.1.1. LULC classes in 1987 

The spatial extent of the 1987 LULC map after the Supervised Classification yielded land 

cover classes (Figures 3 and Table 4 ) with the high-density agriculture occupying the 

highest percentage of the area (13597.6 ha, 54.58%). The next LULC class with the highest 

area coverage was the forest (5087.52 ha, 20.42%) which was scattered around the North, 

South-West, South-East, and Western parts of the study area with very small patches in the 

southern part. Shrub land (3714.69 ha, 14.91%) was the next highest LULC class in the 

study area. Wetland comes next with (1389.65 ha, 5.58%) which was located around the 

south and South-Western part of Jimma city. This is followed by the settlement (1096.87 

ha, 4.40%) located mainly around the center of the study area and water body (28.8 ha, 

0.12%) was last and the least area coverage and concentrated in the eastern part of Jimma 

city. 
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Figure 3: LULC map of the study area in 1987 

Source: 1987 satellite image interpretation 

Table 4:  LULC classes and their area coverage in the three periods. 

Where: FC= Forest cover, SET= Settlement, SH= Shrub land, AG= Agriculture, WB= 

Water body and WE= Wetland. 

LULC classes 1987 
 

2003 
 

2019 
 

 
 ha   %  ha   %  ha   % 

FC 5087.52 20.42 3293.54 13.22 3858.23 15.49 

SET 1096.87 4.40 1881.04 7.55 3057.09 12.27 

SH 3714.69 14.91 2615.4 10.50 1624.88 6.52 

AG 13597.6 54.58 15836.1 63.56 15546.44 62.40 

WB 28.8 0.12 16.56 0.07 0 0.00 

WE 1389.65 5.58 1272.49 5.11 828.49 3.33 

Total  24915.13 
 

24915.13 
 

24915.13 
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3.1.2. LULC classes in 2003 

The Supervised classification procedures applied to the 2003 Landsat ETM+ image yielded 

a land cover map with the high-density agriculture occupying the largest area coverage of 

(15836.1ha, 63.56%) as compared to other LULC classes (Figures 4 and Table 4). Forest 

covers an area of (3293.54ha, 13.22%) and is scattered around the North, South-West, 

South-East, and Western parts of the study area. Shrub land (3714.69 ha, 14.91%) was the 

third-highest LULC class in the study area. The settlement occupies an area of (1881.04ha, 

7.55%) and is mainly concentrated at the center parts of the map. Wetland comes next with 

(1272.49ha, 5.11%) which was located around the southern part of Jimma city. Water body 

having (16.56ha, 0.07%) was the least area coverage and mainly concentrated in the eastern 

part of Jimma city.  

 

Figure 4: LULC map of the study area in 2003 

Source: 2003 satellite image interpretation 
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3.1.3. LULC classes in 2019 

The 2019 Landsat OLI/TIRS after classification procedures yielded a Land cover map with 

the high-density agriculture occupying an area of (15546.44ha, 62.40%). Forest covers an 

area of (3858.23ha, 15.49%) and mainly around the North, South-West, South-East, and 

Western parts of the study area with very small patches in the southern part. The settlement 

occupies an area of (3057.09ha, 12.27%). This was concentrated at the center of the map 

and small patches at the entire map. As (Figures 5 and Table 4) shows that shrub land, 

wetland, and water body have a dramatic decline and they account (1624.88ha, 6.52%), 

(828.49ha, 3.33%), and (0ha, 0.00%) respectively.  

Figure 5: LULC map of the study area in 2019 

Source: 2019 satellite image interpretation 
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3.1.4. LULC change between 1987 to 2003 

The analysis of LULCC revealed that the agricultural land was 13597.6 ha (54.58%) of the 

study area in 1987 was increased to 15836.1ha (63.56%) in 2003 (Table 5). The net change 

in agricultural land was (14.14%, a positive rate of change). The settlement land was 

experienced the most positive change 41.69%, while water body experienced the most 

negative change (-73.91%). In contrary to settlement and agricultural land areas, forest 

cover, shrub land, and wetland areas were experienced negative change with (-54.47%),     

(-42.03), and (-9.21%) respectively (Figure 10). 

Table 5: Extent of LULC change in 1987 and 2003 years. 

LULC classes 1987 
 

2003   Net-Change  

1987-2003 (%) 
 

 ha   %  ha  % 

FC 5087.52 20.42 3293.54 13.22 -54.47 

SET 1096.87 4.40 1881.04 7.55 41.69 

SH 3714.69 14.91 2615.4 10.50 -42.03 

AG 13597.6 54.58 15836.1 63.56 14.14 

WB 28.8 0.12 16.56 0.07 -73.91 

WE 1389.65 5.58 1272.49 5.11 -9.21 

Total  24915.13 
 

24915.13   

Where: FC= Forest cover, SET= Settlement, SH= Shrub land, AG= Agriculture, WB= 

Water body and WE= Wetland. 

3.1.5. LULC change between 2003 to 2019 

When analyzing the 2003 LULC classification with the 2019 LULC classification, the 

forest cover class shows increasing in the study area from 2003 to 2019 (Table 6). The 

increment of forest LULC was a direct reflection of the government policy of the 

millennium afforestation program to enhance the forest coverage of the country. The 

settlement land cover class shows a remarkable increase between 2003 and 2019, which 

has been increased in size from 1881.04 ha in 2003 to 3057.09 ha in 2019 with a net change 

(38.47%, positive rate of change), while the water bodies were experiencing an extremely 

decreased from 16.65 ha in 2003 to 0 ha in 2019. The increment of settlement area over 
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the study period was associated with rapid population growth, migration of people from a 

neighboring city, and unable to compete for the land lease price. These results are 

consistent with (Mosammam et al., 2017) who reported that the rapid urban population is 

a key challenge of the twenty-first century. Two land cover classes namely settlement and 

agricultural land show an increasing trend throughout the study periods (Table 6). 

Table 6: Extent of LULC change in 2003 and 2019 years. 

LULC classes 2003 
 

2019   Net-Change  

2003-2019 (%) 
 

 ha   %  ha  % 

FC 3293.54 13.22 3858.23 15.49 14.64 

SET 1881.04 7.55 3057.09 12.27 38.47 

SH 2615.4 10.50 1624.88 6.52 -60.96 

AG 15836.1 63.56 15546.44 62.40 -1.86 

WB 16.56 0.07 0 0.00 0.00 

WE 1272.49 5.11 828.49 3.33 -53.59 

Total  24915.13 
 

24915.13   

Where: FC= Forest cover, SET= Settlement, SH= Shrub land, AG= Agriculture, WB= 

Water body and WE= Wetland. 

3.1.6. LULC change between 1987 to 2019 

Generally, the trend analysis of the study area reveals a change in the LULC types over the 

three study periods (Table 7). The settlement experienced the most positive change 

64.12%, while shrub land experienced the most negative change (-128.61%) during the 

years 1987 to 2019. The settlement land increased from 1987 to 2019 covering an area of 

1096.87ha (4.40%) in the year 1987 and 1881.04 ha (7.55%) in the year 2003 and 16 years 

later this land cover class increased to 3057.09 ha (12.27%) in the year 2019. The study 

conducted by (Dube, 2013 ) also found comparable results with increased settlement areas 

due to rapid, unstructured, and unplanned development. The increasing trends are also 

observed in agricultural land. However, the shrub land and forest cover that occupies over 

3714.69 ha (14.91%) and 5087.52 ha (20.426%) in 1987 respectively, decreased to 1624.88 

ha (6.52%) and 3858.23 ha (15.49%) in 2019 respectively.  

Table 7: Extent of LULC change in 1987 and 2019 years. 
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LULC classes 1987 
 

2019   Net-Change  

1987-2019 (%) 
 

 ha   %  ha  % 

FC 5087.52 20.42 3858.23 15.49 -31.86 

SET 1096.87 4.40 3057.09 12.27 64.12 

SH 3714.69 14.91 1624.88 6.52 -128.61 

AG 13597.6 54.58 15546.44 62.40 12.54 

WB 28.8 0.12 0 0.00 0.00 

WE 1389.65 5.58 828.49 3.33 -67.73 

Total  24915.13 
 

24915.13   

Where: FC= Forest cover, SET= Settlement, SH= Shrub land, AG= Agriculture, WB= 

Water body and WE= Wetland. 

The declining trend of the shrub land and forest cover was due to increasing land 

requirements for house construction and arable land, which arising from (rapid population 

growth, density, and internal migration), urbanization, and uncontrolled response by the 

government (Deribew & Dalacho, 2019), which enhances the problem of informal house 

constructions. These findings are supported by (Abebe et al., 2019), who reported urban 

informality, is the outcome of either the population who lives in substandard living 

conditions or a housing deficit. It is observed that the water body has decreased from 28.8 

ha (0.12%) in the year 1987 to 16.56 ha (0.07%) in the year 2003, and the decreasing trend 

of water body was continued throughout the study period and decreased to 0 ha (0%) by 

the year 2019. The wetland of the study area also shows a decreasing trend from 1987 to 

2019 covering a total area of 1389.65 ha (5.58%) in the year 1987 and 828.49 ha (3.33%) 

in 2019. The decreasing trend in both water bodies and wetland is because the deposition 

of sediment in the water bodies and wetland resulted, silt from farmland, sludge from 

infrastructure built in the city, and housing.  In agreement with the finding of this study 

(Abrha et al., 2015 ) also reported the reduction of water bodies and wetland between 1984 

and 2007 were corresponding to the drastic consequences of ever-increasing demand for 

residential and institutional building construction spaces in Jimma city.   
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3.2. Land use land cover change matrix  

To acquire changes of the six LULC classes over the study period (1987–2019), the change 

matrix was conducted through cross-tabulation to investigate the trend, net change, and 

percent change between 1987 and 2003, 2003 and 2019, and for the overall study period 

1987 and 2019. 

Table 8 shows a summary of the major LULC conversions that have been taken place from 

1987 to 2003 within the study area. The diagonal of the table shows the LULC proportions 

that remain unchanged from 1987 to 2003, a total area of 19,130.5 ha representing 76.78% 

of the study area. From the table, forest cover in 1987 was converted into agricultural land, 

shrub land, and settlement in 2003. The major forest cover transformation made by the 

expansion of agricultural land was (22.05%) and shrub land was (12.70%). In contrary to 

this, (0.99%) Forest cover was gained from shrub land in 2003. Shrub land also changed 

to agricultural land, wetland, and settlement in 2003. Furthermore, the water body was 

transformed into wetland, agriculture, shrub land, and settlement. Similarly, the wetland 

was changed to agriculture, shrub land, and settlement in 2003. Details about the LULC 

transformation matrix from 1987-2003 are illustrated in Table 8. 
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Table 8: LULC changes matrix of the Jimma city and its surrounding from 1987 to 2003 (ha) 

Where: FC= Forest cover, SET= Settlement, SH= Shrub land, AG= Agriculture, WB= Water body and WE= Wetland. 

 

 

 

 

 

  
LULC of 2003 

L
U

L
C

 o
f 

1
9
8
7
 

LULC 

Class 

FC SET SH AG WB WE class total 

ha % ha % ha % ha % ha % ha % ha % 

FC 3199.06 62.88 120.29 2.36 646.05 12.70 1121.75 22.05 0 0.00 0.37 0.01 5087.52 100 

SET 0.64 0.06 1030.32 93.93 21.37 1.95 44.54 4.06 0 0.00 0 0.00 1096.87 100 

SH 36.81 0.99 133.77 3.60 1766.1 47.54 1595.87 42.96 0 0.00 182.14 4.90 3714.69 100 

AG 51.94 0.38 582.04 4.28 94.09 0.69 12452.92 91.58 0 0.00 416.61 3.06 13597.6 100 

WB 0 0.00 0.45 1.56 0.54 1.88 3.42 11.88 16.56 57.50 7.83 27.19 28.8 100 

WE 5.09 0.37 14.17 1.02 87.25 6.28 617.6 44.44 0 0.00 665.54 47.89 1389.65 100 

class total 3293.54 13.22 1881.04 7.55 2615.4 10.50 15836.1 63.56 16.56 0.07 1272.49 5.11 24915.13 100 
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As Table 9 shows, from the total area of forest cover in 2003, 785.01 ha (23.83%), 254.32 

ha (7.72%), and 48.24 ha (1.46%) were converted to agriculture, shrub land, and settlement 

in 2019, respectively. On contrary, forest cover was gained from shrub land 845.79 ha and 

agricultural land 804.97 ha in 2019. During 2003-2019, shrub land was also converted into 

agriculture and settlement. The conversion of agricultural land to other LULC classes such 

as settlement (6.38%), shrub land (4.32%), and wetland (2.44%) after sixteen years. Water 

body also changed into wetland (55.31%), agriculture (42.81%), shrub land (1.03%), and 

settlement (0.87%) in the year 2019. Similarly, the wetland was transformed into 

agriculture, shrub land, and settlement. Table 9 present the detailed information of LULC 

transformation from 2003 to 2019. 
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Table 9: LULC changes matrix of the Jimma city and its surrounding from 2003 to 2019 (ha) 

Where: FC= Forest cover, SET= Settlement, SH= Shrub land, AG= Agriculture, WB= Water body and WE= Wetland. 

  
LULC of 2019 

L
U

L
C

 o
f 

 2
0
0
3
 

LULC 

Class 

FC SET SH AG WB WE class total 

ha % ha % ha % ha % ha % ha % ha % 

FC 2205.94 66.98 48.24 1.46 254.32 7.72 785.01 23.83 0 0.00 0.03 0.00 3293.54 100 

SET 1.5 0.08 1831.21 97.35 9.32 0.50 39.01 2.07 0 0.00 0 0.00 1881.04 100 

SH 845.79 32.34 113.41 4.34 568.79 21.75 1081.9 41.37 0 0.00 5.51 0.21 2615.4 100 

AG 804.97 5.08 1010.27 6.38 683.84 4.32 12950.89 81.78 0 0.00 386.13 2.44 15836.1 100 

WB 0 0.00 0.14 0.85 0.17 1.03 7.09 42.81 0 0.00 9.16 55.31 16.56 100 

WE 0.03 0.00 53.82 4.23 108.44 8.52 682.54 53.64 0 0.00 427.66 33.61 1272.49 100 

class total 3858.23 15.49 3057.09 12.27 1624.88 6.52 15546.44 62.40 0 0.00 828.49 3.33 24915.13 100 
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While considering the whole range of time under consideration, the reduction in the area 

covered by forest, shrub land, water body, and wetland were observed. Image differencing 

of the two different times, 1987, and 2019 indicated that forest cover was reduced from 

5087.52 ha to 3858.53 ha (1229.29 ha) representing 31.86% of the area. The conversion of 

forest cover to other LULC classes such as agriculture (39.15%), shrub land (9.11%), and 

settlement (3.50%). On contrary, forest cover was gained from shrub land (13.89%) and 

agricultural land (6.43%). Other LULC conversions are shrub land to agricultural land 

(64.85%), settlement (6.96%), and wetland (2.03%). Agricultural land was also 

transformed into settlement (10.85%) and shrub land (4.96%). Furthermore, water body 

was changed to wetland (54.51%), agricultural land (42.95%), and shrub land (2.05%). 

Similarly, the wetland was also changed to agriculture (45.79%), settlement (5.78%), and 

shrub land (1.71%). The LULCC matrix of the study area from 1987 to 2019 is illustrated 

in (Table 10). 
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Table 10: LULC changes matrix of the Jimma city and its surrounding from 1987 to 2019 (ha) 
  

LULC of 2019 

L
U

L
C

 o
f 

1
9
8
7
 

LULC 

Class 

FC SET SH AG WB WE class total 

ha % ha % ha % ha % ha % ha % ha % 

FC 2453.73 48.23 178.16 3.50 463.46 9.11 1991.54 39.15 0 0.00 0.63 0.01 5087.52 100 

SET 7.5 0.68 1065.25 97.12 6.45 0.59 17.67 1.61 0 0.00 0 0.00 1096.87 100 

SH 515.84 13.89 258.49 6.96 455.72 12.27 2409.1 64.85 0 0.00 75.54 2.03 3714.69 100 

AG 874.51 6.43 1474.79 10.85 674.95 4.96 10479.11 77.07 0 0.00 94.24 0.69 13597.6 100 

WB 0 0.00 0.14 0.49 0.59 2.05 12.37 42.95 0 0.00 15.7 54.51 28.8 100 

WE 6.95 0.50 80.26 5.78 23.71 1.71 636.35 45.79 0 0.00 642.38 46.23 1389.65 100 

class total 3858.53 15.49 3057.09 12.27 1624.88 6.52 15546.14 62.4 0 0.00 828.49 3.33 24915.13 100 

Where: FC= Forest cover, SET= Settlement, SH= Shrub land, AG= Agriculture, WB= Water body and WE= Wetland. 
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3.3. Accuracy Assessment 

The accuracy evaluation of LULC for the year 2019 was validated using a ground-truth assessment 

of 210 sample GPS points taken from the study area, resulting in an overall accuracy of 89.14 % 

(Table 11). For the year 2019, the classification Kappa statistics value was 0.8643. The confusion 

matrix was calculated using Google Earth and KII to validate the accuracy for the years 1987 and 

2003, yielding overall accuracy of 81.90 % and 83.81 %, respectively. For the years 1987 and 

2003, the overall LULC classification Kappa statistics were 0.7829 and 0.8057, respectively.   

Table 11: Confusion matrix of the year 2019 LULC supervised classification 

Class 

name 

1987 2003 2019 

Producers 

Accuracy  

Users 

Accuracy 

Producers 

Accuracy  

Users 

Accuracy  

Producers 

Accuracy  

Users 

Accuracy  

FC 85.71%  96.77% 97.14%  94.44% 91.43%  96.97% 

SET  71.43%  96.15% 94.29%  89.19% 88.57%  96.88% 

SH 82.86%  61.70% 82.86%  96.67% 85.71%  90.91% 

AG 91.43%  80.00% 91.43%  74.42% 91.43%  80.00% 

WB 62.86%  95.65% 51.43%  94.74% 0 0 

WE 97.14%  79.07% 85.71%  66.67% 88.57%  83.78% 

Overall 

Accuracy 

81.90% 83.81% 89.14% 

(K^) 0.7829 0.8057 0.8643 

 Where: FC= Forest cover, SET= Settlement, SH= Shrub land, AG= Agriculture, WB= Water body 

and WE= Wetland. 

3.4. Normalized difference vegetation index 

In this study, it has been observed that the vegetation cover was very high in 1987 than in 2003 

with maximum NDVI values of 0.61 and 0.48 respectively. This indicates that there was high 

healthy vegetation cover in 1987 than in 2003. Urban expansion and depletion of vegetation cover 

in 2003 were responsible for the decline of NDVI values. In 2019, vegetation cover was slightly 

increased and this made the NDVI value increase from 0.48 to 0.52 (Table 12).  

As indicated in Figure 6 vegetation cover has decreased and the non-vegetated area has been 

increasing gradually over the study period. However, in 2019 plantation of (some trees and cash 

crops area has slightly increased due to the plantation program both in rural and urban areas). 

Settlement and agricultural land have low NDVI values. This is because of the dry nature of those 
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surfaces and their high thermal emittance property. So, this indicates that there was an indirect 

relationship between NDVI and LST. Sun et al., (2012) and Yue et al., (2007) revealed that LST 

has inversely related to NDVI. 

Table 12: Normalized difference vegetation index results in 1987, 2003 and 2019 

   
1987 

  
2003 

   
2019 

  
Class 

Name  Min  Max  

Mean 

NDVI  STD Min  Max  

Mean 

NDVI  STD Min  Max  

Mean 

NDVI  STD 

FC 0.13 0.61 0.39 0.05 0.09 0.48 0.32 0.05 0.01 0.52 0.29 0.06 

SET -0.07 0.46 0.21 0.07 -0.32 0.30 0.00 0.10 -0.42 0.40 0.18 0.06 

SH 0.26 0.42 0.33 0.03 -0.01 0.37 0.16 0.06 0.10 0.44 0.30 0.04 

AG 0.01 0.45 0.24 0.05 -0.33 0.36 0.01 0.09 -0.03 0.45 0.26 0.05 

WB -0.22 0.14 -0.08 0.09 -0.04 0.10 -0.12 0.12 0.00 0.00 0.00 0.00 

WE 0.28 0.59 0.40 0.05 0.12 0.38 0.23 0.04 0.05 0.47 0.32 0.05 

Where: FC= Forest cover, SET= Settlement, SH= Shrub land, AG= Agriculture, WB= Water body, 

WE= Wetland, MIN = Minimum, MAX = Maximum, STD = Standard deviation. 
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Figure 6: NDVI map of Jimma city and its surrounding in 1987, 2003 & 2019 

3.5. Normalized difference built-up index  

High NDBI values were concentrated around agricultural land and in the city area of Jimma. The 

build-up areas and bare land reflect more SWIR than NIR. In the case of a green surface, a 

reflection of NIR is higher than the SWIR spectrum (Zha et al., 2003). Hence the lower value of 

NDBI represents vegetation whereas the higher value represents settlement and agricultural areas. 

In agreement with the finding of this research, a study conducted by Xiong et al., (2012) found 

that high-temperature anomalies are closely associated with built-up land, densely populated 

zones, and heavily industrialized districts. Figure 7 indicated that the NDBI values were increased 

around Jimma city.  
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Figure 7: NDBI map of Jimma city and its surrounding in 1987, 2003 & 2019 

3.6. The relationship of LST and LULC 

Table 13 summarizes the LST and NDVI regressions for each LULC, with R2 indicating the 

regression's determination coefficient. Forest cover, shrub land, and agricultural land had greater 

NDVI-to-LST coefficients. In wetland, water bodies, and settlement land, however, the LST and 

NDVI coefficients were small during the study period. Overall, the minimum temperature was 

found in the range of 12.36◦C in forest cover in 1987 to 21.53◦C in a settlement in 2019 while, the 

maximum temperature was recorded in the range of 19.28◦C in water body in 1987 to 33.68◦C in 

agricultural land in 2019 (Figure 8 and Table 14). In addition, the mean temperature was seen at 

around 16◦C in the water body in 1987 to 28◦C in the settlement in 2003. The lowest value for 

minimum 12.36◦C, maximum 19.28◦C, and mean 16.22◦C temperature can be found in the year 

1987. Meanwhile, the highest value for the minimum temperature was occurred in 2019 (21.51◦C) 

in the settlement, and the highest value of the maximum and mean temperature was occurred in 
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2003 (35.92◦C and 28.16◦C) in a settlement. The lowest rate of increase in LST is found under 

forest cover.  

Table 13: Linear regression equations between LST and LULC 

years LULC Regression R² 

1987 FC LST = -7.3477x NDVI + 16.723  0.8919 

SET LST = -0.2627x NDVI + 19.582 0.0001 

SH LST = -13.858x NDVI + 23.007 0.1554 

AG LST = -7.2137x NDVI + 22.259 0.0414 

WB LST = -3.8903x NDVI + 15.705 0.0103 

WE LST = -6.4279x NDVI + 21.188 0.0119 

2003 FC LST = -12.523x NDVI + 27.05 0.3129 

SET LST = -1.6249x NDVI + 22.533 0.0049 

SH LST = -12.685x NDVI + 28.318 0.2894 

AG LST = -12.917x NDVI + 27.231 0.1941 

WB LST = -1.3986x NDVI + 20.666 0.0256 

WE LST = -13.969x NDVI + 27.883 0.1837 

2019 FC LST = -25.305x NDVI + 33.041 0.8043 

SET LST = -20.946x NDVI + 30.51 0.335 

SH LST = -20.519x NDVI + 31.032 0.4441 

AG LST = -21.849x NDVI + 31.193 0.4342 

WB -         -                                              - 

WE LST = -20.648x NDVI + 30.719 0.3618 

Table 14: The mean LST and its standard deviation in different LULC types, which were 

calculated through GIS spatial partition statistics. 
   

1987 
  

2003 
   

2019 
  

Class 

Name  

Min  Max  Mean 

LST 

STD Min  Max  Mean 

LST 

STD Min  Max  Mean 

LST 

STD 

FC 12.36 25.40 17.29 1.90 17.09 29.31 22.11 1.46 20.11 32.10 23.57 1.39 

SET 13.78 27.51 20.53 1.83 17.62 35.92 28.16 2.12 21.51 33.60 26.79 1.64 

SH 13.78 24.54 19.15 1.55 18.15 32.18 25.14 1.59 21.02 30.63 24.60 1.30 

AG 13.78 26.67 19.59 1.84 16.55 34.99 26.85 2.23 21.03 33.68 25.82 1.63 

WB 15.64 19.28 16.22 0.55 19.21 29.30 21.61 1.10 - - - - 

WE 14.25 24.11 17.50 1.65 20.26 32.18 24.68 1.43 21.02 32.29 25.04 1.56 
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Where: FC= Forest cover, SET= Settlement, SH= Shrub land, AG= Agriculture, WB= Water 

body, WE= Wetland, MIN = Minimum, MAX = Maximum, STD = Standard deviation. 

 

Figure 8: The mean LST in different LULC types. 

To understand the relationship that exists between the land cover types and the LST, the mean 

value of the LST for 2019 and the corresponding percentage proportion of NDVI was investigated 

for each land cover type through correlation analysis (Table 15). The results show that there is a 

strong negative correlation between the mean LST and the percentage proportion of the vegetated 

areas of the Forest cover, shrub land, and wetland. This means that as the proportion of vegetated 

surfaces increases, the mean LST decreases. These results were found to be highly significant at P 

< 0.01. In contrast, other results revealed a strong positive correlation between the mean LST and 

percentage proportion of non-vegetated areas such as settlement and agricultural land implies that 

as the percentage proportion of non-vegetated areas increases, the mean LST increases. The results 

were also highly significant at P < 0.01. Because of this relationship between LST and NDVI, 

changes in LULC have an indirect impact on surface temperatures through NDVI. 1Ho is rejected 

and 1H1 is accepted based on the significant value of the p test results. This suggests that LULC 

has a significant impact on the temperature of the land surface. 

 Table 15: Pearson’s correlations between LST and each indices of LULC 2019 
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Variables LST FC SET SH AG WE 

LST 1 -.449** .868** -.660** .674** -.643** 

FC -.449** 1 .135 .268* .235 .455* 

SET .868** .135 1 -.632** .305 -.682** 

SH -.660** .268* -.632** 1 .115 .393 

AG .674** .235 .305 .115 1 -.164* 

WE -.643** .455* -.682** .393 -.164* 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

Where: FC= Forest cover, SET= Settlement, SH= Shrub land, AG= Agriculture, WB= Water body 

and WE= Wetland. 

 

 
Figure 9: LST map of Jimma city and its surrounding in 1987, 2003 & 2019 
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Figure 9 and Table 14 shows that high surface temperature was observed in settlement land and 

agricultural land whereas the low surface temperature in green vegetative and wetland areas. 

Therefore, with the expansion of the vegetated area, the LST value adversely decreases and the 

expansion of non- evaporating surface brought an increase in LST. An increase in density of 

settlement, reduction in open space and green cover, increase in built-up space improves the LST 

of the urban area (Lilly & Devadas, 2009). With the rapid growth and expansion of the urban area, 

the propensity for the conversion of LULC into a built-up area and dwelling unit (non-evaporating 

surface) becomes high. Thus, such surfaces have a high probability of showing a greater value of 

LST. 

Table 16: Model summary of LST and each indices of LULC 2019 

Model R R Square 

Adjusted R 

Square Std. Error of the Estimate 

1 .911a .829 .749 .15960 

a. Predictors: (Constant),  

b. Dependent Variable:  

For the full regression model, R2 of 0.829 indicated the explanatory power of the model (Table 

16). Thus, 82% of the variation in the dependent variables was explained by the regression. The 

significant value of 0.000 is lesser than the alpha value of 0.05, which indicates that the 

independent variables are statistically significant for the prediction of the dependent variable 

(Table 17), F (7, 15) = 10.396, p < 0.05 which means the adopted regression model is a good fit of 

the data. 

Table 17: ANOVA of LST and each indices of LULC 2019 

Model 

Sum of 

Squares df Mean Square F Sig. 

   1 Regression 1.854 7 .265 10.396 .000b 

Residual .382 15 .025   

Total 2.236 22    

a. Dependent Variable: LST_2019 

b. Predictors: (Constant),  
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From Figure 10 Forest cover type was located in the right lower corner of the diagram, shrub land, 

and wetland areas were located in the center of the diagram (medium values for both parameters, 

NDVI and LST), while the settlement and agricultural land areas were located at the upper left 

corner of the diagram. In other words: the NDVI confirms the cluster structure of land cover types 

derived from surface temperatures 

 

Figure 10: Scatterplot of LST vs. NDVI (2019). 

3.7. Multiple correlation matrix analysis of LST, NDVI, and NDBI 

The analyzed Landsat images of 1987 and 2019 indicated that LST had a positive relationship with 

NDBI and an inverse relationship with NDVI.  

Table 18: Model Summary of LST and NDVI and NDBI for 1987, 2003 & 2019 

a. Predictors: (Constant), NDBI, NDVI         

From the processing results obtained summary (Table 18) which shows the values of determination 

(R2) to determine the percentage contribution of the influence of the independent variables to the 

dependent variable and the values of R (multiple correlation coefficients) which are considered as 

a measure of the worth of the prediction of the dependent variables. The R-value of 0.831, 0.880, 

and 0.885 for the years 1987, 2003, and 2019 respectively indicate a good level of prediction. The 

Years  Model R R Square Adjusted R Square 

Std. Error of the 

Estimate 

1987 1 .831a .691 .689 1.26820 

2003 1 .880a .774 .773 1.34958 

2019 1 .885a .784 .782 1.05233 
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coefficient of determination was represented by R2 which shows the proportion of variance in the 

dependent variable that can be explained by the independent variables. The R square values were 

0.691, 0.774, and 0.784 for the years 1987, 2003, and 2019 respectively; therefore, above 69.1%, 

77.4%, and 78.4% of the variation in the land surface temperature (dependent variable) was 

explained by NDVI and NDBI (independent variables) shown in Table 18.  

Simultaneously it can be seen from the F-ratio in the ANOVA test results. (Table 19) shows that 

the independent variables highly statistically significantly predict the dependent variable, F (2, 

366) =326.166, p (0.000), (2, 366) =416.379, p (0.000) and (2, 366) =238.771, p (0.000) for the 

year 1987, 2003 and 2019 respectively (i.e., the regression model is a good fit of the data). Table 

19 shows the analysis of variance, which shows the overall regression model is a good fit for the 

given data. 

Table 19: ANOVA of LST and NDVI and NDBI for 1987, 2003 & 2019 

 

year Model 

Sum of 

Squares df Mean Square F Sig. 

1987 1 Regression 1049.170 2 524.585 326.166 .000b 

Residual 468.652 366 1.608   

Total 1517.822 368    

2003 1 Regression 1247.080 2 623.540 416.379 .000b 

Residual 448.096 366 1.498   

Total 1695.176 368    

2019 1 Regression 745.220 2 282.610 238.771 .000b 

Residual 253.199 366 1.184   

Total 998.419 368    

 a. Dependent Variable: LST 

 b. Predictors: (Constant), NDBI, NDVI 

 

Table 20 and Figures 11a-c show the unstandardized coefficient (B), which tells the relationship 

between the land surface temperature and other independent variables. There was a strong negative 

correlation (B = -0.078) between LST and NDVI of the year 1987 and highly statistically 

significant (ρ = 0.000). NDVI of the year 2003 shows a negative correlation (B = -0.048) with LST 

and is statistically significant (ρ= 0.000). There was also a strong negative correlation (B= -0.022) 
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between LST and NDVI of the year 2019 and statistically significant (ρ= 0.000). Malik et al., 

(2019), Balew (2018), and Haylemariya (2018) revealed that LST has inversely related to NDVI. 

The negative value of NDVI implies that the land surface temperature increase, with decreases in 

vegetation, so LST is negatively related to NDVI. According to KII, Jimma city's forest cover has 

been converted to built-up other infrastructure. Other LULC, such as wetland, shrub land, and 

forest land, were also converted to agricultural land and settlement. Transformation of vegetation 

areas, expansion of settlement land, and agricultural land were responsible for the increase of LST 

in the study area. If the deforestation and cut of urban trees are not stopped, then this situation will 

continue to be worse day by day.  

Table 20: Coefficients of LST and NDVI and NDBI for 1987, 2003 & 2019 

year 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

95.0% Confidence 

Interval for B 

B 

Std. 

Error           Beta 

Lower 

Bound 

Upper 

Bound 

1987 1 (Constant) 19.641 .659  29.796 .000 18.345 20.937 

NDVI -.078 1.793 -.025 -3.741 .000 -10.234 -3.182 

NDBI .572 1.519 .038 7.618 .000 8.586 14.558 

2003 1 (Constant) 25.267 .369  68.546 .000 24.542 25.991 

NDVI -.048 1.371 -.036 -5.459 .000 -10.176 -4.787 

NDBI .612 1.165 .060 9.970 .000 9.321 13.902 

2019 1 (Constant) 28.933 .390  74.097 .000 28.165 29.701 

NDVI -.022 1.718 -.001 -5.880 .000 -13.481 -6.724 

NDBI .759 1.340 .049 8.337 .000 8.534 13.802 

a. Dependent Variable: LST 

 

The linear regression between LST and NDBI and the trend analysis in Figure12a-c and Table 20 

represents the rise of LST with the increase of NDBI value over time. The value of the coefficient 

of determination, R2= 0.754 in 1987 (Figure12a) describes the strong responsive relationship 

between LST and NDBI. The transformation of other land cover types in buildup areas has 

influenced the relationship in the year 2019. The value of R2= 0.739 in the year 2019 (Figure 12c) 

indicates the strongly significant positive relationship between LST and NDBI. The coefficient of 

determination in Figures 12a, b, c suggests that the increase of settlement area is responsible for 

the increase of surface temperature in the study area during the study period. NDBI was strongly 
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positively correlated (B = 0. 572, B= 0.612 and B= 0.759) to the LST and indicate highly 

statistically significant (ρ = 0.000) for the year 1987, 2003 and 2019 respectively. The positive B 

value of NDBI indicates that an increase in settlement land will increase the temperature which 

indicates that LST is positively related to NDBI.  

Table 20 also show 1987 NDVI (t = -3.741, p < 0.05), 1987 NDBI (t = 9.970, p < 0.05), 2003 

NDVI (t = -5.459, p < 0.05), 2003 NDBI (t = 7.618, p < 0.05), 2019 NDVI (t = -5.880, p < 0.05), 

2019 NDBI (t = 8.337, p < 0.05) are significant predictors of land surface temperature.  

Based on the results of the t-test, the significance value of each variable was less than 0.05 then 

the hypothesis 2H1 was accepted. Therefore, the NDVI and the NDBI both have a significant 

effect on the surface temperature of Jimma city and its surrounding. From the magnitude of the t-

statistics, the expansion of settlement land had more impact on the LST confirmed by standardized 

coefficients.  

The model also tells that with one unit increase in the vegetation, the temperature would decrease 

by 0.078, 0.048, and 0.022 units for the years 1987, 2003, and 2019 respectively; similarly, with 

one unit increase in the settlement land, there would be an increase of 0.612, 0.572 and 0.759 units 

in the LST for the year 1987, 2003 and 2019 respectively. 

 

 

Figure 11: linear correlation between LST in response to NDVI in the year (a) 1987, (b) 2003, 

and (c) 2019. 
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Figure 12: linear correlation between LST in response to NDBI in the year (a) 1987, (b) 2003, 

and (c) 2019. 

The relationship between NDVI and NBDI has also been developed during the study. NDVI has 

shown a strong negative correlation with NDBI in each year i.e. R2 = 0.739 in 1987 0.860 in 2003 

and 0.801 in 2019. The linear correlation of NDVI vs. NDBI is displaying in the scatter plot 

(Figure. 13a-c). 

 

Figure 13:  linear correlation between NDBI in response to NDVI in the year (a) 1987, (b) 2003, 

and (c) 2019. 

 

4. Conclusion and Recommendations 

4.1. Conclusion 

The results of this study revealed that there was a shift in LULC during the course of the study 

period. The proportion of land used for settlement and agricultural purposes has been steadily 

rising. Waterbody, shrubland, wetland, and forest cover, on the other hand, have been declining. 

As a result, there were more open spaces and deforestation, resulting in a rise in LST. The lowest 
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LST was found in areas with forest land, waterbody, wetland, and shrubland, while the greatest 

LST was found in areas with settlement land and agricultural land. The developed correlation of 

LST with NDBI and NDVI has shown R2 = 0.691 in 1987, 0.774 in 2003, & 0.784 in 2019. Strong 

negative correlation resulted between NDVI & NDBI i.e. R2 = 0.739 in 1987, 0.860 in 2003, & 

0.801 in 2019, respectively. LST and NDBI have a significant positive correlation, implying that 

as settlement land and open land increase, so does land surface temperature. The significant 

negative relationship between NDVI and LST suggests that healthy green vegetation reduces 

surface temperature. Thus, future LST study may be collected at multiple geographical resolutions 

and during different seasons of the year to analyze the LST, with additional parameters like soil 

moisture, water bodies, and population density being utilized to determine their influence on LST. 

Accelerating afforestation and reforestation initiatives, as well as maintaining naturally 

regenerated trees, should be prioritized.   
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