Impact of 3-dimensional genome organization, guided by cohesin and CTCF looping, on sex-biased chromatin interactions and gene expression in mouse liver

DOI: https://doi.org/10.21203/rs.2.23342/v1

Abstract

Background: Sex differences in the transcriptome and epigenome are widespread in mouse liver and are associated with sex-bias in liver disease. Several thousand sex-differential distal enhancers have been identified; however, their links to sex-biased genes and the impact of any sex-differences in nuclear organization, DNA looping, and chromatin interactions are unknown.

Results: To address these issues, we first characterized 1,847 mouse liver genomic regions showing significant sex differential occupancy by cohesin and CTCF, two key 3D nuclear organizing factors. These sex-differential binding sites were largely distal to sex-biased genes, but rarely generated sex-differential TAD (topologically associating domain) or intra-TAD loop anchors. A substantial subset of the sex-biased cohesin-non-CTCF binding sites, but not the sex-biased cohesin-and-CTCF binding sites, overlapped sex-biased enhancers. Cohesin depletion reduced the expression of male-biased genes with distal, but not proximal, sex-biased enhancers by >10-fold, implicating cohesin in long-range enhancer interactions regulating sex-biased genes. Using circularized chromosome conformation capture-based sequencing (4C-seq), we showed that sex differences in distal sex-biased enhancer-promoter interactions are common. Sex-differential chromatin interactions involving sex-biased gene promoters, enhancers, and lncRNAs were associated with sex-biased binding of cohesin and/or CTCF. Furthermore, intra-TAD loops with sex-independent cohesin-and-CTCF anchors conferred sex specificity to chromatin interactions indirectly, by insulating sex-biased enhancer-promoter contacts and by bringing sex-biased genes into closer proximity to sex-biased enhancers.

Conclusions: These findings elucidate how 3-dimensional genome organization contributes to sex differences in gene expression in a non-reproductive tissue through both direct and indirect effects of cohesin and CTCF looping on distal enhancer interactions with sex-differentially expressed genes.

Full Text

This preprint is available for download as a PDF.

Supplemental Information Note

Supplemental Figures are in the manuscript PDF file