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Loss of GLS2 function is essential for obtaining
oncogenic functions and promotes the progression
of clear cell renal cell carcinoma.
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Abstract
Background

The incidence of RCC has drastically increased in recent years. The large intratumor heterogeneity of RCC,
especially ccRCC, usually leads to treatment failure. In addition, single biomarkers have a limited ability to
predict prognosis. Therefore, we performed this study to select variables and provided a simple but e�cient
way to predict prognosis.

Method

Three studies from the GEO database were involved in the selection of DEGs. A total of 840 RCC patients
and 524 ccRCC patients from the TCGA database were involved in the prognostic analyses. Nomograms
based on the Cox regression model were used to select variables to predict the prognosis, and GSEA was
used to demonstrate the potential pathways altered by gene expression.

Result

Our study suggested that DEGs existed between metastatic and primary tumor tissues. Loss of GLS2
function was related to poor prognosis in RCC and ccRCC. These results revealed that GLS2 expression
combined with basic characteristics, including age and TNM stage, could e�ciently predict prognosis.
GLS2 serves as a tumor suppressor in ccRCC, and loss of GLS2 function endows cells with oncogenic
functions and is related to advanced disease. According to the GSEA results, loss of GLS2 function may
alter the cell cycle by activating the E2F pathway.

Conclusion

GLS2 is a tumor suppressor in RCC. Loss of GLS2 function in ccRCC predicts a poor prognosis via the E2F
pathway. Nomograms based on DEGs and clinical features provide doctors with a simple but e�cient way
to predict prognosis. Further studies are needed to verify the pathway in our study.

Background
Renal cell carcinoma (RCC), which accounts for more than 90% of cancers derived from the kidney [1], has
a drastically increasing incidence worldwide in recent years [2], and more than 350,000 patients worldwide
are diagnosed with RCC per year [3]. Clear cell RCC (ccRCC), papillary RCC (pRCC) and chromophobe RCC
(chRCC) are major subtypes (≥ 5%) that account for approximately 75%, 15% and 5% of RCCs, respectively
[1, 4]. RCC has been revealed to be a malignant disease with high heterogeneity, and molecular alterations
may play important roles in obtaining oncogenic functions, including invasiveness and the ability to
metastasize [5]. In addition to orthodox therapeutics for primary RCC, approved drugs targeting driver
genomic alterations for advanced RCC have been widely used [6]. Axitinib [7], sorafenib [8], sunitinib [9, 10],
lenvatinib [11] and other approved drugs, such as bevacizumab [12] and immune checkpoint inhibitors
(ICIs) [13], provide advanced RCC patients with more options. Unfortunately, the treatment response varies
among advanced RCC patients because of tumor heterogeneity, different drug action mechanisms and
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varying cancerous biological behaviors [6, 14]. With the development of genomic sequencing, great
improvements have been made in precision medicine for RCC in the past decade [6, 15, 16, 17]. Biomarkers
for predicting the prognosis of RCC have been detected for clinical use, such as Von Hippel-Lindau tumor
suppressor (VHL) and epidermal growth factor receptor (EGFR). However, given that RCC shows great
heterogeneity in tumor biological behaviors, the differentially expressed genes (DEGs) in primary and
metastatic RCC tissues identi�ed in different studies also show great heterogeneity, and it is di�cult to
conclude possible biomarkers for predicting the prognosis of RCC.

The Gene Expression Omnibus (GEO) database is a commonly used database for analyses of genomic
pro�les based on RNA sequencing (RNA-seq) [18]. In our study, we used three previously published studies
on the DEGs between primary and metastatic RCC or ccRCC tissues, the RNA-seq data of which can be
acquired from the GEO database, including the GSE105261 (ccRCC), GSE47352 (ccRCC) and GSE23629
(RCC) datasets. Seven DEGs (existing in ≥ 2 studies) were detected in our study, and the area under the
curve (AUC) of the ROC curves and prognostic nomograms were used for the detection of the most
valuable biomarkers for RCC, especially ccRCC. Overall, our study con�rmed the important role of
glutaminase 2 (GLS2) functional loss in the metastasis of ccRCC and the prognostic value of GLS2 in
ccRCC and RCC. In addition, we demonstrated that the E2F pathway was the most likely signaling pathway
activated by GLS2 functional loss and that molecules from the E2F family were related to a poor prognosis
in ccRCC and RCC.

Methods

Study patients and tissue samples
A total of 840 RCC patients (n = 840) and 524 ccRCC patients (n = 524) from The Cancer Genome Atlas
(TCGA) database were involved in this study for the survival analyses and the construction of prognostic
nomograms. Basic information, including age, sex, and TNM stage, was collected for multivariate analysis.
Fragments per kilobase of transcript per million fragments mapped (FPKM) values were used for the
calculation of RNA expression in this study. This study was approved by the Ethics Committee of the
A�liated Hospital of Qingdao University, and the investigations were carried out following the rules of the
Declaration of Helsinki. Thirty primary tumor tissue samples (14 ccRCC samples and 16 RCC samples) and
forty-six metastatic tumor tissue samples (30 ccRCC samples and 16 RCC samples) were used for the
bioinformatic analyses from the GEO database.

Bioinformatic Analyses
In this study, we used GEO2R online tools to identify DEGs between primary and metastatic tissues. A P
value < 0.01 and a ratio of the FPKM values between the two groups (fold change) ≥ 2 were used for the
determination of DEGs. DEGs that existed in more than two studies selected from the GEO database were
identi�ed as valuable DEGs and used for the next analyses. In addition, the DEGs of each study were
subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses through DAVID and
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KOBAS 3.0 online tools to obtain a comprehensive set of functions of these altered genes. The mutual
pathways between the three studies were detected by a Venn plot to identify the most likely pathways
altered in metastatic tissues and provide researchers with biological information for further studies. Gene
set enrichment analysis (GSEA) was used to con�rm the differential signaling pathways and molecules in
two sets of patients from the TCGA database grouped by a selected gene. We used OncoLnc [19] and
GEPIA [20] to draw Kaplan-Meier plots, and the median expression values of selected genes were used as
cutoffs for the univariate analysis. The expression data of selected genes in different samples, TNM
stages, metastatic lymph nodes and tumor grades were collected from UALCAN [21].

Statistical Analyses
ROC curves of DEGs and E2F family molecules were generated in this study, and the AUC was used to
identify the e�ciency in predicting the prognosis of RCC or ccRCC patients. Student’s t test was used for
the detection of statistical signi�cance in the comparison of gene expression between the group of patients
who were alive and the group of patient who had died. Multivariate analysis using the Cox proportional
hazard model and a P < 0.05 was used to integrate variables into our prognostic nomograms. We used the
“rms” package of R software version 3.1.2 (The R Foundation for Statistical Computing, Vienna, Austria) to
construct nomograms. Discrimination and calibration were conducted to evaluate the internal validity of
nomograms. Harrell’s C-indexes ranging from 0.5 (no discrimination) to 1 (perfect discrimination) were
used to verify discrimination [22]. Visual calibration plots were used to verify calibration [23]. Bootstrap
analyses with 1,000 resamples were used for these analyses. We compared the AUC of each variable with
Harrell’s C-indexes of the nomograms to determine a better way to predict the prognosis of RCC and ccRCC
patients [24]. All �gures and statistical processes in our study were performed by R software version 3.1.2
(The R Foundation for Statistical Computing, Vienna, Austria), SPSS 23.0 (SPSS, Inc.) and GraphPad
Prisma 8.0 software. P values were two-tailed for all tests, and a P < 0.05 was used to de�ne statistical
signi�cance.

Results

Identi�cation of DEGs and enrichment analyses
Three studies including GSE105261, GSE47352 and GSE23629 from the GEO database were involved in
the analyses. As the volcano plots show in Fig. 1A1-A3, the top 250 DEGs of each study are shown in the
plots. DEGs with a fold change ≥ 2 were selected for the next analyses. Seven DEGs identi�ed from more
than two studies were �nally selected for survival analyses, including GLS2, osteoglycin (OGN), adhesion G
protein-coupled receptor F1 (ADGRF1), adaptor-related protein complex 4 epsilon 1 subunit (AP4E1),
tetraspanin 3 (TSPAN3), paired-related homeobox 1 (PRRX1) and katanin catalytic subunit A1-like 2
(KATNAL2). The heatmap of the seven DEGs based on 840 RCC patients is shown in Fig. 1B. Among them,
KATNAL2 was highly expressed in RCC tissues, and the other DEGs were in low expression states. KEGG
enrichment analyses were performed based on all DEGs with fold changes ≥ 2, and 40 altered pathways
were detected, as shown in Fig. 1C. ROC curves of the seven DEGs were constructed, and four DEGs
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showed satisfactory AUC values for the prognosis of RCC, including GLS2 (AUC = 0.605, P < 0.001),
ADGRF1 (AUC = 0.587, P > 0.001), KATNAL2 (AUC = 0.595, P < 0.001) and OGN (AUC = 0.585, P < 0.001), as
shown in Fig. 1D1-D4.

Construction of a prognostic nomogram for RCC patients
based on DEGs
840 RCC patients and their basic characteristics were obtained from the TCGA database. The mean age of
all RCC patients was 60.2 years, ranging from 17 to 90 years. We divided all RCC patients into two groups
according to their outcomes, including a group of patients who were alive and a group of patients who died,
and compared the expression status of the seven selected DEGs between the two groups, as shown in
Figure D5-D8. GLS2, ADGRF1 and KATNAL2 showed a signi�cant reduction in the group of patients who
died, which indicated that the functional loss of these genes was associated with a poor prognosis in RCC.

Univariate analyses were performed to demonstrate the relationship between selected DEGs and the
prognosis of RCC patients, as shown in Fig. 2A-D. The four selected DEGs were tightly associated with
prognosis. High expression of GLS2, ADGRF1 and KATNAL2 was related to a good prognosis both in terms
of disease-free survival (DFS) and overall survival (OS). However, high expression of OGN was related to
poor DFS and OS. Multivariate analysis was performed to integrate the variables into a nomogram. As
shown in Table 1, age (P = 0.014), TNM stage (P < 0.001) and GLS2 expression (P = 0.001) were selected for
the nomograms based on multivariate analysis with the Cox regression model. The nomogram for OS of
RCC patients was constructed based on the three variables above, as shown in Fig. 2E. In the nomogram,
every variable produced a score, and the total score was easy to calculate. By correlating the total score
with the 1-year to 5-year OS values, the probability of survival for every patient could be obtained.
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Table 1
Univariate and multivariate analyses of RCC patients based on DEGs.

Variables Groups Renal cell carcinoma

Total Patient (N = 840, x%) Univariate analysis Multivariate analysis

age     < 0.001 0.014

  > 60 421(50.1)    

  <=60 419(49.9)    

gender     0.42 0.522

  male 564(67.1)    

  female 276(32.9)    

TNM stage     < 0.001 < 0.001

  I 450(53.6)    

  II-IV 390(46.4)    

GLS2     < 0.001 0.001

  low 420(50.0)    

  high 420(50.0)    

ADGRF1     0.001 0.323

  low 420(50.0)    

  high 420(50.0)    

KATNAL2     < 0.001 0.58

  low 420(50.0)    

  high 420(50.0)    

OGN     0.026 0.349

  low 420(50.0)    

  high 420(50.0)    

The Role Of GLS2 In RCC and ccRCC
The nomogram for the OS of RCC patients revealed that GLS2 plays an important role in the prognosis of
RCC. Given that GLS2 was a DEG of the ccRCC samples (GSE105261 and GSE47352), the following
analyses were all based on ccRCC samples to reduce the heterogeneity associated with RCC. We �rst
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determined the expression status of GLS2 in ccRCC through immunohistochemistry (IHC) data from the
Human Protein Atlas. Strong and weak staining of GLS2 are shown in Fig. 3A. We further researched the
expression status of GLS2 in ccRCC samples from the TCGA database, as shown in Fig. 3B-E. Loss of
GLS2 expression was likely to induce tumorigenesis. GLS2 expression was lower in tumor tissue than in
normal control tissue. In addition, lower GLS2 expression was related to more metastatic lymph nodes,
higher TNM stage and higher tumor grade. In ccRCC patients, GLS2 was also a good biomarker for
predicting the prognosis in terms of both DFS and OS in ccRCC patients, as shown in Fig. 3F and Fig. 3G,
respectively. Therefore, we conducted GSEA to compare the different signaling pathways and molecules
between the GLS2-high (GLS2-H) group and GLS2-low (GLS2-L) group. According to the GSEA in this study,
the cell cycle pathway was altered signi�cantly in the GLS2-L group according to the results from three
pathway databases, as shown in Fig. 3H1-H3, including KEGG (nominal P-value = 0.014), BIOCARTA
(nominal P-value = 0.006) and REACTOME (nominal P-value = 0.031). In addition, the E2F pathway
(Oncogenic signatures: nominal P-value = 0.006) was overactivated in the GLS2-L group, and E2F1 was
overexpressed (Oncogenic signatures: nominal P-value = 0.015; KEGG: nominal P-value = 0.019), as shown
in Fig. 4A1-A3.

E2F family and the prognosis of RCC and ccRCC patients
The E2F pathway and molecules of the E2F family were found to be activated in the GLS2-L group of
ccRCC patients through GSEA. Therefore, we further determined the relationship between the E2F family
and the prognosis of ccRCC and RCC patients. E2F1 to E2F8, which are E2F family molecules detected by
researchers so far [25], were included in the prognostic analyses in our study. ROC curves of these eight
molecules were constructed in our study, and E2F1, E2F2, E2F3, E2F4, E2F5 and E2F7 showed satisfactory
AUC values for predicting the prognosis of ccRCC patients, as shown in Fig. 4B1-B6. Survival analyses for
the six selected genes above were performed, and the results are displayed in Fig. 4C1-C6. Except for E2F5,
all �ve other molecules of the E2F family demonstrated a convincing ability to predict the prognosis of
ccRCC patients and were all related to poor OS. As a result, we performed multivariate analysis to
comprehensively evaluate ccRCC patient prognosis. A total of 524 ccRCC patients from the TCGA database
were included in the analysis. The mean age of ccRCC patients was 60.6 years, ranging from 26 to
90 years. Basic characteristics were collected for the construction of a nomogram. Through the
multivariate analysis for the OS of ccRCC patients, �ve variables, including age (P = 0.001), TNM stage (P < 
0.001), E2F1 (P = 0.037), E2F4 (P = 0.012) and E2F5 (P = 0.015), were selected for the construction of a
nomogram, as shown in Fig. 5A. The details of the multivariate analysis are summarized in Table 2.
Interestingly, although the univariate analysis of E2F5 showed that it had no signi�cance in predicting the
prognosis of ccRCC patients, E2F5 may in�uence prognosis in combination with other factors. E2F1
demonstrated a robust ability to predict the prognosis of ccRCC patients and was activated in the GLS2-L
group. We further determined the expression status of E2F1 in the different groups, and the comparisons
are shown in Fig. 5B-E. In contrast to that of GLS2, higher E2F1 expression was detected in tumor tissue
than in normal tissue, and higher E2F1 expression was related to more metastatic lymph nodes, higher
TNM stage and higher tumor grade.
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Table 2
Univariate and multivariate analyses of RCC and ccRCC patients based on E2F family members.

variables groups Renal cell carcinoma Clear cell renal cell carcinoma

Total
Patient,
N(%)

Univariate
analysis

Multivariate
analysis

Total
Patient,
N(%)

Univariate
analysis

Multivariate
analysis

age     < 0.001 < 0.001   0.001 0.001

  > 60 421(50.1)     262(50.0)    

  <=60 419(49.9)     262(50.0)    

gender     0.42 0.296   0.695 0.905

  male 564(67.1)     340(64.9)    

  female 276(32.9)     184(35.1)    

TNM
stage

    < 0.001 < 0.001   < 0.001 < 0.001

  I 450(53.6)     263(50.2)    

  II-IV 390(46.4)     261(49.8)    

GLS2     < 0.001 0.036   NA NA

  low 420(50.0)     262(50.0)    

  high 420(50.0)     262(50.0)    

E2F1     0.06 0.185   0.001 0.037

  low 420(50.0)     262(50.0)    

  high 420(50.0)     262(50.0)    

E2F2     < 0.001 0.553   0.002 0.884

  low 420(50.0)     262(50.0)    

  high 420(50.0)     262(50.0)    

E2F3     0.008 0.253   < 0.001 0.669

  low 420(50.0)     262(50.0)    

  high 420(50.0)     262(50.0)    

E2F4     NA NA   < 0.001 0.012

  low 420(50.0)     262(50.0)    
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variables groups Renal cell carcinoma Clear cell renal cell carcinoma

Total
Patient,
N(%)

Univariate
analysis

Multivariate
analysis

Total
Patient,
N(%)

Univariate
analysis

Multivariate
analysis

  high 420(50.0)     262(50.0)    

E2F5     NA NA   0.773 0.015

  low 420(50.0)     262(50.0)    

  high 420(50.0)     262(50.0)    

E2F7     < 0.001 0.021   < 0.001 0.891

  low 420(50.0)     262(50.0)    

  high 420(50.0)     262(50.0)    

E2F8     < 0.001 0.091   0.045 0.218

  low 420(50.0)     262(50.0)    

  high 420(50.0)     262(50.0)    

The ability of GLS2 and the E2F family to predict the prognosis of RCC patients was then estimated. E2F2,
E2F3, E2F7 and E2F8 demonstrated satisfactory AUC values, as shown in Table 3, and were convincing
biomarkers for predicting the prognosis according to the univariate analyses, the �ndings of which are
summarized in Table 2. Age (P < 0.001), TNM stage (P < 0.001), GLS2 (P = 0.036) and E2F7 (P = 0.021) were
selected for the construction of a nomogram based on the �ndings of the multivariate analysis, as shown
in Fig. 6A. Given the heterogeneity of RCC, E2F7 is likely to be an important biomarker for prognosis. As
shown in Fig. 6B-D, higher expression of E2F7 was detected in the group of RCC patients who died than in
the group of RCC patients who were alive, and high expression of E2F7 was related to a poor prognosis in
terms of both DFS and OS in RCC patients.
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Table 3
The comparison of AUC and C-index.

    Renal cell carcinoma Clear cell renal cell
carcinoma

AUC or C-Index P value AUC or C-
Index

P value

Differential expressed
genes

GLS2 0.605 < 0.001 0.605 < 0.001

KATNAL2 0.595 < 0.001 NA NA

ADGRF1 0.587 < 0.001 NA NA

OGN 0.585 < 0.001 NA NA

PRRX1 0.54 0.076 NA NA

AP4E1 0.54 0.076 NA NA

TSPAN3 0.526 0.254 NA NA

E2F FAMILY E2F1 0.587 0.001 0.581 < 0.001

E2F2 0.603 < 0.001 0.667 < 0.001

E2F3 0.603 < 0.001 0.626 < 0.001

E2F4 0.607 < 0.001 0.524 0.281

E2F5 0.596 < 0.001 0.566 0.004

E2F6 0.524 0.375 0.539 0.088

E2F7 0.608 < 0.001 0.677 < 0.001

E2F8 0.554 0.046 0.607 < 0.001

Prognostic model Nomograms C-Index 1: 0.7790; C-Index 2:
0.7888

C-Index: 0.7679

Validation of Nomogram Performance
Harrell’s C-indexes were calculated to evaluate the discrimination ability of the nomograms and were
involved in the comparison of the abilities of the nomograms and other biomarkers in predicting prognosis.
The comparisons of AUC values and C-indexes are shown in Table 3. The nomograms demonstrated a
more robust ability to predict prognosis than any other single variable selected in this study in RCC patients
and ccRCC patients. The calibration plots are shown in Figure S1. The probabilities of our prognostic
models agreed with the accuracy probabilities on acceptable scales (dashed lines in the calibration plots
correspond to a 10% margin of error) except for that of the 5-year OS model.
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Discussion
Glutaminase initiates glutamine catabolism, which is essential for tumorigenesis, and glutaminase is
encoded by two genes in mammals, GLS1 and GLS2 [26]. GLS2, which is also called liver-type glutaminase,
is primarily expressed in liver, pancreas and brain tissue [27]. Previous studies have proven that GLS2
serves as a tumor suppressor in liver and brain cancer [28, 29]. GLS2 is a target gene of p53 [30] and is
related to DNA hypermethylation. In breast cancer, GLS2 expression differs across the luminal subtypes
[31], with higher expression of GLS2 in luminal A and B types than in basal-subtype breast cancer. In
addition, GLS2 is a druggable metabolic node for breast cancer. In RCC, metabolic reprogramming is
closely associated with disease progression and metastasis; as a result, glutaminase inhibitors are a novel
strategy for RCC treatment [32]. Although GLS2 is predominantly found in liver tissue, its function as a
tumor suppressor in RCC requires further discussion.

In this study, we estimated the relationship between GLS2 and the prognosis of RCC and ccRCC patients
and revealed that GLS2 serves as a tumor suppressor in renal cancer. Low GLS2 expression was
associated with a poor prognosis in RCC and ccRCC patients and a signi�cant tumorigenesis tendency. We
found that low GLS2 expression endowed ccRCC cells with invasiveness and the ability to metastasize
because patients with lower GLS2 expression had a worse TNM stage than those with higher GLS2
expression. In addition, low GLS2 expression also increased the malignant degree of ccRCCs, which
participated in its ability to predict prognosis in ccRCC. Our prognostic nomogram con�rmed the tumor
suppressor function of GLS2.

GSEA demonstrated that the E2F pathway was a potential signaling pathway activated by low GLS2
expression. Previous studies con�rmed that the E2F pathway controlled tumor cell growth [33, 34] by
in�uencing cell cycle transition and DNA replication. Eight molecules of the E2F family, including E2F1 to
E2F8, play different roles in this pathway as a result of their different molecular structures, which are
caused by various combinations of pocket proteins [35]. Among E2F family members, E2F1, E2F2 and
E2F3 are activators, while E2F4, E2F5 and E2F6 are repressors. Although the tumorigenesis-inducing effect
of the E2F pathway is known [36], the role of each E2F family member and the interaction between
members in carcinogenesis and cancerous progression remain unclear. In our study, we estimated the
prognostic ability of all molecules from the E2F family by univariate and multivariate analyses. For ccRCC
patients, most of the E2F family members were related to a poor prognosis, especially E2F1, E2F4 and
E2F5, according to our nomogram based on the results of the Cox regression model. The integrated
in�uence of E2F1, E2F4 and E2F5 on clinical characteristics, including age and TNM stage, eventually
changes the outcome of ccRCC patients. However, E2F7 is the most important E2F family member in RCC
patients according to the nomogram, which is different from that in ccRCC patients.

Substantial heterogeneity was detected in ccRCC tissues in previous studies, and single biomarkers or
biomarkers for predicting prognosis concluded from studies with fewer samples usually cannot meet the
standard of e�cacy and lead to treatment failure [37, 38]. RNA-seq data from three studies were included in
this study to overcome the heterogeneity, as identifying DEGs between primary and metastatic tissues
would represent the prognosis better than target sequencing of single tissue. In addition, we constructed



Page 12/23

nomograms based on the Cox regression model to offer a simple and e�cient method for prognostic
evaluation. Clinical characteristics and genomic signatures were all involved in the construction of a
prognostic model based on a nomogram, which would better discriminate the different prognoses of
patients than the previously identi�ed single biomarkers.

Admittedly, some limitations exist in our study. As shown in calibration plots, the ability of our prognostic
models to predict the 5-year OS of both ccRCC and RCC patients is not satisfactory. This shortcoming is
related to unknown genetic alterations that may occur during the development of renal cancer that cannot
be predicted by the signatures and clinical characteristics at �rst diagnosis of the disease. Dynamic
sequencing for patients is a necessity in the treatment of the disease. In addition, further in vitro
experiments are needed to verify the relationship between GLS2 functional loss and the activation of the
E2F pathway.

Conclusion
    In conclusion, GLS2 serves as a tumor suppressor in ccRCC, and loss of GLS2 function is related to poor
prognosis. GSEA suggested that the E2F pathway may be activated by loss of GLS2 function. E2F1, E2F4
and E2F5 in�uence the prognosis of ccRCC patients together with age and TNM stage, while E2F7 is the
key in�uencer of the E2F family, being associated with the prognosis of RCC patients. We constructed
nomograms to display our results and offer a simple but e�cient method to evaluate the prognosis of
ccRCC and RCC patients. Further research is needed to verify our results.
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Figure 1

The selection of DEGs. A1: volcano plot of GSE105261; A2: volcano plot of GSE23629; A3:volcano plot of
GSE47352; B: heatmap of DEGs; C: Venn plot for pathways of enrichment analyses; D1-D4: ROC curves of
selected DEGs with satis�ed AUC; D5-D8: comparison of DEGs expression between alive and dead patients.
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Figure 2

Univariate and multivariate analyses of DEGs in RCC patients. A-D: univariate analyses of DEGs in DFS and
OS among RCC patients; E: nomogram based on COX regression model for RCC patients.
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Figure 3

The role of GLS2 in ccRCC patients. A: the IHC images of GLS2 in ccRCC; B: the expression of GLS2 in
ccRCC based on sample types; C: the expression of GLS2 in ccRCC based on nodal metastasis status; D:
the expression of GLS2 in ccRCC based on individual cancer stages; E: the expression of GLS2 in ccRCC
based on tumor grade; F: DFS of ccRCC grouped by GLS2 expression; G: OS of ccRCC grouped by GLS2
expression; H1-H3: GSEA analyses in ccRCC patients grouped by GLS2 expression.
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Figure 4

The role E2F family in ccRCC patients. A1-A3: GSEA analyses in ccRCC patients based on GLS2 expression;
B1-B6: ROC curves of E2F family members with satis�ed AUC; C1-C6: OS of ccRCC patients grouped by E2F
family members.
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Figure 5

The relationship between E2F family members and ccRCC prognosis. A: nomogram for ccRCC patients
based on COX regression model; B: the expression of E2F1 in ccRCC based on sample types; C: the
expression of E2F1 in ccRCC based on nodal metastasis status; D: the expression of E2F1 in ccRCC based
on individual cancer stages; E: the expression of E2F1 in ccRCC based on tumor grade;
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Figure 6

The relationship between E2F family members and RCC prognosis. A: nomograms for RCC patients based
on COX regression model; B: the expression of E2F7 in alive and dead patients; C: DFS of RCC patients
grouped by E2F7 expression; D: OS of RCC patients grouped by E2F7 expression.
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