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ABSTRACT 88 

African Americans (AAs) experience a high burden of hypertension but have been 89 

underrepresented in genetic studies of blood pressure. We performed common and rare 90 

variant genome-wide association studies (GWAS) of systolic (SBP) and diastolic (DBP) 91 

blood pressure, pulse pressure and hypertension in 95,457 AAs from the Million 92 

Veteran Program and Continental Origins and Genetic Epidemiology Network 93 

(COGENT) consortium with replication in up to 41,014 African-ancestry participants. 94 

GWAS meta-analysis confirmed 26 previously reported loci including 15 with SBP, four 95 

with DBP, 10 with pulse pressure and five with hypertension. Predicted gene expression 96 

analysis identified 25 genes newly associated with blood pressure. We provide 97 

validated African-ancestry polygenic scores for SBP and DBP that are strongly 98 

associated with hypertension. This work provides evidence for similar genetic 99 

architectures of hypertension and blood pressure across racial/ethnic groups and 100 

demonstrates the utility of predicted expression analysis in identifying novel genes 101 

beyond GWAS alone. 102 

 103 

 104 



Introduction 105 

Decades of scientific evidence implicate elevated blood pressure in the etiology of 106 

cardiovascular disease (CVD), including coronary artery disease, peripheral arterial 107 

disease, and stroke, as well as renal and ocular damage. Elevated blood pressure 108 

accounts for at least 13% of annual deaths worldwide.1,2 Risk of death from ischemic 109 

heart disease and stroke increases linearly with systolic blood pressure (SBP) and 110 

diastolic blood pressure (DBP) elevations greater than 115 mmHg and 75 mmHg, 111 

respectively.3 In the United States, 34% and 44% of adults of European and African 112 

ancestry, respectively, have hypertension, which rank among the highest prevalence 113 

rates of hypertension among ancestrally and geographically defined world 114 

populations.4,5 Hypertension observed in African Americans is generally more severe, 115 

develops earlier, and leads to increased rates of cardiovascular disease (CVD) 116 

compared to European Americans6.  Specific observations include a two-fold increase 117 

in risk of stroke and three-fold increase in risk of death among African Americans 118 

compared to European Americans.7,8 Additionally, the progression from pre-119 

hypertension to hypertension is accelerated in African American adults by an average of 120 

one year,9 and African Americans with pre-hypertension also have a higher burden of 121 

CVDs than European Americans.10 The higher rates of CVD among African Americans 122 

compared to European Americans are explained to some extent by higher burdens of 123 

obesity, diabetes (T2D), and other CVD risk factors, in addition to hypertension.11 124 

However, the adjusted cumulative incidence of hypertension is still higher in African 125 

Americans than European Americans across levels of body mass index (BMI, kg/m2).12  126 

The canonical risk factors for hypertension traits have been identified primarily in 127 

European- and Asian-ancestry participants and include physical inactivity, diet, obesity, 128 

smoking, high alcohol consumption, and hypertension-increasing alleles.13-16 Recent 129 

efforts to determine reasons for disparities between African- and European-ancestry 130 

individuals in the prevalence of hypertension and related adverse sequelae have 131 

included assessment of the impact of socioeconomic status, discrimination, and 132 

systemic racism.17-25 However, exposure rates and strength of effects of well-recognized 133 

risk factors, together with socioeconomic factors, do not fully explain the associated 134 

disparities. 135 



Large-scale genome-wide association studies (GWAS) have reported 3,800 136 

independent SNP signals associated with blood pressure traits (SBP, DBP, and pulse 137 

pressure), establishing that the genetic architecture of blood pressure is complex with 138 

many genetic determinants of modest effect.15,26-47 The few GWAS, that have been 139 

published in African ancestry populations,26,28,29,38,48, have relatively small sample sizes 140 

and have identified a small number of novel loci.  141 

In this study, we have combined evidence for association from the Million Veteran 142 

Program (MVP) and Continental Origins and Genetic Epidemiology Network (COGENT) 143 

consortium to study common and rare genetic determinants of BP in 95,457 African-144 

ancestry participants (Figure 1). Additionally, we evaluated replication in up to 41,014 145 

African-ancestry participants from five cohorts. Meta-analysis in discovery and 146 

replication samples detected 26 significantly associated loci, of which 15 loci associated 147 

with SBP, four loci with DBP, ten loci associated with pulse pressure, and five loci with 148 

hypertension. Additionally, we evaluated associations with genetically predicted gene 149 

expression (GPGE) using S-PrediXcan49 and combined association evidence across 150 

traits using CPASSOC.50 We further developed and validated African-specific polygenic 151 

scores for blood pressure that demonstrate substantial associations with blood pressure 152 

values between top and bottom deciles of the polygenic scores in independent data.  153 

 154 

RESULTS 155 

This study compiled discovery resources totaling 95,457 participants of African ancestry 156 

with blood pressure measurements and genome-wide genotype data (Supplementary 157 

Table 1). Generally, although MVP is predominantly male, other cohorts are more 158 

balanced (replication consisted of 43% male), resulting in discovery and replication 159 

combined near 60% male. Mean age ranged across studies from 44-61 years, while 160 

mean BMI was similar across studies, ranging from 29-31.  161 

Single trait GWAS Results 162 

In discovery-stage meta-analyses, 22 loci were identified at genome-wide significance 163 

for SBP (Supplementary Table 2a), and 20 significant loci were detected for DBP 164 

(Supplementary Table 2b).  There were eight significant loci identified for pulse pressure 165 

and seven for HTN in discovery analyses (Supplementary Tables 2c and 2d, 166 



respectively). SNP-based heritability of blood pressure phenotypes in discovery analysis 167 

as estimated with LD Score Regression was 0.065 (SBP), 0.067 (DBP), 0.081 (pulse 168 

pressure) and 0.059 (HTN). LD intercepts indicated that inflation was not due to 169 

population stratification (LD intercepts of 1.035, 1.027, 0.98, and 1.001 for SBP, DBP, 170 

pulse pressure, and HTN, respectively). 171 

Replication of suggestive (p<1x10-6) common variants was performed in up to 27,301 172 

additional African-ancestry participants from MVP, UK Biobank, and BioVU 173 

(Supplementary Table 1).  In total, 112 common sentinel SNPs were evaluated for 174 

replication across all four phenotypes. We report a tiered system of replication where 175 

tier 1 represents the most stringently replicated variants (p<5x10-8 in discovery, 176 

p<0.05/N SNPs in replication, and p<5x10-8 in meta-analysis with consistent direction), 177 

tier 2 replication is defined by p<5x10-8 in discovery, p<0.05 in replication, and p<5x10-8 178 

in meta-analysis with consistent direction, and tier 3 represents SNPs which were 179 

suggestive in discovery but with addition of replication became statistically significant 180 

after meta-analysis (p<1x10-6 in discovery, p<0.05 in replication, and p<5x10-8 in meta-181 

analysis with consistent direction). All tiers of SNPs represent statistically significant 182 

results following replication and meta-analysis. Replication results are summarized in 183 

Supplementary Table 2a-d.  184 

Among 41 variants (p<1e-6) carried forward from discovery analysis for replication with 185 

SBP, 15 replicated significantly: two in tier 1, nine in tier 2, and four in tier 3, with the 186 

strongest association at rs3821845 in CACNA1D on chromosome 3 (p-value = 9.94x10-187 

19, effect allele frequency [EAF] = 0.24; Table 1, Supplementary Table 2a).  Of 29 188 

variants evaluated in replication for DBP, four replicated significantly: two in tier 1 and 189 

two in tier 2 (Supplementary Table 2b). A different sentinel SNP, rs9821489, in 190 

CACNA1D (r2 = 0.272 with rs3821845) was the strongest association for DBP as well 191 

(p-value=1.13x10-18; Supplementary Table 2b). Ten of 33 variants from pulse pressure 192 

discovery analyses replicated significantly: five in tier 1, one in tier 2, and four in tier 3 193 

(Supplementary Table 2c). The SNP rs7006531 near CDH17 was the strongest 194 

association for pulse pressure (p-value = 4.56x10-32, EAF = 0.14; Supplementary Table 195 

2c). For HTN, of 24 candidate variants evaluated, five replicated significantly, two in tier 196 

1, two in tier 2, and one in tier 3 (Supplementary Table 2d).  An intronic SNP 197 



rs17035646 in CASZ1 was the lead signal for HTN (p-value = 4.20x10-16, EAF = 0.18; 198 

Supplementary Table 2d). 199 

We used a joint conditional analysis implemented in GCTA to assess novelty of these 200 

results against 3800 previously identified SNPs associated with blood pressure 201 

(Supplementary Table 3). This conditional analysis of discovery results identified seven 202 

secondary signals (six unique SNPs) across the four phenotypes, however, none of 203 

these SNPs replicated (Supplementary Table 4).  204 

Pathway Analysis 205 

We used DEPICT to identify significantly enriched tissues (Supplementary Tables 5a-d) 206 

and pathways (Supplementary Tables 6a-c) for any of the four phenotypes using all 207 

discovery sentinel variants with p<10-6. For pulse pressure, several cell types were 208 

implicated in the tissue enrichment analysis (Mesenchymal Stem Cells, Osteoblasts, 209 

Connective Tissue Cells, Stromal Cells, and Fibroblasts) using a false discovery rate of 210 

5%. For the pathway gene set enrichment, 145 pathways were significant only for DBP. 211 

The top result was XY body, followed by EDC4 subnetwork and UBE2L3 subnetwork.  212 

 213 

Multi-trait GWAS Results 214 

Combination of phenotype results in a multi-trait approach using CPASSOC50 identified 215 

a large number of significant variants. Specifically, 9 loci that did not attain genome-216 

wide significance in discovery analysis of any trait individually (Supplementary Table 7). 217 

Of these, 7 were independent of any of the 3,800 previously identified sentinel lead or 218 

secondary blood pressure SNPs (Supplementary Table 3; r2<0.1). Eight of the nine 219 

sentinel SNPs were identified using the model assuming heterogeneity between 220 

phenotypes, while one SNP was significant in the model assuming homogeneity 221 

between phenotypes: rs17429177 on chromosome 7 between EVX1 and HIBADH, 222 

which was in LD with a known locus. Only one SNP was directly confirmed by multi-trait 223 

analysis of replication results, rs143320468 near the previously identified locus CDH17. 224 

Although not replicated in multi-trait analysis, rs10898966 near PPME1 attained 225 

genome-wide significance in meta-analysis of the discovery and replication phases for 226 

pulse pressure (Supplementary Table 2c). Another three were not sentinel candidates 227 



for single-trait common SNP variation, but upon investigation into multi-trait results were 228 

found to also surpass genome-wide significance with a single trait in the combined 229 

discovery and replication results (Supplementary Table 7).   230 

Rare Variants Analysis 231 

Discovery analysis of variants with minor allele frequency less than 1% was performed 232 

in MVP alone, as COGENT data for low frequency SNPs was unavailable. A total of 233 

three low frequency variants (MAF<1%, effective minor allele count≥20) were 234 

suggestively (p<10-6) associated with SBP, seven with DBP, 19 with pulse pressure, 235 

and 11 with HTN (Supplementary Figure 1a-d; Supplementary Table 8). All suggestive 236 

rare variants (p<10-6) were evaluated for replication in up to 41,014 participants from 237 

four cohorts of recent African-ancestry – those included in common variant replication 238 

with the addition of TOPMed. TOPMed samples were included only in rare variant 239 

analyses due to extensive sample overlap with COGENT. Among the 53 suggestive 240 

variants from MVP, 40 were available in at least one replication cohort. Four SNPs had 241 

p-values less than 0.05 though none met Bonferroni correction for the number of tests 242 

performed. Intergenic SNP rs149762703 (near LINC02301) was suggestively 243 

associated with HTN in replication (preplication=0.037) and meta-analysis of discovery and 244 

replication indicated consistent directions of association, though not quite attaining 245 

genome-wide significance (pmeta=2.68x10-7; risk allele [A] Odds Ratio = 2.09 [95% 246 

Confidence interval 1.58-2.76], EAF=0.0033).  247 

Genetically-predicted gene expression 248 

Discovery and Replication meta-analysis results for common variants were used to 249 

evaluate the associations between BP traits and GPGE levels across five 250 

cardiovascular-related tissues (whole blood, heart-left ventricle, heart-atrial appendage, 251 

aorta, and tibial artery) from Gene Tissue Expression Project (GTEx) v7 using an 252 

African-ancestry covariance matrix developed in independent samples to account for 253 

population LD and S-PrediXcan software. Colocalization was confirmed at a majority of 254 

results. We detected significant (p<3.5x10-6) GPGE associations for 18 gene-tissue 255 

pairs with SBP, 19 with DBP, 49 for pulse pressure, and three with hypertension 256 

(Supplementary Tables 9a-d, Figure 3a-d). These findings represent 59 distinct genes, 257 

of which 52 also significantly colocalized. A total of 25 have not been definitively linked 258 



to blood pressure in the literature (Table 1). Nine genes were significantly associated 259 

with two or more traits. Predicted increased expression of HOXA2 in Tibial Artery was 260 

significantly associated with decreases in all three BP phenotypes, with the largest 261 

effects seen with SBP (-0.56 mm Hg per standard deviation of HOXA2 transcript level; 262 

Figure 4). Predicted increased SH3PXD2A expression in heart-left ventricle tissue was 263 

associated with both decreased SBP and DBP (Figure 5). Additional associations 264 

across multiple phenotypes were detected with predicted CCDC71L in aorta with 265 

increased SBP and pulse pressure, predicted BCAR1 in tibial artery (increased SBP 266 

and pulse pressure), aorta and whole blood (pulse pressure), ULK4 in tibial artery 267 

(DBP) and whole blood (DBP and pulse pressure) (increased DBP, decreased pulse 268 

pressure), CTSW in left ventricle (decreased SBP and pulse pressure), PRSS45 in 269 

aorta (increased DBP and risk of HTN) , RP11-259G18.3 in tibial artery (decreased 270 

DBP and SBP), and SNX32 in left ventricle (increased SBP and pulse pressure).  271 

Polygenic Scores of Blood Pressure  272 

Polygenic scores were developed for DBP and SBP, derived from the discovery African-273 

ancestry summary statistics (Supplementary Tables 10a and b). The African-ancestry-274 

derived scores had optimal p-value thresholds of 0.1 for both SBP and DBP as 275 

determined in the BioVU replication set (Supplementary Figure 2). The PRS explained 276 

1.1 and 0.9 percent of the variance of SBP and DBP, respectively, in BioVU. Validation 277 

in UKB indicated higher percentages of variance explained (1.5 and 1.3 percent, for 278 

SBP and DBP respectively; Supplementary Table 11). In parallel, we evaluated the 279 

polygenic score catalog51 scores for SBP and DBP52 which are derived from European-280 

ancestry genome-wide significant results47. The European-derived polygenic scores 281 

were also significantly associated with blood pressure in BioVU African-ancestry 282 

individuals, with effect estimates per standard deviation of PRS being consistent for 283 

DBP scores (3.41 mmHg [p-value = 2.4x10-7] and 3.42 mmHg [p-value = 9.31x10-7] for 284 

African- and European-derived scores respectively). The African-derived SBP score 285 

however had a much larger effect (8.07 mmHg [p-value = 9.5x10-14]) than the 286 

European-derived score (4.15 mmHg [p-value = 4.4x10-16]), though both were highly 287 

significant.  288 



Comparison of top to bottom deciles for African-ancestry derived polygenic scores in 289 

UKB African-ancestry individuals represented an increase of 7.66 mmHg for SBP and 290 

4.35 mmHg for DBP (Supplementary Figure 3). Deciles of each score also showed 291 

increasing association with hypertension status, with the top decile relative to the 292 

bottom decile having odds ratios of 4.46 (95% Confidence Interval [CI]: 3.04-6.55; p-293 

value = 1.99x10-14) and 3.31 (95% CI 2.26-4.86; p-value = 9.28x10-10), for SBP and 294 

DBP scores, respectively, when modeled separately adjusting for age, age squared, 295 

sex, BMI, and proportions of ancestry (Figure 6; Supplementary Table 12). The joint 296 

effect of both African-ancestry derived scores (SBP and DBP PRS) in the same model 297 

had a stronger relationship than each score individually, with a top-relative-to-bottom-298 

decile odds ratio of 5.73 (95% CI 5.29-6.16; Figure 6, Supplementary Table 12). 299 

Performance of the model including both scores and basic covariates trained in BioVU 300 

and applied in UKB revealed an area under the receiver-operator curve (AUC) of 0.720 301 

(95% confidence interval: 0.708-0.731; Supplementary Figure 4), an increase of 0.01 302 

from the covariate-only model (AUC = 0.710). 303 

 304 

DISCUSSION 305 

The results of this analysis provide additional insight into the genetic and biological 306 

architecture of blood pressure traits in African ancestry populations. This population 307 

remains relatively understudied despite experiencing disproportionate health impacts of 308 

conditions related to high blood pressure. We leveraged the GWAS results to observe 309 

evidence of associations between expression of 25 previously unreported genes and 310 

blood pressure traits. Many of these genes exist in or are nearby regions that were 311 

mapped to blood pressure traits in prior studies but were not annotated in those reports 312 

or in the GWAS catalog. Additionally, we provide validated polygenic scores for 313 

predicting blood pressure traits, with base, target, and validation steps performed in 314 

recent African ancestry populations.   315 

In the GWAS stage, we observed and replicated 35 sentinel loci. Of these, only one 316 

SNP was conditionally independent compared with prior GWAS sentinel SNPs. 317 

Previous GWAS of blood pressure have approached sample sizes of 1 million 318 

participants and identified thousands of associated signals. The estimated chip-based 319 



heritability of BP traits from these analyses ranged between six and eight percent which 320 

is substantially less than the heritability estimated by family studies and larger SNP-321 

based studies. Additionally, the substantial difference between LDSC intercepts and λGC 322 

indicates that blood pressure traits are likely very polygenic in African ancestry 323 

populations. Together, these facts suggest that the genetic architecture of blood 324 

pressure traits is highly complex and dominated by subtle effects in recent African 325 

ancestry populations as has been observed in European and East Asian populations.  326 

We leveraged the GWAS results to identify genes that are involved in blood pressure 327 

traits. We used a combination of S-PrediXcan to detect GPGE associations and 328 

estimate effects and COLOC to mitigate LD contamination, where the causal variants 329 

for expression and trait association are in LD but are distinct loci. We detected and 330 

colocalized 25 genes, pseudogenes, and non-coding RNAs that were previously 331 

unreported in the GWAS literature (Table 1). 332 

The 25 unreported gene regions including the genes and 50kb flanking sequences 333 

contain previously reported associations with several non-blood pressure traits that may 334 

offer some insight into mechanisms of influence on blood pressure. We observed 335 

relationships between genes associated with blood pressure and prior findings from 336 

studies of both psychiatric and physical traits. Twelve of these genes are at or nearby 337 

previous associations with various blood cell and composition traits. TRIP4, ALS2CL, 338 

RP11-259G18.3/CCDC36, SMIM4, IFT52, HSD17B6 TPD52L1, HEMK1, HOXA2, 339 

SH3PXD2A, and SDCCAG3 are all in genomic regions with statistically significant 340 

associations with one or more blood cell labs or blood protein levels53-59. The RP11-341 

890B15.3, PPM1M, HSD17B6, HOXA2 and HEMK1 regions have been associated with 342 

BMI, adiposity measures, or waist-hip ratio adjusted for BMI60-63. TIGD7 and HSD17B6 343 

are nearby associations with bone mineral density64. 344 

Several blood pressure genes are nearby loci associated with various psychiatric traits. 345 

The MBTPS1 gene region has been associated with schizophrenia, while RP11-346 

3B7.1/CCDC36, and PPM1M have been associated with neurotic behaviors65-68. RP11-347 

3B7.1/CCDC36, and KDELR3 were also nearby associations with sleep quality or 348 

duration69-71. Additionally, CCDC36 and SH3PXD2A are in regions associated with 349 

educational attainment72-74. The alcohol dehydrogenase 1a (ADH1A) gene region has 350 



been associated with alcohol dependency75, and another gene in this pathway ALDH2 351 

has been associated with blood pressure traits and has been under strong recent 352 

positive selection in East Asian populations15. The TIGD7, HSD17B6, and AC005022.1 353 

regions have also been associated with smoking behaviors76.  354 

The RP11-819C21.1 region is nearby an association with use of beta blockers77, which 355 

is a class of drug sometimes used in combination with ACE inhibitors to control blood 356 

pressure in African ancestry patients with chronic kidney disease or myocardial 357 

infarction78. AC005022.1 is also nearby a renal function sentinel SNP79. Additionally, 358 

SH3PXD2A is nearby a sentinel locus for atrial fibrillation80 and the KDELR3 region is 359 

associated with Electrocardiogram T-peak to T-end81, suggesting a role for heart rhythm 360 

and contractility in African ancestry blood pressure traits.  SH3PXD2A is also within loci 361 

associated with intraocular pressure, cerebral small vessel disease, and white matter 362 

hyperintensities, all closely related to blood pressure levels82-84. MBTPS1 has also been 363 

implicated in stroke85. 364 

The HOXA2 and previously reported HOXA7 genes are located in a gene cluster with 365 

several homeobox genes. This region was first mapped to blood pressure traits by the 366 

COGENT consortium in Franceschini et al28, and later observed in a transethnic study 367 

including African American individuals by Giri et al29 and in a Japanese population by 368 

Takeuchi et al86. These studies identified this region, but substantial uncertainty 369 

remained about what the causal gene(s) were for blood pressure. In this study, we 370 

report evidence that this association is driven at least in part by regulatory effects on 371 

HOXA2 and HOXA7 expression in African ancestry individuals (Figure 4).     372 

Another aspect of this work is the development of externally validated polygenic risk 373 

scores to predict blood pressure levels and hypertension prevalence. The polygenic 374 

score catalog51 does not currently contain scores for SBP or DBP derived from African 375 

ancestry populations, although genetic risk scores based on sentinel SNPs do exist for 376 

European-derived populations52. These scores have a wide range of potential 377 

applications, including predicting hypertension and hypertension sequelae, evaluations 378 

of genetic predisposition for increasing blood pressure to other traits in populations such 379 

as pediatric that may not be accessible for large-scale genomic interrogation87, 380 

facilitating Mendelian randomization studies88, and phenome-wide association studies29. 381 



In our comparison of these African ancestry-derived PRS and European GRS52 from the 382 

polygenic score catalog (PGS000301 and PGS000302) in African ancestry individuals, 383 

we observed that the African-ancestry derived scores explained nearly three-fold as 384 

much variance (1.1% and 0.9% for SBP and DBP, respectively compared to 0.35% and 385 

0.32%) as the PGS catalog scores. Additionally, we observed substantial and clinically 386 

relevant changes in average blood pressures between top and bottom deciles of the 387 

SBP and DBP PRSs. The odds ratio for hypertension for the scores separately as well 388 

as jointly were also very significant compared with effects of other classical 389 

hypertension risk factors. A predictive model of hypertension including the PRSs and 390 

only basic covariates has an AUC of 0.717. These results demonstrate that the PRSs 391 

are robustly associated with the target traits, are substantive predictors of blood 392 

pressure levels and hypertension risk when compared with other important risk factors, 393 

and that even with a modest percentage of explained variance have the potential to be 394 

a useful variable in research and clinical prediction.  395 

Our study of rare variants failed to detect any replicated associations between blood 396 

pressure traits and variants with an allele frequency less than 0.01. There were 397 

limitations to this study, such as the use of older imputation references from the 1000 398 

Genomes project instead of TOPMed in the GWAS, and the mixture of GWAS and 399 

sequencing data in the replication stage. Despite these limitations, the data should have 400 

been sufficient to detect large effects at variants close to 0.01 frequency, with a sample 401 

size of about 100,000 across stages for most variants. We had at least 95% power to 402 

detect an effect size of 5mm Hg for SBP at a frequency of at least 0.003, 6mm Hg at a 403 

frequency of 0.002, and 9mm Hg at a frequency of 0.001 (Quanto v1.2.4). Therefore, 404 

we believe it is unlikely that very large effect alleles exist in this frequency range in the 405 

recent African ancestry population, although we acknowledge genomic coverage at 406 

these allele frequencies is likely incomplete. This suggests that intermediate-frequency 407 

variants between 0.01 and 0.001 do not substantively explain the racial disparities in 408 

blood pressure and hypertension traits such as has been reported in large studies of 409 

other populations, and that larger studies with better genomic coverage will be required 410 

to interrogate the influence of alleles with frequencies less than 0.001. African 411 

populations have more rare genetic variation than populations with other geographic 412 



origins89, and so it is possible that studies in these populations will produce more 413 

significant associations and insights into important genes from rare variants than similar 414 

size studies conducted elsewhere.  415 

In our analyses we have evaluated associations between common genetic variants, rare 416 

variants, GPGE and blood pressure traits using the largest sample of African Americans 417 

to date. These analyses provided new insights into biological factors and the effect 418 

sizes at rare variants that contribute to hypertension risk in recent African ancestry 419 

populations. We also provide externally validated African ancestry PRSs for researchers 420 

to use in subsequent research and predictive models. These advances, as well as 421 

providing some resolution of the association in the HOX gene cluster, represent 422 

progress in blood pressure genetics for African ancestry populations. The results of this 423 

study also support further efforts to expand sample sizes of African ancestry blood 424 

pressure GWAS. 425 

 426 

METHODS 427 

Discovery Cohorts 428 

The Million Veteran Program 429 

The Million Veteran’s Program (MVP) is a large cohort of fully consented participants 430 

who were recruited from the patient populations of 63 Veteran’s Administration (VA) 431 

medical facilities90. Recruitment began in 2011 and is conducted in-person, which is 432 

initiated by an invitation letter and completed by answering baseline and lifestyle 433 

questionnaires, providing a blood sample, and providing access to medical records, and 434 

giving permission for re-contact. Consent to participate is provided after counseling by 435 

research staff and mailing of informational materials. All documents and protocols have 436 

been approved by the VA Central Institutional Review Board. Blood samples are 437 

collected by phlebotomists and banked at the VA Central Biorepository in Boston, MA. 438 

Genotyping was conducted using a customized Affymetrix Axiom Biobank Array chip 439 

with additional content added to provide coverage of African and Hispanic haplotypes, 440 

as well as markers for common diseases in the VA population. Researchers are 441 

provided with de-identified versions of these data, and do not have the ability or 442 

authorization to link these details with a participants’ identity. 443 



MVP Genotype QC 444 

Blood samples drawn from consenting MVP participants were shipped to a central 445 

biorepository in Boston, Massachusetts, where DNA was extracted and shipped to two 446 

external genotyping centers for genotyping on an Affymetrix Axiom Biobank array 447 

designed specifically for the MVP. The MVP genomics working group applied standard 448 

quality control and genotype calling algorithms to the data in batches using the 449 

Affymetrix Power Tools Suite (v1.18). Standard quality control pipelines were used to 450 

exclude duplicate samples, samples with more heterozygosity than expected, or 451 

discordance genetically inferred sex versus self-report. We also excluded related 452 

individuals (halfway between 2nd and 3rd degree relatives or closer) as measured by 453 

KING software91. 454 

We excluded: duplicate samples, samples with more heterozygosity than expected, an 455 

excess (>2.5%) of missing genotype calls, or discordance between genetically inferred 456 

sex and phenotypic gender. In addition, one individual from each pair of related 457 

individuals (as measured by KING software91) were removed. Prior to imputation, 458 

variants that were poorly called or that deviated from their expected allele frequency 459 

based on reference data from the 1000 Genomes Project92 were excluded. After pre-460 

phasing using EAGLE v293, genotypes from the 1000 Genomes Project92 phase 3, 461 

version 5 reference panel were imputed into Million Veteran Program (MVP) participants 462 

via Minimac3 software94. Principal component analysis was performed using 463 

FlashPCA95, to generate top 10 genetic principal components explaining the greatest 464 

variability. 465 

Race/ethnicity 466 

Information on race (non-Hispanic blacks, Asians, and Native Americans) and ethnicity 467 

(Hispanic: Yes or No) were obtained based on self-report through centralized VA data 468 

collection methods using standardized survey forms, or through the use of information 469 

from corporate data warehouse (CDW), or Observational Medical Outcomes 470 

Partnership (OMOP) data, when information from self-report survey was missing. Race 471 

and ethnicity categories were then merged to form the following administratively 472 

assigned race/ethnicity variables: non-Hispanic whites, non-Hispanic blacks, non-473 

Hispanic Asians, non-Hispanic Native Americans and Hispanics. Individuals for whom 474 



race and ethnicity could not be confidently assigned due to conflicting records and/or 475 

missing data, race/ethnicity category was set to unknown. Prior to analysis QC, there 476 

were 15,710 with unknown status for race/ethnicity. For these individuals, we used a K-477 

means clustering approach in R following the McQueen algorithm with top 10 genetic 478 

principal components as input variables. In order to obtain the most reliable cluster 479 

designations for the missing data, the k-means approach was applied to the maximum 480 

available samples: the 1000 Genomes reference populations and all individuals for 481 

whom PCs were available regardless of whether race/ethnicity designations were 482 

unknown. K-clusters were optimized by testing values K=2 through K=10. K = 4 was 483 

ultimately chosen as the most optimal value, as visual examination of these most 484 

closely corresponded to non-Hispanic whites (N=5,265), non-Hispanic blacks 485 

(N=4,671), Asians (N= 3,936) and Hispanics (N= 1,838). Only non-Hispanic blacks were 486 

included in this analysis. 487 

MVP BP Phenotypes 488 

We selected adults (age ≥ 18) and used the earliest median eligible non-Emergency 489 

Department outpatient measured SBP in the EHR, and also used the corresponding 490 

DBP from this measure. Measures are ineligible if they occur at or after an ICD-9 code 491 

from the groups 585, 405, or 428. If pain scores were available, we censored BP 492 

measures taken during encounters when a pain score ≥ 5 was recorded, because 493 

severe pain can elevate BP96,97. For measures taken while a patient was on an 494 

antihypertensive medication we added 15 mmHg to SBP and 10 mmHg to DBP40,98. 495 

MVP Analysis 496 

For the MVP GWAS we performed linear regression association tests with additive 497 

models for untransformed BP traits, after adjusting for medication use. We adjusted 498 

linear regression models analyzing SNP associations for age at BP measure, age2, sex, 499 

BMI measured within 1 year of BP measure, and top 10 genetic principal components in 500 

analyses. All primary analyses for the MVP were conducted by strata of administratively 501 

assigned race/ethnicity or by their empirically designated clusters. All regression based 502 

analyses were conducted in SNPTEST-v2.5.4-beta99. Inference was limited to 503 

genotyped and imputed variants with SNPTEST Info scores of 0.4 or higher, with Hardy 504 



Weinberg equilibrium p-value > 5x10-8 for common variant analysis (minor allele 505 

frequency > 0.1).  506 

Continental Origins and Genetic Epidemiology Network (COGENT) consortium 507 

COGENT consists of 19 studies (n = 29,378 subjects) with GWAS level data which has 508 

been previously reported28,38. Each study followed protocols for phenotype 509 

harmonization. Each cohort was genotyped on either Affymetrix or Illumina genotyping 510 

platforms. Pre-imputation quality criteria were applied, and individuals with discordant 511 

self-reported gender and genetic gender were excluded. Imputation was performed 512 

using the software MACH-ADMIX, MACH-minimac or IMPUTE2100 using the Phase 1 513 

integrated (March 2012 release) multi-ethnic reference panel from the 1000G 514 

Consortium92.  Autosomal chromosome SNP associations for SBP, DBP, and pulse 515 

pressure were assessed by linear regression for unrelated data or by the generalized 516 

linear mixed-effects model for family data, under the assumption of an additive genetic 517 

model. Analysis of hypertension used logistic models. All models were adjusted for age, 518 

age2, sex, and body mass index. Up to ten principal components were included, as 519 

needed as covariates in the regression models, to control population stratification101,102. 520 

We used standardized pre-meta-analysis QC criteria for all 19 discovery studies103. At 521 

the SNP level, we excluded variants with 1) imputation quality r2 < 0.3 in MACH or <0.4 522 

in IMPUTE2; 2) the number of informative individuals (2×MAF×N×r2) ≤ 30; 3) an effect 523 

allele frequency (EAF) difference larger than 0.3 in comparison with the mixture of 80% 524 

YRI and 20% CEU of 1000G; and 4) the absolute regression coefficient ≥ 10. SNPs that 525 

passed the QC were carried forward for inverse variance weighted meta-analyses, 526 

implemented in METAL104 527 

Meta-analysis of discovery datasets 528 

Inverse-variance weighted fixed-effects meta-analysis of common variants across MVP 529 

subsets and summary statistics from COGENT was performed using the METAL 530 

software104. Genomic inflation factors were calculated, and λGC for the discovery from 531 

MVP were 1.195, and 1.053 for SBP and DBP, respectively, 1.303 and 1.315, 532 

respectively, from COGENT, and 1.275 and 1.140, respectively, in the overall discovery 533 

analysis.  534 

Selection of SNPs for Replication 535 



We considered for follow-up sentinel SNPs with meta-analysis p-value < 1x10-6 for any 536 

BP traits.  In silico replication summary statistics were requested for 4,578 SNPs from 537 

five studies of blood pressure phenotypes. Rare variants (MAF<0.01) were extracted 538 

from MVP-only discovery summary statistics as COGENT did not analyze low-539 

frequency variants. Due to sample overlap between the COGENT contributing consortia 540 

and those contributing to the TOPMed dataset, TOPMed results were only contributed 541 

to replication meta-analyses of rare variants. Discovery and Replication data were 542 

combined using fixed-effects inverse-variance weighted meta-analysis implemented in 543 

METAL104. 544 

MVP Phase 3 545 

MVP Phase 3 data was generated in the same manner as described above for an 546 

additional 10,392 samples of recent African ancestry. 547 

BioVU 548 

The BioVU DNA Repository is a deidentified database of electronic health records 549 

(EHR) that are linked to patient DNA samples at Vanderbilt University Medical Center. A 550 

detailed description of the database and how it is maintained has been published 551 

elsewhere105. BioVU participant DNA samples were genotyped on a custom Illumina 552 

Multi-Ethnic Genotyping Array (MEGA-ex; Illumina Inc., San Diego, CA, USA). Quality 553 

control included excluding samples or variants with missingness rates above 2%. 554 

Samples were also excluded if consent had been revoked, sample was duplicated, or 555 

failed sex concordance checks. Imputation was performed on the Michigan Imputation 556 

Server (MIS) v1.2.494 using Minimac4 and the Haplotype Reference Consortium (HRC) 557 

panel v1.1106.  558 

Among BioVU participants, we selected unrelated self-reported Black adults (age ≥ 18) 559 

and used the earliest median eligible non-Emergency Department outpatient measured 560 

SBP in the EHR, and the corresponding DBP. Measures were considered ineligible if 561 

they occurred at or after an ICD-9/10 billing code from the groups 585/N18, 405/I15, or 562 

428/I50. For measures taken while a patient was on an antihypertensive medication we 563 

added 15 mmHg to SBP and 10 mmHg to DBP. Electronic health records were used to 564 

define HTN status through presence of an HTN ICD-9 code, treatment with an 565 



antihypertensive drug, or having two SBP measures >140 mmHg and/or two DBP 566 

measures >90 mmHg. 567 

We performed linear regression association tests with additive models for 568 

untransformed BP traits, after adjusting for medication use. We adjusted linear or 569 

logistic regression models analyzing SNP associations for age at BP measure, age2, 570 

bmi, sex, and the top 10 genetic principal components using SNPTEST-v2.5.4-beta99. 571 

Inferences were limited to genotyped and imputed variants with imputation info scores 572 

of 0.4 or higher, Hardy-Weinberg equilibrium p-values >5x10-8, and minor allele 573 

frequencies >0.01. Blood pressure and hypertension phenotype data were available 574 

from 9,268 self-reported black participants with MEGA genotyping.  575 

UK Biobank 576 

SNPs were imputed centrally by UKB using a reference panel that merged the UK10K 577 

and 1000 Genomes Phase 3 panel as well as the Haplotype Reference Consortium 578 

(HRC) panel. For the current analysis, only SNPs imputed from the HRC panel were 579 

considered. The mean SBP and DBP values were determined from available blood 580 

pressure measurements, and when only one blood pressure measurement was 581 

available, we used this single value. We adjusted for medication use by adding 15 and 582 

10 mm Hg to SBP and DBP, respectively. We performed genome-wide analysis 583 

separately in reported “Black” and “Caribbean Black” UKB participants using linear 584 

regression for untransformed BP traits after adjusting for medication use and logistic 585 

regression for hypertension status. For each dataset, we adjusted regression models 586 

analyzing additively modeled SNP associations for age at BP measure, age2, BMI, sex, 587 

and the top 10 genetic principal components using SNPTEST-v2.5.4-beta. Inferences 588 

were limited to genotyped and imputed variants with imputation info scores of 0.4 or 589 

higher, Hardy-Weinberg equilibrium p-values >5x10-8, and minor allele frequencies 590 

>0.01. 591 

 592 

TOPMed 593 

The TOPMed consortium study consists of diverse, well-phenotyped epidemiologic 594 

cohorts with whole genome sequencing (WGS) data. Details of TOPMed and analysis 595 



of blood pressure are described elsewhere107-109. Briefly, single variants with minor 596 

allele count (MAC) ≥10 were tested for association with SBP, DBP, pulse pressure, and 597 

hypertension in ancestry-stratified analyses of 13,713 participants from 11 studies from 598 

the TOPMed WGS program freeze 6: Atherosclerosis Risk in Communities (ARIC) 599 

Study, The Cardiovascular Health Study (CHS), The Cleveland Family Study (CFS), 600 

Coronary Artery Risk Development in Young Adults (CARDIA), Genetic Epidemiology 601 

Network of Arteriopathy (GENOA), Genetic Studies of Atherosclerosis Risk 602 

(GeneSTAR), Hypertension Genetic Epidemiology Network (HyperGEN), Jackson Heart 603 

Study (JHS), Multi-ethnic Study of Atherosclerosis (MESA), Women’s Health Initiative 604 

(WHI), and The Mount Sinai BioMe Biobank (BioMe).  605 

 606 

Classifying results by evidence for association 607 

For results that reached statistical significance of p-value ≤ 5x10-8 at any stage of the 608 

analysis, and that had consistent direction of effect between discovery and replication 609 

stages, we established three tiers of evidence that are annotated in results tables: 610 

1) Genome-wide significance in the discovery stage, and Bonferroni-corrected 611 

significance in replication. 612 

2) Genome-wide significance in the discovery stage, and p-value ≤ 0.05 in the 613 

replication stage. 614 

3) All other associations reaching genome-wide significance across stages with 615 

replication p-value ≤ 0.05.  616 

Conditional Analysis 617 

For conditional analysis of common variants we used two parallel approaches 618 

implemented in the Genome-wide Complex Traits Analysis (GCTA) software110, : (i) 619 

genome-wide joint conditional analysis; and (ii) locus-specific conditional analysis. 620 

(i) Genome-wide joint conditional analysis  621 

 622 

Conditional analysis was conducted within GCTA software, using the –cojo 623 

method, which performs iterative conditional and joint analysis simultaneously 624 

with stepwise model selection111. The summary statistics from the GWAS 625 

discovery meta-analysis of MVP and COGENT were used as the input 626 



summary data (separately by trait), and the imputed (info score ≥0.4), hard-627 

called BioVU AA genetic data (N = 19,726) was used as the reference 628 

genotype-level data, in PLINK format. Combination of these two input data 629 

files restricted the GCTA analysis to the imputed SNPs in common to the 630 

GWAS discovery meta-analysis (which was itself restricted to MAF > 1%). 631 

Within the BioVU genetic data, LD was calculated between all pairwise SNPs. 632 

A p-value cut-off of 5x10-8 was used as the selection threshold within GCTA, 633 

and the collinearity threshold was set at the default value of 0.9, so that SNPs 634 

are not selected if the multiple regression with the current SNPs in the model 635 

has R2 ≥ 0.9. After combining results across all 22 chromosomes, each trait-636 

specific analysis resulted in a distinct set of jointly independent significant 637 

signals. We then merged together genome-wide results across all four BP 638 

traits to exclude signals duplicated across traits. For SNPs in LD (r2 ≥ 0.1), we 639 

selected the most significant SNP with the minimum p-value across all BP 640 

traits from the GCTA joint model. Hence all final SNPs are pairwise-LD-641 

independent. 642 

 643 

(ii) Locus-specific conditional analysis 644 

Within each of the Tier 1 or 2 loci (Supplementary Tables 2a-d), we searched 645 

separately by trait for any potential secondary signals, which are 646 

independently associated in addition to the sentinel SNP. Tier 3 was excluded 647 

due to not attaining genome-wide significance in the discovery analysis, 648 

which was the basis for performing the conditional analyses. Each conditional 649 

analysis was performed across all imputed SNPs with MAF ≥ 1% within the 650 

1Mb locus region centered ±500kb around the sentinel SNP, conditioning on 651 

the sentinel SNP. 652 

 653 

We evaluated independence of our results compared to 3,800 previously 654 

reported BP sentinel SNPs from lead or secondary loci. For loci containing 655 

only one SNP, the 1Mb locus region centered ±500kb around the SNP was 656 

used for analysis. For loci containing multiple identified SNPs, the interval 657 



was wider than 1Mb, with the locus region starting 500kb downstream from 658 

the first SNP and ending 500kb upstream from the last SNP. For known loci 659 

containing only one sentinel SNP, conditional analysis was performed on all 660 

imputed SNPs with MAF ≥ 1% within the 1Mb region, conditioning on the 661 

single published SNP within the locus, testing for association of all three BP 662 

traits. Conditional analysis was performed within wider locus regions in order 663 

to condition jointly on all sentinel SNPs within the locus. If any pairs of SNPs 664 

at a locus were in high LD (r2 ≥ 0.9) beyond the collinearity cut-off, the most 665 

significant SNP with the minimum P-value across all BP traits from the GWAS 666 

discovery meta-analysis was selected.  667 

 668 

All locus-specific conditional analyses used the “--cojo-cond” command in 669 

GCTA, with the list of sentinel or published SNPs being input as the 670 

conditional SNP-list. As for the genome-wide approach, the trait-specific 671 

GWAS discovery meta-analysis results were used as the input summary data, 672 

and the BioVU EA imputed genetic data was used as the reference PLINK 673 

dataset. The output provides the conditional analysis results of all SNPs 674 

within the locus region after conditioning on the sentinel or published SNPs. 675 

These results are then filtered to obtain a list of potential secondary SNPs 676 

which are both significant and independent according to the following criteria: 677 

(a) P < 5x10-8 from original GWAS discovery primary meta-analysis, so 678 

the SNP is significantly associated with BP itself, at genome-wide 679 

significance level 680 

(b) Pc < 5x10-8 from the conditional analysis, so that the SNP is also 681 

significantly associated with BP after conditioning on the sentinel / 682 

published SNPs 683 

(c) -log10(p) / -log10(p_cond) < 1.5, i.e. there is less than a 1.5 fold 684 

difference between the GWAS P-value and the conditional P-value 685 

of the SNP, implying that conditioning on the sentinel / published 686 

SNPs has had little impact on the association of the potential 687 

secondary SNP, and hence it is statistically independent 688 



All significant independent SNPs meeting the above criteria, from all loci across all 689 

chromosomes were combined together into one list. This is a longer list than from 690 

approach (i), as it contains all possible secondary SNPs, rather than only one lead SNP 691 

per independent signal, and many of the SNPs corresponding to the same signal will be 692 

in LD with each other. 693 

The outputs from the two different approaches were then combined together to identify 694 

those SNPs which are genome-wide significant in the discovery dataset and jointly 695 

independent on a genome-wide level, as well as residing within an existing BP locus 696 

(either novel or known). For robustness, a secondary signal was only claimed if the SNP 697 

is validated from both approaches.  698 

 699 

Enrichment and Pathway Analyses  700 

Enrichment analyses in DEPICT112 were performed by using trait-specific GWAS 701 

significant sentinel SNPs from known and novel loci from final meta-analysis as input. 702 

DEPICT is based on predefined phenotypic gene sets from multiple databases and 703 

Affymetrix HGU133a2.0 expression microarray data from more than >37k subjects to 704 

build highly-expressed gene sets for Medical Subject Heading (MeSH) tissue and cell 705 

type annotations. Output includes a p-value for enrichment and a yes/no indicator of 706 

whether the FDR q-value is <0.05. Tissue level and gene-set enrichment features with 707 

FDR <5% are considered.   708 

 709 

Cross-phenotype association analysis 710 

We applied the CPASSOC software to combine association evidence of SBP and DBP. 711 

CPASSOC provides two statistics, SHom and SHet, as previously described 50. SHom is 712 

similar to the fixed effect meta-analysis method 104 but accounts for the correlation of 713 

summary statistics of the multi-traits and for overlapping or related samples among the 714 

cohorts. SHom uses the trait sample size as the weight, so that it is possible to combine 715 

traits with different measure scales. SHet is an extension of SHom, and it can increase the 716 

statistical power over SHom when a variant affect only a subset of traits. The distribution 717 

of SHet under the null hypothesis was obtained through an estimated beta distribution. 718 

To calculate the statistics, SHom and SHet, and to account for the correlation among the 719 



traits, a correlation matrix is required. In this study, we used the correlation matrix 720 

calculated from the residuals of the four traits after adjustments for covariates and 721 

principal components.    722 

 723 

S-PrediXcan Analysis 724 

Genetically predicted gene expression was evaluated for the common variant subset 725 

with S-PrediXcan49, a gene-level approach that estimates the genetically determined 726 

component of gene expression in a given tissue and tests it for association with SNP-727 

level summary statistics. The covariance matrix used to account for SNP-SNP 728 

relationships (linkage disequilibrium) was constructed using genotypes from 1000 729 

Genomes African ancestry samples. We utilized all four BP discovery+replication meta-730 

analysis results for common variants and 5 cardiovascular disease-related tissues from 731 

GTEx v7113 for this analysis. (Supplementary Table 9a-d).  732 

 733 

Polygenic Risk Scores 734 

Polygenic scores were constructed separately for DBP and SBP using discovery meta-735 

analysis results from this manuscript. PRS-CS114 was used to shrink effect estimates 736 

instead of pruning based on linkage disequilibrium, and PLINKv1.9115 was used to 737 

compute weighted sum PRS at p-value thresholds from 0.5 to 5x10-8 in BioVU 738 

participants. Linear regressions were performed in R for SBP or DBP as a function of 739 

each PRS, age, age2, BMI, sex, and 10 principal components separately in 9,268 BioVU 740 

participants of African ancestry to evaluate variance explained by the PRS and model fit 741 

(r2). Upon selecting the best performing PRS by maximum variance explained by the 742 

PRS for each phenotype (Supplementary Tables 10a and b, scores were validated in 743 

UK Biobank (N = 7,641). Associations between PRS decile and hypertension status 744 

were evaluated through logistic regressions performed separately in both BioVU and UK 745 

Biobank data using R and adjusting for age, age2, BMI, sex, and proportions of genetic 746 

ancestry determined using ADMIXTURE with K=6 on an identical 100000 SNPs with 747 

1000 Genomes reference populations as described previously116.  Predictive 748 

performance of logistic models for hypertension both with and without PRS were trained 749 



in BioVU using 10-fold cross-validation to estimate weightings, and applied in UKB for 750 

evaluation of the area under the receiver operator curve (AUROC). 751 
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FIGURES 

 

 

Figure 1. Study resources and workflow diagram 



 
Figure 2a Discovery analysis Manhattan plot for SBP. 



 
Figure 2b. Discovery analysis Manhattan plot for DBP. 
 



 
Figure 2c. Discovery analysis Manhattan plot for pulse pressure. 
 
 



 
Figure 2d. Discovery analysis Manhattan plots for hypertension status. 
 
 



 

Figure 3a. Genetically-predicted gene expression results for Systolic Blood Pressure from 5 cardiovascular-related tissues 

from GTEx. 



 

Figure 3b. Genetically-predicted gene expression results for Diastolic Blood Pressure in 5 cardiovascular-related tissues 

from GTEx. 



 

Figure 3c. Genetically-predicted gene expression results for Pulse Pressure from 5 cardiovascular-related GTEx tissues 



 

 

Figure 3d. Genetically-predicted gene expression results for hypertension status from 5 cardiovascular-related GTEx 

tissues. 

 



 

Figure 4.  HOX gene region predicted gene expression association with systolic blood pressure.



 

Figure 5. SH3PXD2A predicted expression association with diastolic blood pressure. 



 
Figure 6. Odds Ratios for hypertension status by decile of optimal PRS in UKB Blacks 

 

 
 
 



Table 1. Novel genes among S-PrediXcan results with colocalization. 

  

*Italic font indicates strongest associated trait for which results are presented in this table. Boldface indicates significant p-values.

Gene Chr. Trait* S-PrediXcan COLOC Association in gene region 

Best Tissue Effect P-value Lead SNP Association P-value Lead SNP  Effect P-value 

LRRC2 3 DBP Tibial Artery -1.14  3.54E-07  rs11705987 2.168e-06 
rs13094615 0.3833 

8.543e-15 
 ALS2CL 3 DBP Heart_Atrial_Appendage -0.90  1.41E-07  rs7633016 1.298e-06 

CCDC36 3 DBP Heart_Left_Ventricle -0.75  1.10E-06  rs35174559 0.0002476 
rs13070214  -0.4045 3.628e-08 

RP11-3B7.1 3 DBP Aorta -0.38  1.91E-06  rs11920267 0.0008492 

HEMK1 3 SBP Heart_Left_Ventricle -1.23 2.17E-06 rs1034405 5.02e-07 rs12629572 -0.4297 2.003e-07 

PPM1M 3 DBP Tibial Artery 0.48  3.37E-06  rs17052053 1.731e-06 rs2581792 0.4483 4.808e-08 

SMIM4 3 DBP Heart_Left_Ventricle -1.04  3.03E-07  rs11710485 2.471e-07 rs9821489 0.4380 1.133e-18 

ADH1A 4 DBP Heart_Atrial_Appendage 0.59  1.80E-06  rs1789882 2.883e-06 rs2066702 -0.3226 4.009e-07 

TPD52L1 6 Pulse pressure Aorta -0.46  4.79E-08  rs2243390 2.599e-08 rs987166 0.2810 1.323e-08 

HOXA2 7 SBP/DBP/Pulse pressure Tibial Artery -0.69 1.31E-09 rs739734 1.35e-10  rs12535894 -0.7961 3.83e-15 

AC005022.1 7 Pulse pressure Aorta 0.94  3.25E-06  rs11531505 1.876e-07 rs76206723 -0.5112 8.478e-08 

SDCCAG3 9 Pulse pressure Heart_Atrial_Appendage 1.04  2.29E-06  rs1135314 0.0001277 rs10858100 -0.2396 3.805e-07 

MARCKSL1P1 10 Pulse pressure Aorta -0.69  7.95E-07  rs4409766 1.313e-09 rs10883797 0.3541 3.424e-12 

SH3PXD2A 10 DBP/SBP Heart_Left_Ventricle -0.92   4.49E-13   rs4918060 6.323e-11 rs4918060 -0.3349 6.323e-11 

RP11-819C21.1 11 Pulse pressure Tibial Artery -1.03  5.50E-08  rs1490938 1.31e-06 rs4754196 -0.3027 3.893e-07 

RP11-890B15.3 11 Pulse pressure Heart_Left_Ventricle -0.74  2.74E-08  rs3751039 9.078e-05 rs11222084 -0.3833 5.338e-12 

HSD17B6 12 SBP Artery_Tibial 2.17 2.44E-06 rs898609 1.245e-10 rs10747770 -0.4708 1.345e-11 

UPF3A 13 SBP Heart_Atrial_Appendage 1.21 1.99E-07 rs7320104 1.843e-06 rs9590501 -0.4499 3.37e-11 

TRIP4 15 Pulse pressure Heart_Left_Ventricle 0.71  8.44E-08  rs7165034 4.454e-06 rs1976112 -0.2566 1.33e-07 

MIR940 16 Pulse pressure Tibial Artery -1.07  1.56E-06  rs12599229 4.454e-05 rs9796949 -0.6728 1.44e-06 

TIGD7 16 Pulse pressure Heart_Atrial_Appendage -3.36  1.38E-06  rs17684522 4.352e-07 rs1053874 0.4970 1.591e-09 

STX8 17 HTN Aorta -0.43 5.89E-07 rs12451858 1.245e-06 rs12452001 -0.1045 4.973e-07 

RP11-259G18.3 17 DBP Tibial Artery -1.08  1.86E-07  rs532193457 0.0001122 rs1819040 -0.6216 1.027e-07 

TLE2 19 Pulse pressure Aorta -3.81  1.62E-06  rs2277739 2.818e-07 rs8102624 0.3981 1.134e-15 

KDELR3 22 Pulse pressure Tibial Artery 1.04  5.71E-08  rs8141562 8.365e-05 rs138419 0.2656 1.521e-06 



 
 
Supplementary Figure 1a. Manhattan plots for rare variant associations in discovery analysis for SBP. 



 
 
Supplementary Figure 1B. Manhattan plots for rare variant associations in discovery analysis for DBP 
 



 
Supplementary Figure 1C. Manhattan plots for rare variant associations in discovery analysis for pulse pressure. 



 
 
Supplementary Figure 1D. Manhattan plots for rare variant associations in discovery analysis for hypertension status.
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Supplementary Figure 2. Optimization of polygenic scores across p-value thresholds for 2 

SBP and DBP in BioVU African-ancestry individuals. 3 

 4 
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Supplementary Figure 3. Relationship between SBP (a) and DBP (b) PRS deciles with 6 

measured SBP and DBP, respectively, in UK Biobank.7 
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Supplementary Figure 4. Area under the receiver operator curve for logistic model for 

hypertension status as a function of both PRS, age, age-squared, sex, BMI, and African 

ancestry proportions, fit in BioVU and applied to UKB. 
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