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ABSTRACT 
Filled polymer composites are widely used for automobile, structural and aerospace components owing to their 

exceptional combination of high specific stiffness and strength. This study presents Taguchi-Deng optimization of tribological 
parameters such as load, grit size, distance and speed as well as prediction of tribological behaviours of carbon-filled and 
bronze-filled polytetrafluoroethylene (PTFE) composites using pin on disk configuration. A plan of experiments based on 
Taguchi L27 (43) orthogonal array (OA) was designed to collect data in a controlled manner. The Taguchi L27 (43) was 
hybridized with Deng model to produce grey relational grades (GRG) for the multiple response optimization. Analysis of 
variance (ANOVA) was executed to establish the parameters affecting GRG of the composites. For the prediction of the 
tribological behaviours of the composites namely coefficient of friction (µ) and specific wear rate (Ks), support vector 
regression (SVR) was coupled with novel Harris Hawks’ optimization (HHO) and swarm particle optimization (PSO) forming 
SVR-HHO and SVR-PSO models respectively, were employed. Prediction accuracy of the models were appraised using 
coefficient of determination (R2), correlation coefficient (R), root mean square error (RMSE) and mean absolute percentage 
error (MAPE). GRG results revealed that optimum parameters which reduced tribological behaviours were factor combination 
L3G1D3S3. ANOVA for GRG reveled that grit size with 68.57% ranks as the most influential parameter followed by load 
with 20.57%, followed by distance having a contribution of 7.78% and finally speed with least contribution of 3.38% for 
minimum tribological loss. Validation performed using optimum parameters revealed an enhancement of 55% in GRG. 
Prediction accuracy of the single model increase to 19.50% and 57.08% on the average for hybrid µ and Ks models, 
respectively. Furthermore, SVR-HHO model indicated the higher prediction accuracy of the tribological behaviours of filled 
PTFE composites as compared to SVR-PSO model. These findings concluded these metaheuristic models are promising in 
predicting tribological behaviours of filled PTFE composites and thus can serve as a guide in the design and development of 
tribological materials. 

 

Introduction 
Filled polymer matrix composites (PMCs) containing fillers continue to receive significant attention from 

academics and industries due to their modified mechanical and tribological behaviours than virgin 
polymers1.Polymer based composites showed improved tribological resistance2. Of the different kinds of 
polymers, polytetrafluoroethylene (PTFE) filled with carbon or bronze fibres are widely used due to their high 
mechanical and low tribological behaviours 3. It has been indicated that these composites are suitable in sectors 
where mechanical parts including brakes and clutches tribological behaviours are significant 4–7. It has been 
generally agreed that tribological resistance of materials can be improved by adding more filler content to a certain 
limit 8,9 to neat polymers. Polytetrafluoroethylene (PTFE) has been one of the commonly used thermoplastic 
matrices for wear conditions because of its low coefficient of friction, ease of process-ability, chemical inertness, 
low density and low-cost 10,11. 

Wear is one of the most commonly encountered problems in industries causing frequent substitution of 
parts especially abrasion. Abrasive wear of various polymers and filled polymers have been studied 
experimentally. Abrasive wear rate of different matrices were studied by 12 and it was found that different polymer 
exhibited dissimilar wear rate. Inclusion of glass and carbon fabric into vinyl/ester were analyzed. It was 
reinforced vinyl/ester combination indicated lower wear rate than glass and/or carbon fabric reinforced vinyl/ester 
composite 13. As reported by 14 applied load found as the most significant process parameter; reduced wear rate 
was observed when performance UHMWPE was reinforced with fillers. According to 15 it seen that mass loss and 
µ increased with increase in speed and decrease in grit sizes for betelnut filled epoxy composites.  

In order to study multiple responses related to tribological behaviours of composites several decision-
making methods including data development, analytic hierarchy as well as grey relational analysis (GRA) have 
been proposed in the literature 16. Of these models, GRA proposed by Deng in 1989 is the widely used 
methodology especially when the nature of the information is not certain and complete17. Dharmalingam, 
Subramanian and Kok combined grey relational analysis (GRA) with Taguchi to optimize abrasive tribological 
property of aluminium hybrid metal composites. Analysis of variance (ANOVA) indicated that grit size was the 
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parameter that had the most influence on wear rate and load was found to had the greatest effect on coefficient of 
friction 18. Sylajakumar, Ramakrishnasamy and Palaniappan (2018) used Taguchi-GRA method to study the effect 
of load, speed and distance on coefficient of friction and wear rate of co-long composite. ANOVA showed that 
speed significantly affect the wear property of the co-continuous composite 19. Savaran and Thanigaivelan (2021) 
optimized dimple geometry and laser parameter using principal component analysis (PCA) coupled GRA. 
ANOVA showed that average power contributed most while depth contributed less to performance measures 20.An 
integrated Taguchi OA and GRA method has been applied to optimize injection moulding parameters of HDPE-
TiO2 nanocomposites Pervez and co 21.  The work established that optimum parameters were content of TiO2 at 
5%, barrel temperature of 225 0C, residence time of 30 minutes and holding time of 20 s. Adediran et al. optimized 
mechanical properties of hybrid propylene reinforced bio composites using Taguchi model. It was found that 
collage of 4% PSS and 1o% kenaf fibre produced the optimum combination for hybrid bio composites22. Besides 
this, Taguchi method hybridized with grey relational grade has as well been employed for multi-response 
optimization of wire discharge electrical discharge machining 23, turning process 24 and milling parameter 25. 

Due to nonlinearity and complex nature of tribological behaviour of materials soft computing methods are 
increasingly widely accepted including support vector machine (SVM), adaptive neuro-fuzzy inference system 
(ANFIS) and artificial neural network (ANN). The reason being the fact that these models are capable of capturing 
the nonlinear and complex nature of the relation between the tribological parameters and responses as compared 
to conventional mathematical techniques at much cheaper running costs. Various forms of wear are encountered 
such as abrasion, adhesive, fretting and fatigue wear. Abrasive tribology for composites, instruments, coatings, 
hip implant, airplane manufacturing as well as automotive components are of essential importance as it determines 
parts’ performance or longevity. This in general is checked experimentally, as process parameters such as 
materials characteristics, surface texture, sliding speed and sliding speed. In the analysis of tribology, many 
mathematical modeling methods have been built. Among them are atomic and molecular kinetics, finite element 
method, symptom modelling, continuum mechanics, dimension reduction, analysis, boundary element system, 
stochastic models26. Nevertheless, since tribological behaviours are complex and nonlinear, mathematical models 
are limited. 

Lately, the use artificial intelligent (AI) models has become widely accepted in tribology. Jones et al. 
pioneered the use of ANN to predict life data and tribological behaviours. Accurate prediction of tribological 
property by ANN gives an option to the present time, cost and energy consuming testing approaches. Since then, 
the method has been successfully applied in the tribology discipline that includes wear of reinforced polymer 
composites 27,28, coefficient of friction and mechanical properties, respectively29,30, compensation of magnetic 
levitation using ANN based on fuzzy inference31. ANFIS and ANN were compared in the prediction of Ks PTFE 
and its composites. It was found that ANN performed better than ANFIS 

32. Prediction of abrasive wear of 
industrial waste and glass filled polyester composites was done using ANN and linear regression model. The 
results found that ANN outperformed the linear model 33. SVM has been employed in the prediction of tool wear 
appraisal 34,35. Also SVM, RBFF and ANN have been contrasted to predict diameter of PCL/.gelatin materials. It 
was reported that ANN did better than SVR and RBFF put together 36. Response surface methodology, ANN-
HHO as well as model was used in the prediction of abrasive wear of ultrahigh strength martensitic steel. It was 
reported that hybridized ANN-HHO showed better performance than the single ANN model 37. 

A survey of the reported literature on the database Scopus yielded the finding that there were 450 peer-
reviewed papers starting from 1989 up to date adopted over the literature using the feasibility of wide interest for 
the abrasive tribology of PTFE based composites. Figure 1b shows 388 keywords occurrence between those 
studies, indicating the deep interest and implementation of this field.  In addition, the popularity of this study topic 
was investigated in different regions throughout the world, with the bulk of the countries producing the output 
being the China, the United States, and India. (Figure 1a). The motivation of this study demonstrated excellent AI 
techniques for predictions abrasive tribology of filled PTFE composites. Generally each study has progressed to 
a little higher degree of accuracy for observations and efficiency at a deeper level than the previous one. To the 
best knowledge of the authors, no study published in a technical literature has predicted the abrasive tribology of 
PTFE based composites employing this approach using small amount of data. As a result, the goal of this work is 
to optimize and predict multi-response variable of abrasive wear of reinforced PTFE composites. 
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Figure 1. a) Major keywords used over the literature on the abrasive tribology of PTFE based composites field 
(1989-2021), b) the investigated the research region for abrasive. 

Results and Discussion 
 Experimental results Experimental results Signal to Noise Ratio Signal to Noise Ratio 

Trial µ Ks (mm3N-1m-1) µ SNR(dB) Ks (dB) 
1 0.1115 8.5700E-06 19.05 101.74 
2 0.2485 1.3333E-05 12.09 97.91 
3 0.1695 9.8361E-06 8.83 92.07 
4 0.1930 1.7284E-05 14.29 95.65 
5 0.2790 2.2584E-05 11.09 93.34 
6 0.2865 6.9217E-06 28.18 103.82 
7 0.1335 1.1977E-05 17.49 98.84 
8 0.2265 1.7443E-05 12.90 95.58 
9 0.5330 1.8281E-05 10.57 91.08 

10 0.2735 4.6737E-06 11.26 107.01 
11 0.2025 1.5357E-06 13.87 116.69 
12 0.2220 3.8251E-06 10.46 115.86 
13 0.3035 3.4632E-06 10.36 109.61 
14 0.1265 6.7258E-06 17.96 103.86 
15 0.9595 6.2096E-06 13.07 112.50 
16 0.1115 2.1261E-05 19.05 93.85 
17 0.5565 2.8293E-05 5.09 91.38 
18 0.4475 1.9563E-05 22.38 88.89 
19 0.3680 2.9341E-06 8.68 111.05 
20 0.0335 2.9071E-06 29.50 111.14 
21 0.0490 2.0864E-06 12.18 116.02 
22 0.0855 9.5238E-06 21.36 100.83 
23 0.1155 1.2683E-05 18.75 98.35 
24 0.2805 8.3789E-06 12.08 104.74 
25 0.4025 6.0553E-06 7.90 104.76 
26 0.2885 1.1623E-05 10.80 99.11 
27 0.3075 1.0403E-05 14.33 110.76 

Table 1. Experimental results and their corresponding SNRs of filled PTFE composites based on Taguchi 𝐿𝐿27(34) 
OA. 
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Experimental results 

The results of the tribological experiments for the various test conditions are shown in Table 1. It was seen 
that the tribological behaviours of the samples indicated rise and fall trend with varying the parameters. Each trial 
was performed twice and the average was used for the calculations. Highest SNRs of µ and Ks occurred at 20 and 
12 trials, respectively. These give the minimum tribological rate of the filled PTFE composites. In spite of the fact 
the temperature was not computed, the temperature increased as the sliding distance increased. Data in Table 1 
was used for the calibration and validation of the SVR, SVR-PSO and SVR-HHO models. 

 
Effect of load on Ks and µ 

The results of the µ and Ks are shown in Fig. 2 (a) and (b), respectively. It was observed that as the load 
increase the µ and Ks decrease. The low µ at maximum load is because of the formation tribolayer by the fibres 
at interacting state as well as temperature and visco-elastic related behaviour. This layer prevented the pin samples 
to be in direct contact with the abrasive surface. Similar observation was observed by 38. At 6 N µ was high perhaps 
due to tearing of the fibre tribo layer at the contact region. This finding was contrary to results obtained by 39. Ks 
was low at high load because of great increase in apparent contact area at higher loads thereby leading to increase 
in contact area permitting a large number of particles to meet the interface and share the stress. This, in turn, 
reduced the wear rate. 

 
Effect of abrasive size on µ and Ks 

As shown in Fig. 2(b) increase in abrasive sizes decrease the both µ and Ks. High µ at small grit size is 
related to high roughness of SiC particles that offered significant amount of resistance while the low µ is attributed 
to smoothness of the SiC particles that offered little resistance to the materials all due to formation of protective 
layer at contact surface. Decrease in wear rate due to increase in abrasive size is related to clogging of the wear 
track with wear debris and reduction in cutting efficiency of the abrasives due to transfer. 

 
Effect of sliding distance on µ and Ks  

Fig. 2 (a) and (b) shows the relationship between the parameters and the µ and Ks, respectively. As 
observed in the figure, increasing the sliding distance increase the µ while a decrease in Ks observed. This is 
explained on the basis that distance acted as a lubricant to rubbing surfaces and therefore separated pin specimens 
from the counter front. Ks reduction due to increase in sliding distance is attributed to pull out or fracture of 
abrasives as a result of presence of tough fibres. Additionally, wear debris is transferred to counterface from the 
PTFE causing reduced wear rate. 

 
Effect of sliding speed on µ and Ks 

As the sliding speed increase µ as well as Ks decrease and high µ and Ks are noticed at low speed due to 
samples’ increased contact time with the counterface (Fig. 2(a) and (b). As the rotation rate increases and the 
samples are oxidized, the temperature at the contacting surfaces changes. This aids formation of a mechanically 
mixed and rough coating which is laid on the parts. This coating is impervious to removal and depreciates the µ 
and Ks significantly. When the surface of the counterface is less touched and the protection of the hard layer is 
heavily mixed tribological behaviours are reduced. It has been shown that reduction in wear rate depends on 
production of  adherent, uniform and thin hard layer on the counter front 40,41. Similar results were reported in the 
studies  of 40,42,43. 

In all the analysis, it was found that addition of bronze and carbon fillers into PTFE improved the virgin 
PTFE’s tribological rate. This might be attributed to stiffness and hardness of the fillers. However, BF40 
composites showed a slightly lower wear resistance than CF25 composites. This is explained on this basis of the 
higher weight percentage of the bronze particles that induced more hardness and larger size about 6 µm. 
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Figure 2. Main effect plot for mean (a) µ and (b) Ks of filled PTFE composites. 

 
Results using Taguchi approach 

The experimental data in Table 1 was transformed into signal to noise ratios (SNRs) using equation 4 and 
the corresponding SNRs was as shown in Table 1. Larger SNRs indicate the minimum variation difference 
between wanted response and measured response. The maximum value of SNRs at the main effect plot for SNRs 
give the desired results. Fig.  3(a) and (b) shows the mean SNRs of µ and Ks, respectively. Table 2 (a) and (b) 
presents the computed mean SNRs for the µ and Ks, respectively. As seen in Fig. 3(a), the maximum mean SNR 
achieved for µ were load at 9 N, grit size at 1000 mesh, sliding distance at 25 m and sliding speed at 0.14 ms-1. 
Thus, the estimated optimum parameters for achieving a minimum µ via Taguchi optimization can be coded as 
L3G1D1S3. For the Ks (Table 2(b) and Fig. 3(b)), the highest mean SNR obtained for Ks were load at 9 N, grit 
size at 1000 mesh, sliding distance at 55 m and sliding speed at 0.04 ms-1. Therefore, by Taguchi method the 
predicted optimum parameters are styled as L3G1D3S1. ANOVA depicts the parametric setting that significantly 
influence the abrasive behaviours. Similarly, the important parametric factor that significantly affect the µ were 
found as grit size followed by load, distance and speed 3(a). The percentage contribution of grit size, load, distance 
and speed were computed as 37.24%, 33.92%, 17.62% and 11.20%, (Table 3(a)). Table 2(b) shows the percentage 
contribution of the parameters on Ks. As seen grit size contributed 51.06%, load contributed 24.65% SD 
contributed 22.57% and speed contributed 1.72% implying that grit size most significantly influence the Ks 

followed by load, distance and speed, respectively.  
 

 
Figure 3. Main effect plot for SNRs of (a) µ and (b) Ks. 
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Table 2. Response Table for SNRs of (a) µ and (b) Ks. 
 

 Optimization using hybrid Taguchi model 

As seen above, Taguchi can only optimize a parameter at a time and thus it involves more cost, time and 
effort. Therefore, Deng widely called Grey relational analysis (GRA) is principally used to optimize multiple 
parameters by combining all outputs into an output.  Deng is used to unravel real problems made up of a bounded 
amount of data. It is commonly employed to approximate the properties of indefinite systems having no black and 
white solution. With respect to grey system black signifies without information whereas white connotes with 
information. This technique is largely utilized to maximize or minimize problems which have to do with several 
factors and responses.  Data preprocessing through GRA was executed on test data of responses in Table 1 i.e. µ 
as well as Ks. Table 3 shows the reference sequence obtained by normalization (equation 5). In due course, the 
deviation sequence was computed following equation 6 (Table 3). Grey relation coefficient (GRC) and grey 
relational grade (GRG) of µ as well as Ks were determined using equations 6 and 7, respectively. Subsequently, 
the mean of GRCs is calculated to establish the GRG. Calculated values of GRGs were employed to produce 
equivalent SNRs. A larger magnitude of SNR is useful alluding the tests lay in proximity to the actual normalized 
magnitude of GRG.  Fig. 4 depicts the plot of GRG against SNRs. It indicates that the 21st trial possesses the 
highest SNR. Correspondingly, the first rank was designated to 21st trial. The straggling disposition of the GRG, 
below the plot of SNRs in Fig. 4, also adds to the aforementioned explanation.  Ever the ranks determined (Table 
5), GRG response table was contrived. Individual factor of GRG at the preferred level was chosen as well as 
average computed to obtain the mean GRG for separate parameters. The mean response table for the GRG is 
presented in Table 6. 

For example, variable G at level 1 in the first, fourth and seventh runs of the test. The concomitant GRG 
values in Table 5 were used for computation using equation 8. The mean of the chosen GRGs was computed 
through the method aforementioned put together to generate the mean response table (Table 5). The grades in the 
response table is used as a degree of correlation 44. Hence, from Table 5, it is possible to achieve combination of 
optimum parameters which maximize the overall response. As observed in Table 5, the maximum GRG exists at 
L3, G1, D3 and S3. Therefore, to wrap it up, the best parameter settings for useful abrasive tribological behaviours 
of filled PTFE composites are load at 9 N, grit size at 1000 mesh, distance at 55 m and sliding speed at 0.14 ms-1 
coded as L3G1D3S3. ANOVA for GRG shows that grit size with 68.57% ranks as the most influential followed 
by load with 20.57%, followed by distance having a contribution of 7.78% and finally speed with least 
contribution of 3.38% for minimum tribological loss. 

 

 
Figure 5. GRG versus SNRs plot. 

 

Table 2 (a)      Table 2 (b)    
Level L (N) G (mesh) SD (m) SS (ms-1) L (N) G (mesh) SD (m) SS (ms-1) 

1 11.92 8.78 12.35 9.59 96.88 96.26 97.23 101.54 
2 8.28 10.42 11.29 10.92 102.16 100.03 101.54 99.85 
3 12.53 13.53 9.09 12.3 103.82 106.57 104.09 101.47 

Delta 4.27 4.75 3.25 2.64 6.94 10.31 6.86 1.69 
Rank 2 1 3 4 2 1 3 4 
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 Reference sequence Reference sequence Deviation sequence Deviation sequence 

Run µ Ks µ Ks 

1 0.9158 0.6657 0.0842 0.2629 

2 0.7678 0.4395 0.2322 0.4409 

3 0.8531 0.6056 0.1469 0.3102 

4 0.8278 0.2518 0.1722 0.5886 

5 0.7349 0.0000 0.2651 0.7866 

6 0.7268 0.7441 0.2732 0.2013 

7 0.8920 0.5039 0.1080 0.3902 

8 0.7916 0.2442 0.2084 0.5945 

9 0.4606 0.2044 0.5394 0.6258 

10 0.7408 0.8509 0.2592 0.1173 

11 0.8175 1.0000 0.1825 0.0000 

12 0.7964 0.8912 0.2036 0.0856 

13 0.7084 0.9084 0.2916 0.0720 

14 0.8996 0.7534 0.1004 0.1940 

15 0.0000 0.7779 1.0000 0.1747 

16 0.9158 0.0624 0.0842 0.7375 

17 0.7910 0.9840 0.2090 0.0160 

18 0.5529 0.1435 0.4471 0.6737 

19 0.6388 0.9336 0.3612 0.0523 

20 1.0000 0.9348 0.0000 0.0513 

21 0.9833 0.9738 0.0167 0.0206 

22 0.9438 0.6205 0.0562 0.2985 

23 0.9114 0.4704 0.0886 0.4166 

24 0.7333 0.6749 0.2667 0.2558 

25 0.6015 0.7853 0.3985 0.1689 

26 0.7246 0.5207 0.2754 0.3770 

27 0.7041 0.5787 0.2959 0.3314 
Table 3. Reference and deviation sequences post data processing. 

 
Level L (N) G (mesh) SD ( m) SS (ms-1) 

1 0.6218 0.5687 0.6315 0.6665 
2 0.6620 0.6651 0.6733 0.6635 
3 0.7391 0.7890 0.7181 0.6929 

Delta 0.1173 0.2203 0.0867 0.0294 
Rank 2 1 3 4 

Table 6. Response table for GRGs. 
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Table 4. Rank of GRG with SNRs. 
 
 

Validation 

Having determined the optimum parameters, the final phase in Taguchi-Deng is prediction as well as 
validation of performance enhancement of the dual responses. The predicted GRG was calculated as per equation 
7. Validation experiments were executed to validate the results of the analysis. Validated results showed that 
minimum µ and Ks were 2.0 × 10-1 and 1.5353× 10-6 mm3N-1m-1, respectively. More so, it can be implied from 
Table 5 that the findings of the validation phase are consistent with the computed values. Besides, an enhancement 
of 55 % in GRG was achieved. This performance enhancement in the results obtained through the experiments 
over the initial design parameter confirms the validity of the Taguchi-Deng method for studying the abrasive 
tribological behaviours of filled PTFE composites. 

 

  Optimal parameter  
 Initial design parameter Prediction Validation 
Level settings L1G3D3S1 L3G1D3S3 L3G1D3S3 
GRG 0.4335 0.9589 0.9556 
Enhancement (%)  54.56 54.66 

Table 5. Results of the confirmatory test. 

     

Grey relational coefficient  Grey relational coefficient    

µ Ks Grey relational grade SNRs(dB) Rank 

0.8558 0.5993 0.7276 -2.7625 10 

0.6829 0.4715 0.5772 -4.7738 21 

0.7730 0.5591 0.6660 -3.5304 13 

0.7438 0.4006 0.5722 -4.8494 22 

0.6535 0.3333 0.4934 -6.1358 25 

0.6466 0.6615 0.6541 -3.6877 15 

0.8224 0.5020 0.6622 -3.5805 14 

0.7058 0.3982 0.5520 -5.1615 23 

0.4810 0.3859 0.4335 -7.2606 27 

0.6586 0.7703 0.7145 -2.9205 11 

0.7326 1.0000 0.8663 -1.2467 3 

0.7107 0.8213 0.7660 -2.3155 5 

0.6317 0.8452 0.7384 -2.6339 7 

0.8327 0.6697 0.7512 -2.4846 6 

0.3333 0.6925 0.5129 -5.7994 24 

0.8558 0.3478 0.6018 -4.4108 18 

0.7053 0.9609 0.8331 -1.5862 4 

0.5279 0.3686 0.4483 -6.9692 26 

0.5806 0.8827 0.7316 -2.7141 9 

1.0000 0.8847 0.9424 -0.5157 2 

0.9676 0.9503 0.9589 -0.3642 1 

0.8990 0.5685 0.7338 -2.6889 8 

0.8495 0.4856 0.6676 -3.5099 12 

0.6521 0.6060 0.6290 -4.0264 16 

0.5565 0.6996 0.6280 -4.0404 17 

0.6448 0.5106 0.5777 -4.7657 20 

0.6282 0.5427 0.5855 -4.6499 19 
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Performance appraisal of the models 

One of the aims of this work is building hybrid SVR models namely SVR-PSO and SVR-HHO models 
and compare their efficiency in predicting tribological behaviours of filled PTFE composites. For this objective, 
tribological behaviours (µ and Ks) were obtained via experimental results of Table 1. Prediction of tribological 
behaviours by traditional methods is time and energy consuming due to nonlinearity between tribological 
independents and dependents of filled polymer composites leading to inaccuracy. These issues can be addressed 
by nonlinear models. Subsequently, this section details the results achieved in visualized and graphical forms. 
Before the models simulations, the data was normalized using equation 16. Data normalization disallows larger 
values overshadowing lower values, takes care of units and improves the efficiency of the models. 

The simulation process was performed in MATLAB 9.3 (R2020 (a)).Optimized structure of SVR model 
was chosen via trial-and-error approach. An efficient model is that which allays the prerequisites of model 
appraisal metrics. Prediction efficiency of the models were appraised using two goodness of fit (R2, R) and two 
prediction error (RMSE, MAPE) metrics in training as well as testing regimes. The simulated outcomes of the 
individual SVR models for the prediction of µ and Ks are quantitatively presented in Table 6. From Table 6, it can 
be seen that the single SVR models achieved various adequacies according to the statistical evaluation metrics. 
More so, SVRµ shows best results in terms of goodness of fit in both testing and training stages as compared to 
SVRKs model. However, with respect to prediction errors SVRKs with RMSE 5×10-6 and MAPE 29% proved to 
be a relatively adequate model in predicting the tribological behaviours of filled PTFE composites than SVRµ 
whose accuracy is extremely poor (61%). To have a graphical map of SVR models for the tribological behaviours, 
a scatter plot is used. A scatter plot gives the degree of agreement between measured and calculated values for the 
overall goodness of fit. Fig. 5 (a) and (b) depicts the scatter plot of the whole data for SVRµ as well as SVRKs 

models, respectively. Arising from the scatter plots, it is interesting to note here that SVRKs model indicated better 
fitness in comparison to SVRKs when the whole data points were put together. 

 

Table 6. Results of appraisal for single SVR models of µ and Ks. 

 

 

 
Figure 5. Scatter plot of (a) SVRµ model (b) SVRKs model for the whole data. 

 
Nevertheless, overall prediction accuracy of the single SVR models was inadequate, especially for SVRµ 

model. The accuracy can be enhanced using optimization approaches namely PSO and HHO. Fundamentally, it 
should be considered that the promising prediction accuracy occurred in the course of the training state which is 
originally used to measure precisely the model based on known inputs and outputs. Nevertheless, the verification 
stage is significant in appraising the prediction efficiency of the models since it inspects closely the models’ 
prediction accuracy based upon unknown magnitudes. This advantage is not enjoyed by the training phase. 
Consequently, a robust model should possess determinate and balanced performance in both training and testing 

 Calibration      Validation  

Models R2 R RMSE MAPE R2 R RMSE MAPE 

SVRKs 0.5919 0.7694 0.000005 0.3938 0.5360 0.7321 0.000003 0.2911 
SVRµ 0.8026 0.8959 0.1974 0.7914 0.8984 0.9478 0.1016 0.6164 



10 

 

regimes. In general, hybridized models showed a promising ability when compared to un-hybridized models. For 
consistency the same model evaluation metrics are used to assess the prediction accuracy of the hybridized models. 
Table 9 shows the results of the hybrid models in both calibration and validation regimes. In spite of the fact it is 
hard to rank the models as per the model evaluation criteria, the SVR-HHO model indicated higher prediction 
accuracy in both conditions. From Table 7, it was observed that SVR-HHOµs indicated R2 >90% R = 95%, 99.26%, 
RMSE > 5%, and MAPE of 5% = Similarly, SVR-HHOKs R2 >95%, R>97%, RMSE<1% as well as MAPE =3%. 
This implies SVR-HHO model performed better than SVR-PSO model for prediction of the tribological 
behaviours of the filled PTFE composites. The predictive superiority of HHO to others is in concord with results 
obtained by 45. Fig. 10 presents the scatter plot of the SVR hybrid models. Close consistency between measured 
and calculated points was achieved for SVR-HHO model as compared to SVR-PSO model. More so, R values of 
the hybrid models lie between 85-99%. This agrees with conclusions drawn by 46–48 that values of R greater than 
70% are regarded as acceptable. Therefore, all the optimized hybrid models are acceptable (Table 7). 
 

 Calibration    Validation    

Models R2 R RMSE MAPE R2 R RMSE MAPE 

SVR-PSOµ 0.8790 0.9376 0.1210 0.5274 0.9221 0.9603 0.0779 0.0513 

SVR-HHOµ 0.9123 0.9551 0.0877 0.5139 0.9364 0.9677 0.0636 0.0490 

SVR-PSOKs 0.8424 0.9178 0.000003 0.1446 0.9301 0.9644 0.000001 0.1601 
SVR-HHOKs 0.9468 0.9730 0.000002 0.0857 0.9853 0.9926 0.000001 0.0322 

Table 7. Findings of appraisal of the hybrid models for predicting for µ and Ks. 
 

 

 
Figure 6. Scatter plot for (a) SVR-PSOµ and (b) SVR-HHOKs models all data sets. 
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Figure 7. Scatter plot for (a) SVR-PSOµ and (b) SVR-HHOKs models for all dataset. 
 

Comparing the performance of the models 

The SVR model and its hybrids namely SVR-PSO and SVR-HHO models are compared via 2D Taylor’s 
plot as shown in Figs. 8 and 9, respectively. As seen in the Taylor’s plot SVR-HHO model indicated better fitness 
in both cases with values of 97% and 99% for µ and Ks, respectively in the calibration regime. Therefore, it can 
wrapped up that SVR, SVR-PSO and SVR-HHO models can understand and follow the intricate and nonlinear 
correlation between tribological input parameters and response parameters of filled PTFE composites in abrasive 
conditions.Additional analysis can be done using a radar plot for the prediction of the µ and Ks as shown in Fig. 
10. It can as well be seen that SVR-HHOµ>SVR-PSOµ>SVRµ and SVR-HHOKs>SVR-PSOKs>SVRKs. This 
implies that in both cases SVR-HHO model was able of capturing the best fitting trend of the tribological 
behaviours of filled PTFE composites. 

 
 

 
Figure 8. Taylor diagram for µ models in (a) calibration stage and (b) verification stages. 
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Figure 9. Taylor diagram for Ks models in (a) calibration and (b) verification of the models. 

 
Figure 10. Radar plot for (a) µ and (b) Ks in calibration and verification regimes. 

 
 

In spite of the availability of ample of predictive models, there is no particular model that can guarantee 
consistent optimal performance in addressing various types of issues. Yet, latest research on unique population-
based as well as nature inspired optimization paradigm (HHO) models indicated better adequacy in establishing 
optimal solutions for multi-objective problems. The statistical analysis outcomes and comparisons revealed that 
SVR-HHO model yields promising and often competitive outcomes than well-established models. 

Conclusions 
This study presents optimization and prediction of tribological behaviours of filled PTFE composites.  

Firstly, results of four different tribological parameters namely load, grit size, distance and speed on the multiple 
response of the µ and Ks were investigated based on Taguchi L27 (34) OA and Deng method. According to the 
response table of the GRGs optimum parameter levels were found as parameter combination of L3G1D3S3. 
ANOVA for GRGs indicated that grit size was the most influential parameter affecting tribological behaviours of 
filled PTFE composites. Validation test revealed that there was an enhancement of 55 % in GRG from 
0.4335(L1G3D3S1) for initial design settings to 0.9589 for the optimized levels (L3G1S3D3). SVR model and 
its hybrids whose inputs were the tribological parameters were built to predict the µ and Ks .The findings of the 
hybridized SVR models exhibited an improvement in predictive ability for the un-hybridized SVR models. Even 
though both SVR-HHO and SVR-PSO models were able to accurately predict the µ and Ks, SVR-HHO model 
exhibited the lowest prediction error of 4.06% on the average as compared to SVR-PSO model whose prediction 
error was found as 10.57% on the average. This proves the robustness of SVR-HHO model in predicting µ and 
Ks. 
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Methods 
Experimental set up 

In this article, Arton Paar tribometer (Made in Switzerland) shown in Fig. 11 was used for the test. The 
experimental set-up consists of a fixed vertical pin kept perpendicular to a horizontal rotating circular disk. The 
rectangular pin samples of dimensions 20 mm long, width 10 mm and deep 6 mm were used for the study. The 
pin was prepared by cutting a plaque of 500 mm × 500 mm × 6 mm using computer numerical water jet machining. 
The disk of diameter 80 mm and a thickness of 20 mm was used. The chosen loads were transmitted through the 
arm to keep the samples pressed against the disk. Dirties were cleaned from the pin and the disk before and after 
every test. The materials utilized in this work were polytetrafluoroethylene (PTFE), carbon-filled composites 
(CF25) and bronze-filled composites (BF40) because of their availability and wider applications. The weight loss 
was measured using PS 1000.RS RADWAG digital weighing machine (Made in Poland) with 10-3 g sensitiveness. 
The test conditions are shown in Table 8. 

The experiments were conducted according to ASTM G99 standard using in-house tribometer. The 
rectangular pins having dimensions as above were prepared from the rectangular plaques of the materials.  A small 
disk of sufficient roughness was utilized as a sliding counterpart. Non-lubricated tribological tests with various 
control factors such as grit size, load, sliding distance as well as sliding speed were executed. Conditions for the 
experiment are indicated in Table 1. Before and after the method, the weight of the materials was computed using 
the analytical balance PS 1000.RS RADWAG of precision10-3 g. µ is computed and displayed by the computer 
attached to the tribometer. The loss in pin weight (WL), volume (VL) and specific wear rake (Ks) was determined 
through the mathematical equations (1), (2) and (3), respectively 

 
Parameters Symbol Level 1 Level 2 Level 3 
Load, (N) L 3 6 9 

Grit, (mesh) G 1000 400 150 
Distance, (m) D 25 45 55 
Speed , (ms-1) S 0.04 0.08 0.14 

Table 8. Parameters and their levels. 
 

WL = 𝑚𝑚𝑏𝑏 −𝑚𝑚𝑎𝑎                         (1) 

VL =  
MLρ                                      (2) 

KS =  
MLρLD                                    (3) 

Where WL= weight loss (g),  VL = volume loss (mm3) 𝑚𝑚𝑏𝑏= mass before test (g), 𝑚𝑚𝑎𝑎= mass after test (g), ρ = (gcm-

3) of materials, L = load in N and D = sliding distance (m). Each trial was performed twice and averaged.  
 
Taguchi optimization approach 

Single parameter optimization and percentage contribution of each parameter can be performed using 
Taguchi L27 (34) orthogonal array (OA). Taguchi is an optimization process to establish the best process parameter. 
In this study, four parameters with three levels (34) are considered for the configuration of the test. Twenty seven 
trials have been performed based on Taguchi L27 (34) OA as shown in Table 9. Signal to noise ratios (SNRs) are 
used to establish the optimum parameters and followed equation 4. SNRs for µ and Ks can be computed for all 
the 27 trials in accordance with Taguchi 𝐿𝐿27(34) OA.  
 

                                                 (SNR)STB = −log10
1n (∑ (y𝑖𝑖)2ni=0 )       (4) 

Where n = number of experiments and y𝑖𝑖 = experimental value.  
 

Trial L (N) G (mesh) D (m) S (ms-1) 
1 3 1000 25 0.04 
2 3 1000 25 0.04 
3 3 1000 25 0.04 
4 3 400 45 0.08 
5 3 400 45 0.08 
6 3 400 45 0.08 
7 3 150 55 0.14 
8 3 150 55 0.14 
9 3 150 55 0.14 
10 6 1000 45 0.14 
11 6 1000 45 0.14 
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12 6 1000 45 0.14 
13 6 400 55 0.04 
14 6 400 55 0.04 
15 9 1000 55 0.14 
16 6 150 25 0.08 
17 6 150 25 0.08 
18 6 150 25 0.08 
19 9 1000 55 0.08 
20 9 1000 55 0.08 
21 9 1000 55 0.08 
22 9 400 25 0.14 
23 9 400 25 0.14 
24 9 400 25 0.14 
25 9 150 45 0.04 
26 9 150 45 0.04 
27 9 150 45 0.04 

Table 9. Signal noise ratio of reinforced PTFE composites against SiC particle based on Taguchi 𝐿𝐿27(34) OA. 
 

 
 

Figure 11. Arton Paar Tribometer used for the experiment. 
 

Optimization using Taguchi-Deng approach  

Taguchi optimization is capable only of optimizing a single response. However, when two or more 
responses of distinct features are involved Taguchi technique is limited. Thus an optimization method called Deng 
popularly referred to as grey relational analysis (GRA) becomes a panacea. Taguchi L27 (43) OA with Deng was 
used to obtain the optimum levels of tribological parameters. Data normalization is categorized as smaller or larger 
the better. Let the actual sequence and the comparison sequences be 𝑋𝑋𝑖𝑖∗(𝑘𝑘) and𝜑𝜑𝑖𝑖(𝑘𝑘), respectively. i = 1, 2, 3….; 
m =1, 2, 3…and n and m represent the total number of experiments and experimental values, respectively. Data 
preprocessing is used to transform the actual sequence into an identical sequence. Many data preprocessing 
techniques can be utilized in Taguchi-Deng method, depending upon the features of the actual sequence. 
Generally, series is normalized between 0 and 1 20. For this study, the target value is “the smaller the better”. 
Consequently, the actual sequence is pre-processed via equation 5. 

 𝑋𝑋𝑖𝑖∗(𝑘𝑘) =
𝑚𝑚𝑎𝑎𝑚𝑚𝜑𝜑𝑖𝑖(𝑘𝑘)−𝜑𝜑𝑖𝑖(𝑘𝑘)𝑚𝑚𝑎𝑎𝑚𝑚𝜑𝜑𝑖𝑖(𝑘𝑘)−𝑚𝑚𝑖𝑖𝑚𝑚𝜑𝜑𝑖𝑖(𝑘𝑘)

            (5) 

Where 𝑋𝑋𝑖𝑖∗(𝑘𝑘) = normalized for the ith experiment and 𝜑𝜑𝑖𝑖(𝑘𝑘) = initial sequence of the average responses. After 
data normalization, the succeeding phase is computation of deviation sequence of the normalized data using 
equation (6). 
 

        ∆oi(k) =  │X0∗(k)− Xi∗(k)│   (6) 
Where ∆𝑜𝑜𝑖𝑖(𝑘𝑘) = deviation, 𝑋𝑋0∗(𝑘𝑘) = normalized data and 𝑋𝑋𝑖𝑖∗(𝑘𝑘) = comparability sequence. Grey relational 
coefficient (GRC) is thus estimated through equation 7. 
 

  ξi(k) =  
∆min+ζ∆max∆oi(k)+ζ∆max                    (7) 

Where 𝜉𝜉𝑖𝑖(𝑘𝑘)= GRC of each response, ∆𝑚𝑚𝑖𝑖𝑚𝑚 and ∆𝑚𝑚𝑎𝑎𝑚𝑚 = lowest and the highest deviations of the individual target 
factor, respectively. Differentiating or identification coefficient is symbolized by 𝜁𝜁 and is demarcated within the 
range of 𝜁𝜁𝜁𝜁[0,1]. This is usually set at ½ to assign equivalent weights to every variable. As indicated in (equation 
8) GRG is then determined by taking mean of GRG of each output parameter: 
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 𝛾𝛾𝑖𝑖 =  
1𝑚𝑚∑ 𝜉𝜉𝑖𝑖(𝑘𝑘)𝑚𝑚𝑖𝑖=1                               (8) 

Where 𝛾𝛾𝑖𝑖 = GRG obtained for ith test run, n = summation count of performance attributes. Following the 
determination of the optimal levels of parameter, the last phase is to predict and validate the result using equation 
9: 𝛾𝛾𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝛾𝛾𝑚𝑚 + ∑ 𝛾𝛾0 −𝑞𝑞𝑖𝑖=1 𝛾𝛾𝑚𝑚       (9) 
Where 𝛾𝛾0 represents the highest of mean GRG at optimum levels of variables and 𝛾𝛾𝑚𝑚 defines the average GRG. 𝑞𝑞 = parameter that signifies factors influencing the target values. 
 
Support vector regression (SVR) model 

In 1995 Vapnik contrived and implemented support vector machine (SVM) was contrived and 
implemented, which is regarded an observer-based learning approach. The minimization of structural risk as well 
as statistical learning theory are the most important function of the SVM. Nevertheless, the properties which 
distinguish SVM from ANN are complexities, minimization of error as well as gain in the network’s performance 
capability. SVM can be categorized into linear support regression as well as nonlinear support regression (NSVR). 
Several engineering fields such as have witnessed the application of SVM’s kernel function. SVR model could be 
thought of as SVM on the basis of layers which include kernel function weighting on the inputs as well as function 
weighted sum of kernel targets. By and large, SVM is codified into two codes namely Support Vector Regression 
(SVR) and Support Vector Classifier (SVC) models. SVR model is made up of predictions whereas SVC model 
treats classifications. SVR model is designated as: 
 𝑓𝑓(𝑥𝑥)  =  𝑤𝑤 × Φ(𝑥𝑥) +   𝑏𝑏          (10) 
Where w stands for weight of the vector displayed in feature space, Φ shows the transfer function, b is bias. 
Therefore, in order to show the SVR function 𝑓𝑓(𝑥𝑥), problem of regression is presented as: 
 

Minimize: 
∥𝑤𝑤∥22 +  𝐶𝐶[ ∑  𝜉𝜉 +  𝜉𝜉∗𝑁𝑁𝑖𝑖=1 ] (11) 

Subject to the conditions: 𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥) ≤  + 𝜀𝜀 + 𝜉𝜉 𝑖𝑖                   (11a) 𝑓𝑓(𝑥𝑥) − 𝑦𝑦𝑖𝑖 ≤  + 𝜀𝜀 +  𝜉𝜉∗                   (11b) 𝜉𝜉 𝑖𝑖 , 𝜉𝜉∗𝑖𝑖  ≥ 0, 𝑖𝑖 = 1,2, …𝑁𝑁                 (11c) 

Where ∥ 𝑤𝑤 ∥2  = weight norm vector, C = penalty parameter, 𝜉𝜉 𝑖𝑖 and  𝜉𝜉∗= slack variables. By using Lagrange 
functions, the solution of the nonlinear regression function can be presented based on optimization as follows: 
 𝑓𝑓(𝑥𝑥) =  ∑ (𝛼𝛼𝑖𝑖  −  𝛼𝛼𝑖𝑖∗)𝑁𝑁𝑖𝑖=1 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) + 𝑏𝑏     (12) 
Where 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) shows the kernel function and are binary variables (𝛼𝛼𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼𝑖𝑖∗› 0). There exist several kinds of 
kernel functions including sigmoid, linear, polynomial but the commonly used kernel function is the radial basis 
function (RBF). Consequently, the RBF kernel was used in this study and it is expressed as (equation 13). 
 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) = 𝑒𝑒𝑥𝑥𝑒𝑒 (−𝛾𝛾 ∥ 𝑥𝑥𝑖𝑖 − 𝑥𝑥 ∥2)           (13) 
Where 𝛾𝛾 = kernel parameter. SVR model performance is affected by C, 𝛾𝛾 and 𝜀𝜀 (size).  
 
 Harris Hawk Optimization (HHO) model 

HHO is a unique model worked out by simulating the hawk’s hunting process. Lately, the procedure has 
been used with success in solving several intricate engineering as well as science issues. The hawks mostly operate 
alone whereas the Harris hawks pursue and hunt through operating and cooperating together. Hence, the HHO 
method is similar to Harris Hawks’ natural hunting characteristic and cooperative methodology. HHO model 
hunting methodology entails tracing, encircling, approaching and attacking. These mechanisms are achieved in 
three principal phases namely: exploration, a transition from exploration to exploitation as well as exploitation 
(Fig. 12). 
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Particle Swarm Optimization (PSO) model 

In 1995, PSO was presented by Kennedy and Eberhart. It is a search method based on population which is 
inspired by the social behaviour and dynamics of animals. The initial intention of the SPO philosophy was to 
clearly mimic animals’ social behaviour bird flocking as an instance to detect trends that control capability of 
birds to fly with precision at the same time and to all of a sudden alter the direction with regathering in an optimum 
style. Arising from this first purpose, the philosophy inspired into a simple and efficient optimization approach. 
PSO is initiated with a group of random particles that look into an optimum value by updating the two best values 
in each iteration. The first one is named the personal best (pbest). This is the best value so far obtained by any 
particle in the population. All the particles explore the search space and the information collected by them is 
utilized for finding the best particle in the swarm referred to as global best (gbest). Thereafter, the particle updates 
its velocity and positions according to equations (14 and 15): 

 𝑉𝑉𝑖𝑖𝑘𝑘+1 =  𝜔𝜔𝑉𝑉𝑖𝑖𝑘𝑘 + 𝑐𝑐1𝑟𝑟1 × �𝑒𝑒𝑏𝑏𝑒𝑒𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘 − 𝑋𝑋𝑖𝑖𝑘𝑘�+ 𝑐𝑐2𝑟𝑟1 × (𝑔𝑔𝑏𝑏𝑒𝑒𝑝𝑝𝑝𝑝𝑘𝑘 − 𝑋𝑋𝑖𝑖𝑘𝑘)  (14) 
 𝑋𝑋𝑖𝑖𝑘𝑘+1 = 𝑋𝑋𝑖𝑖𝑘𝑘 + 𝑉𝑉𝑖𝑖𝑘𝑘+1            (15) 

Where 𝑉𝑉𝑖𝑖𝑘𝑘+1= the velocity of individual I at iteration 𝑘𝑘 +1, 𝑉𝑉𝑖𝑖𝑘𝑘 = the velocity of individual i at iteration𝑘𝑘, 𝜔𝜔 stands 
for inertia weight parameter, 𝑐𝑐1 and 𝑐𝑐2 show the cognitive parameters, 𝑟𝑟1 and 𝑟𝑟2 = random numbers between 0 and 
1, 𝑋𝑋𝑖𝑖𝑘𝑘 = position of individual i at iteration k, 𝑒𝑒𝑏𝑏𝑒𝑒𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘 = the best position of individual I at iteration k and 𝑔𝑔𝑏𝑏𝑒𝑒𝑝𝑝𝑝𝑝𝑘𝑘 
indicates the best position of the group until iteration k. Figure 13 shows the flowchart of the PSO algorithm. 
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Hybrid SVR model 

Improving the SVR model’s performance needs a cautious delineation of parameters involved in the SVR 
model. The strength of the SVR model relies upon the precise choice of C, 𝛾𝛾 and 𝜀𝜀. Yet, these parameters having 
a wide range make the search space very large thus making it difficult to choose precise parameters. Therefore, 
this issue can be addressed as optimization issue that requires sorting out via optimization methods. Integration 
of SVR model with PSO as well as HHO models that are algorithms inspired by nature led to the following hybrid 
model namely: SVR-PSO and SVR-HHO for the prediction of tribological behaviours of filled PTFE composites. 
The nature inspired models were utilized to choose the SVR model parameters viz: C, 𝛾𝛾 and 𝜀𝜀. Proposed flow-
chart of the hybrid model illustrated in Fig. 14. 
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 Data pre-processing, model validation and performance metrics 

One of the significant aims of any soft computing model is to ascertain that models conform to acceptable 
data based on the models evaluation metrics utilized to obtain a dependable and strong computed outcome of the 
unknown data. Nevertheless, overfitting as well as local minima problems occur in the data validation. Hence, the 
performance of the learning phase might be unsatisfactory. This is especially when the analysis deals with a 
relatively small amount of dataset, as in this study. Various validation methods can be employed including cross-
validation (k-fold), hide-out and leave one out. Here, the k-fold approach was used to repeal overfitting issues. 
With respect to this study, the data was split into (70%) and (30%) for training and testing, respectively. The data 
obtained through abrasive experiments was pre-processed and normalized according to equation 16. Data 
normalization was performed prior to model training and it usually enhances the efficiency of the predictive 
models. The current work introduced SVR model coupled with particle swarm optimization (PSO) and Harris 
Hawk optimization (HHO) models to predict abrasive tribological behaviours of filled PTFE composites. 
Prediction of tribological behaviours is important. However, creation of a reliable model is often challenging and 
difficult given the nature of the data set obtained from the experiments. 

 𝑦𝑦 = � 𝑚𝑚−𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚�           (16) 

Where y = normalized data, 𝑥𝑥 = is the experimental data while  𝑥𝑥𝑚𝑚𝑎𝑎𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚 are the maximum and minimum 
experimental data, respectively. 
 

Generally, model efficiency performance should include at least one goodness of fit and at least one 
prediction error metrics50. Based on this determination coefficient (R2), correlation coefficient (R), root mean 
square error (RMSE) and mean absolute percentage error (MAPE) are chosen as models appraisal metrics of the 
soft computing methods. R2, R, RMSE and MAPE are given below. These statistical tools furnish the information 
on efficiency of models.  

                                                     𝑅𝑅2 = 1 − ∑ (𝑚𝑚−𝑦𝑦)2𝑁𝑁𝑖𝑖−=1∑ (𝑚𝑚−𝑚𝑚�)2𝑁𝑁𝑖𝑖=1                 (17) 

 

     R =
∑ (x−x�)(y−x�)Ni−=1�∑ (x−x�)2Ni=1 ∑ (y−y�)2Ni=1              (18) 
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 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑ (𝑚𝑚−𝑦𝑦)2𝑁𝑁𝑖𝑖=1𝑁𝑁                          (19) 

 𝑅𝑅𝑀𝑀𝑀𝑀𝑅𝑅 =  
1𝑁𝑁 �∑ │ 𝑚𝑚−𝑦𝑦𝑚𝑚𝑁𝑁𝑖𝑖=1 │�                  (20) 

Where 𝑥𝑥,𝑦𝑦, 𝑥𝑥� and 𝑦𝑦� are the actual, predicted, average actual and average predicted values, respectively. 
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