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Abstract
Purpose: In�ammation plays an important role in the initiation and progression of atherosclerosis,
leading to poor clinical outcomes. Hyperuricemia is associated with the activation of the Nod-like receptor
protein 3 in�ammasome. Here, we investigated whether inhibition of in�ammation using febuxostat
lowered the risk of cardiovascular events.

Methods: This is a post-hoc analysis of the randomized trial, Febuxostat for Cerebral and
CaRdiorenovascular Events PrEvEntion StuDy (FREED). In total, 1,067 patients (736 men and 331
women) were included in the analysis. We compared the serial changes in high-sensitivity C-reactive
protein (hs-CRP) levels between febuxostat and non-febuxostat groups and assessed the correlation
between the changes in uric acid (UA) and hs-CRP levels after febuxostat treatment. We also determined
whether febuxostat could reduce a hard endpoint, de�ned as a composite of cardiovascular events and
all-cause mortality.

Results: Serum UA levels in the febuxostat group were signi�cantly lower than those in the non-
febuxostat group after randomization (p<0.05). However, hs-CRP levels were comparable between the two
groups during the study. No signi�cant correlation was observed between the changes in UA and hs-CRP
levels after febuxostat treatment. The hard endpoints did not differ signi�cantly between the two groups.
In patients with baseline hs-CRP levels > 0.2 mg/dL or those administered 40 mg of febuxostat, the drug
did not reduce hs-CRP levels or decrease the hard endpoint.

Conclusion: Febuxostat reduced the UA levels but did not affect the CRP levels, and therefore may fail to
decrease cardiovascular outcomes after treatment.

Trial Registration: ClinicalTrial.gov (NCT01984749).

https://clinicaltrials.gov/ct2/show/NCT01984749

Introduction
Uric acid (UA) is a product of purine nucleotide metabolism. The presence of a non-functional human
uricase-encoding gene leads to �uctuations in serum UA levels, which may result in the development of
gout [1, 2]. Hyperuricemia has been associated with cerebral and cardiovascular disease and chronic
kidney disease [3–6]. Xanthine oxidase inhibitors (XOIs) decrease serum UA levels and may exert a
bene�cial effect on the cardiovascular system by reducing oxidative stress in the vasculature [7]. Studies
have shown that the XOI, allopurinol, can reduce recurrent myocardial infarction and cardiovascular
events, although the detailed mechanisms have not been elucidated [8, 9].

Atherosclerosis is no longer considered to occur solely due to lipoprotein accumulation in the arterial wall,
as in�ammation plays an important role in the initiation and progression of this disease [10]. Anti-
in�ammatory therapy with canakinumab signi�cantly lowers the rate of recurrent cardiovascular events
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independent of the decrease in lipid levels [11]. Agents targeting vascular in�ammation are used as
adjunctive therapeutics for patients with residual in�ammatory risk. Hyperuricemia is associated with
in�ammatory disorders, as soluble urate and monosodium urate crystals may induce in�ammation [12–
14]. In patients with asymptomatic hyperuricemia, allopurinol reduces UA levels, which has the bene�cial
effect of modulating in�ammatory cytokine levels [15]. The XOI febuxostat suppresses Nod-like receptor
protein 3 (NLRP3) in�ammasome-mediated interleukin 1β (IL-1β) secretion and may ameliorate complex
chronic in�ammatory disorders in patients with hyperuricemia [16, 17].

Recently, the Febuxostat for Cerebral and CaRdiorenovascular Events PrEvEntion StuDy (FREED)
demonstrated that compared to conventional therapy with lifestyle modi�cations, febuxostat signi�cantly
decreased UA levels, which was associated with a composite reduction of cerebral, cardiovascular, and
renal events in older patients with asymptomatic hyperuricemia. However, FREED did not report a
decrease in mortality, cerebrovascular disease, or non-fatal coronary artery disease [18]. We hypothesized
that an approach involving inhibition of in�ammation using febuxostat might lower cerebral and
cardiovascular events and mortality, and investigated this hypothesis using post-hoc analysis of FREED
data. Our results provide new insights into the potential of febuxostat as an anti-in�ammatory agent with
bene�cial cardiovascular outcomes in a high-risk aged population with hyperuricemia.

Methods
The FREED was a randomized, open-label, and blinded study conducted following the principles of the
Declaration of Helsinki and the Ethical Guidelines for Clinical Studies issued by the Ministry of Health,
Labour, and Welfare in Japan. All the patients registered with the FREED provided written informed
consent. In this post-hoc analysis, 1,070 patients from the FREED were analyzed, and the requirement for
informed consent was waived. The study was conducted between 2013 and 2017. Older patients (age:
≥65 years) with hyperuricemia (serum UA > 7.0 to ≤ 9.0 mg/dL) and one or more risk factors for cerebral,
cardiovascular, or renal disease were enrolled in this study (detailed inclusion and exclusion criteria are
provided elsewhere) [19]. Established risk factors for cerebral, cardiovascular, or renal disease were
de�ned as a history of active hypertension, active type 2 diabetes mellitus, renal disease (estimated
glomerular �ltration rate [eGFR] of ≥ 30 to < 60 mL/min/1.73 m2 within 3 months before enrollment), and
cerebral or cardiovascular disease present for > 3 months before enrollment. Enrolled patients were
followed up for 36 months.

An internet-based central dynamic randomization method was used to allocate 1,084 enrolled patients
into febuxostat and non-febuxostat groups in a 1:1 ratio. Randomization was strati�ed according to sex;
serum UA levels, presence of type 2 diabetes mellitus, cerebrovascular disease, or cardiovascular disease;
eGFR; and the participating institution. Fourteen patients were excluded because of consent withdrawal
(seven patients), inclusion ineligibility (�ve patients), loss at follow-up (one patient), and investigator’s
discretion (one patient) before data collection at baseline. Five patients in the febuxostat group and nine
patients in the non-febuxostat group were excluded; in total, 1,070 patients were included in the intention-
to-treat population, with 537 assigned to the febuxostat group and 533 to the non-febuxostat group.
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Blood examination of the patients, including determination of serum UA levels, was conducted at the time
of randomization, 4, 8, 12, and 24 weeks after randomization, and every 6 months during the subsequent
years of the study. Febuxostat was orally administered once daily during the 36-month study, starting
from the time of enrollment. The dose was increased as follows: (i) The starting febuxostat dose was 10
mg/day; (ii) at week 4, the dose was increased to 20 mg/day; (iii) at week 8, the dose was increased to the
target dose of 40 mg/day. The febuxostat dose was adjusted to prevent serum UA from decreasing to < 
2.0 mg/dL. Additionally, all patients underwent lifestyle modi�cations to manage their hyperuricemia. In
the non-febuxostat group, administration of 100 mg oral allopurinol was considered if serum UA levels
increased during the study, starting from the time of enrollment (see Figure, Supplemental Digital Content
2).

In this study, non-fatal cerebral and cardiovascular events and all-cause death during the study period
were de�ned as the composite endpoint (a hard endpoint) as follows: (i) Death due to cerebral or
cardiovascular disease; (ii) new or recurrent cerebrovascular disease (stroke [cerebral hemorrhage,
cerebral infarction, subarachnoid hemorrhage, stroke of unknown type], transient ischemic attack); (iii)
new or recurring non-fatal coronary artery disease (myocardial infarction, unstable angina); (iv) death due
to other causes [18, 19].

Statistical analysis
Participants were encouraged to reduce UA levels based on previous guidelines on the management of
gout, which state that achieving and maintaining a serum UA target level of at least < 6 mg/dL is strongly
recommended for all patients receiving urate-lowering therapy [20, 21]. Data are expressed as the mean ± 
standard deviation and percentage unless otherwise stated. Continuous variables that did not show
normal distribution were expressed as the median (25th − 75th percentile). Categorical variables were
compared using the χ2 test or Fisher’s exact test, and continuous variables were compared using the
Student’s t-test or the Wilcoxon rank-sum test. Pearson’s correlation coe�cients were used to evaluate the
relationships. Changes in UA and high-sensitivity C-reactive protein (hs-CRP) levels were calculated as the
difference between those at 6 months and baseline. Repeated-measures analysis of variance was used to
compare the differences in UA and hs-CRP levels between groups using Holm’s test, if necessary. The
time from randomization to the occurrence of death or any cerebral cardiovascular event was analyzed.
The Kaplan–Meier method was used to estimate the event rate based on the time of onset of the events
and was compared using Gray’s test. A hard endpoint was analyzed using the Fine–Gray’s
subdistribution hazard model. Statistical signi�cance was set at p < 0.05. Statistical analyses were
performed using SAS version 9.4 (SAS Institute, Cary, NC, USA).

Results
FREED participants at baseline in the febuxostat and non-febuxostat groups
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Hs-CRP levels were not measured at baseline for three patients (one in the febuxostat group and two in
the non-febuxostat group); therefore, the data of 1,067 patients (536 in the febuxostat group and 531 in
the non-febuxostat group) were analyzed. The baseline clinical characteristics are presented as a table in
the supplementary material (Supplemental Digital Content 1). In the febuxostat group, the mean
febuxostat dose per day was 29.1±12.3 mg at the endpoint, and 67.4% of the patients received 40 mg of
the drug. In contrast, 27.1% of the patients in the non-febuxostat group received 100 mg of allopurinol.
The median follow-up durations (from randomization to study endpoint) for the febuxostat and non-
febuxostat groups were 35.5 and 35.1 months, respectively.

UA and hs-CRP levels and the hard endpoint

Serum UA levels were comparable at baseline between the febuxostat and non-febuxostat groups
(7.54±1.06 vs 7.50±1.03 mg/dL, p=0.479). However, the levels were signi�cantly lower in the febuxostat
group than those in the non-febuxostat group after randomization (8 weeks, 5.01±1.19 vs 7.21±1.26
mg/dL, p<0.05; 12 weeks, 4.36±1.40 vs 7.13±1.27 mg/dL, p<0.05; 6 months, 4.31±1.35 vs 7.02±1.27
mg/dL, p<0.05; 12 months, 4.33±1.38 vs 7.05±1.26 mg/dL, p<0.05; 18 months, 4.28±1.29 vs 6.84±1.34
mg/dL, p<0.05; 24 months, 4.34±1.34 vs 6.94±1.21 mg/dL, p<0.05; 30 months, 4.22±1.21 vs 6.79±1.20
mg/dL, p<0.05; 36 months, 4.32±1.28 vs 6.67±1.28 mg/dL, p<0.05). At the endpoint, the serum UA level in
the febuxostat group was signi�cantly lower than that in the non-febuxostat group (4.50±1.52 vs
6.76±1.45 mg/dL, p<0.05) (Figure 1a).

Changes in hs-CRP levels are shown in Figure 1b. Hs-CRP levels were comparable at baseline (0.082
[0.040–0.172] vs 0.078 [0.039–0.167] mg/dL, p=0.643) and during the study between the febuxostat and
non-febuxostat groups (6 months, 0.082 [0.043–0.189] vs 0.078 [0.037–0.178] mg/dL, p=1.000; 12
months, 0.081 [0.044–0.211] vs 0.071 [0.035–0.186] mg/dL, p=0.844; 24 months, 0.083 [0.043–0.184] vs
0.081 [0.037–0.172] mg/dL, p=1.000; 36 months, 0.083 [0.038–0.181] vs 0.082 [0.037–0.229] mg/dL,
p=1.000; endpoint, 0.090 [0.044–0.236] vs 0.082 [0.038–0.223] mg/dL, p=0.855). Although UA levels
were reduced by febuxostat at 6 months from baseline, there was no signi�cant correlation between the
changes in UA and hs-CRP levels (r=0.08, p=0.08) (Figure 2).

A hard endpoint was observed in 23 patients (4.3%) in the febuxostat group (cardiovascular mortality, six
patients [1.1%]; cerebrovascular disease, nine patients [1.7%]; non-fatal coronary artery disease, four
patients [0.7%]; death due to other causes, four patients [0.7%]) and 25 patients (4.7%) in the non-
febuxostat group (cardiovascular mortality, six patients [1.1%]; cerebrovascular disease, seven patients
[1.3%]; non-fatal coronary artery disease, seven patients [1.3%]; death due to other causes, �ve patients
[0.9%]). The Kaplan–Meier curves for the hard endpoints are shown in Figure 3. The two groups did not
differ signi�cantly after adjusting for strati�cation factors for randomization (hazard ratio [HR], 0.889;
95% con�dence interval [CI], 0.506–1.564).

Hard endpoint by baseline hs-CRP levels
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We divided all patients treated with febuxostat into two groups according to hs-CRP levels at baseline,
>0.2 or <0.2 mg/dL. After febuxostat treatment, the hs-CRP level in 122 patients was >0.2 mg/dL, while it
was <0.2 mg/dL in 414 patients. Serum UA levels were comparable at baseline (7.68±1.12 vs 7.50±1.04
mg/dL, p=0.103) and were similarly reduced (8 weeks, 5.02±1.16 vs 5.01±1.20 mg/dL, p=1.000; 12
weeks, 4.10±1.34 vs 4.44±1.41 mg/dL, p=0.094; 6 months, 4.08±1.34 vs 4.38±1.35 mg/dL, p=0.094; 12
months, 4.09±1.48 vs 4.40±1.34 mg/dL, p=0.092; 18 months, 4.21±1.40 vs 4.30±1.25 mg/dL, p=1.000; 24
months, 4.05±1.38 vs 4.43±1.32 mg/dL, p=0.092; 30 months, 4.00±1.26 vs 4.27±1.20 mg/dL, p=0.224; 36
months, 4.07±1.24 vs 4.39±1.28 mg/dL, p=0.105). However, serum UA levels were lower in patients with
hs-CRP >0.2 mg/dL at the endpoint (4.22±1.52 vs 4.59±1.51 mg/dL, p=0.007) (see Figure, Supplemental
Digital Content 3a). Hs-CRP levels >0.2 mg/dL remained high at baseline (0.417 [0.268–0.500] vs 0.062
[0.032–0.103] mg/dL, p<0.05), during the study period (6 months, 0.212 [0.112–0.397] vs 0.066 [0.035–
0.121] mg/dL, p<0.05; 12 months, 0.270 [0.121–0.500] vs 0.070 [0.037–0.139] mg/dL, p<0.05; 24
months, 0.195 [0.101–0.552] vs 0.069 [0.036–0.147] mg/dL, p<0.05; 36 months, 0.206 [0.085–0.445] vs
0.065 [0.030–0.134] mg/dL, p<0.05), and at the endpoint (0.266 [0.113–0.500] vs 0.069 [0.034–0.145]
mg/dL, p<0.05) (see Figure, Supplemental Digital Content 4b). In the non-febuxostat group, hs-CRP levels
were >0.2 mg/dL in 109 patients and <0.2 mg/dL in 422 patients. Serum UA levels were comparable at
baseline (7.41±1.10 vs 7.52±1.01 mg/dL, p=0.341). Serum UA levels were also similar during the study (8
weeks, 7.05±1.22 vs 7.25±1.27 mg/dL, p=1.000; 12 weeks, 7.14±1.17 vs 7.12±1.29 mg/dL, p=1.000; 6
months, 6.95±1.40 vs 7.04±1.23 mg/dL, p=1.000; 12 months, 6.97±1.17 vs 7.07±1.28 mg/dL, p=1.000; 18
months, 6.72±1.25 vs 6.87±1.36 mg/dL, p=1.000; 24 months, 6.96±1.19 vs 6.94±1.22 mg/dL, p=1.000; 30
months, 6.67±1.22 vs 6.82±1.19 mg/dL, p=1.000; 36 months, 6.73±1.22 vs 6.66±1.30 mg/dL, p=1.000)
and at the endpoint (6.81±1.36 vs 6.74±1.48 mg/dL, p=0.500) (see Figure, Supplemental Digital Content
4a). Hs-CRP levels >0.2 mg/dL remained high at baseline (0.395 [0.275–0.500] vs. 0.060 [0.033–0.101]
mg/dL, p<0.05), during the study (6 months, 0.245 [0.121–0.500] vs 0.059 [0.031–0.125] mg/dL, p<0.05;
12 months, 0.225 [0.087–0.500] vs 0.060 [0.031–0.127] mg/dL, p<0.05; 24 month, 0.215 [0.101–0.440]
vs 0.065 [0.033–0.126] mg/dL, p<0.05; 36 months, 0.215 [0.089–0.597] vs 0.067 [0.034–0.142] mg/dL,
p<0.05), and at the endpoint (0.299 [0.108–0.500] vs 0.066 [0.035–0.139] mg/dL, p<0.05) (see Figure,
Supplemental Digital Content 4b). A hard endpoint was observed more often in patients with baseline hs-
CRP levels of >0.2 mg/dL than in those with hs-CRP levels of <0.2 mg/dL in both febuxostat (HR: 2.152,
95% CI: 0.892–5.190) (see Figure, Supplemental Digital Content 5a) and non-febuxostat groups (HR:
2.295, 95% CI: 1.010–5.216) (see Figure, Supplemental Digital Content 5b).

Limited to patients with baseline hs-CRP levels of >0.2 mg/dL (122 and 109 patients in the febuxostat
and non-febuxostat groups, respectively), UA levels continued to be signi�cantly lower in the febuxostat
group than those in the non-febuxostat group during the study and at endpoint (p<0.05) (Figure 4a).
However, CRP levels were similar during the study (6, 24, and 36 months, p=1.000; 12 months, p=0.750)
and at the endpoint (p=0.571) between the febuxostat and non-febuxostat groups (Figure 4b). Kaplan–
Meier curves for hard endpoints did not differ signi�cantly between the two groups after adjusting for
strati�cation factors for randomization (HR, 0.842; 95% CI, 0.322–2.201) (Figure 5).

A hard endpoint by 40 mg febuxostat or non-XOI treatment
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We analyzed patients treated with 40 mg of febuxostat or non-XOIs. In total, 363 patients were treated
with 40 mg of febuxostat, while 387 patients underwent non-XOI treatment. UA levels were signi�cantly
higher at baseline (7.62±1.04 vs 7.36±1.00 mg/dL, p=0.0004) but continued to be signi�cantly lower in
the febuxostat group than in the non-XOI treatment group after randomization (8 weeks, 4.94±1.16 vs
7.29±1.18 mg/dL, p<0.05; 12 weeks, 4.11±1.39 vs 7.21±1.15 mg/dL, p<0.05; 6 months, 4.01±1.29 vs
7.19±1.21 mg/dL, p<0.05; 12 months, 4.03±1.29 vs 7.30±1.11 mg/dL, p<0.05; 18 months, 4.06±1.28 vs
7.03±1.20 mg/dL, p<0.05; 24 months, 4.10±1.34 vs 7.19 ± 1.11 mg/dL, p<0.05; 30 months, 4.00±1.18 vs
7.01±1.11 mg/dL, p<0.05; 36 months, 4.06±1.17 vs 6.89±1.33 mg/dL, p<0.05). At the endpoint, the serum
UA level in the febuxostat group was signi�cantly lower than that in the non-febuxostat group (4.13±1.38
vs 6.96±1.44 mg/dL, p<0.05) (Figure 6a). However, hs-CRP levels were comparable at baseline (0.088
[0.043–0.215] vs 0.079 [0.041–0.165] mg/dL, p=0.196), during the study (6 months, 0.083 [0.043–0.196]
vs 0.076 [0.035–0.172] mg/dL, p=1.000; 12 months, 0.081 [0.044–0.199] vs 0.072 [0.033–0.176] mg/dL,
p=1.000; 24 months, 0.083 [0.041–0.182] vs 0.080 [0.037–0.165] mg/dL, p=1.000; 36 months, 0.084
[0.040–0.194] vs 0.088 [0.036–0.215] mg/dL, p=0.451), and at the endpoint (0.089 [0.043–0.235] vs
0.082 [0.039–0.215] mg/dL, p=0.644) between the febuxostat and non-febuxostat groups (Figure 6b). No
changes in hs-CRP levels were observed in either group during the study period. Kaplan–Meier curves for
hard endpoints did not differ signi�cantly between the two groups after adjusting for strati�cation factors
for randomization (HR, 0.577; 95% CI, 0.292–1.139) (Figure 7).

Discussion
Here, we found that febuxostat did not reduce hs-CRP levels and was not associated with fewer
cardiovascular events and mortality compared to non-febuxostat treatment among patients with
asymptomatic hyperuricemia whose conditions were stable, although they were at high risk of developing
cardiovascular diseases. Febuxostat signi�cantly reduced UA levels, although this change did not
correlate with changes in CRP levels.

The Canakinumab Anti-In�ammatory Thrombosis Outcomes Study (CANTOS) and the Colchicine
Cardiovascular Outcomes Trial (COLCOT) indicated that decreasing in�ammation reduces the risk of
cardiovascular disease, which suggests that upstream biomarkers of in�ammation and intracellular
sensors detecting endogenous danger signals must be targeted to achieve a desirable cardiovascular risk
reduction [11, 22, 23]. For example, inhibition of the NLRP3-IL-1β axis may be critical for decreasing
in�ammation and cardiovascular risk. In addition to monosodium urate crystals, soluble urate can
activate NLRP3 in�ammation in association with increased production of mitochondrial reactive oxygen
species via xanthine oxidase, leading to the secretion of IL-1β in the extracellular milieu [12, 16, 17, 24].
Febuxostat suppresses NLRP3 in�ammasome-mediated IL-1β secretion in vitro and in vivo [17]. This may
be a promising option for XOI-mediated control of in�ammatory diseases and appears to be the most
practical way to measure hs-CRP levels, a downstream surrogate biomarker for NLRP3-IL-1β pathway
activity [11, 22, 23].
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We did not observe any signi�cant reduction in hs-CRP levels after febuxostat treatment, which may be
linked to cardiovascular risk reduction in the present study. Whether febuxostat decreases the levels of
pro-in�ammatory cytokines, such as IL-1β, has not been demonstrated in the FREED study. Clinical
studies on the reduction of pro-in�ammatory cytokine levels with febuxostat treatment in patients with
asymptomatic hyperuricemia, who are in a stable state although at risk for in�ammatory disorders, are
lacking. Therapeutic reduction of serum UA levels using allopurinol is associated with modulation of the
in�ammatory pro�le in patients with asymptomatic hyperuricemia; however, a decrease in CRP levels is
not clear [15]. The present study revealed a median hs-CRP level of only 0.08 mg/dL at baseline; however,
no reduction in hs-CRP levels was observed after febuxostat treatment in patients with ≥ 0.20 mg/dL hs-
CRP at baseline. We analyzed patients treated with 40 mg of febuxostat, which appeared to exhibit the
highest effect as an XOI in the present study compared to non-XOI treatments, although a signi�cant
decrease in hs-CRP levels leading to better outcomes was not observed.

The NLRP3 in�ammasome is activated by a wide range of stimuli [25]. Soluble urate also activates the
NLRP3 in�ammasome and induces the production of IL-1β [24]. In addition to FREED, other studies have
also shown that therapeutic strategies including febuxostat do not decrease cardiovascular events
despite signi�cant reductions in UA levels [18, 26, 27], suggesting that amelioration of the in�ammatory
�ow induced via NLRP3 in�ammasome activation may be di�cult, although monosodium urate crystals
and soluble urate levels are reduced upon febuxostat treatment in patients with asymptomatic
hyperuricemia. Agents directly targeting the NLRP3-IL-1β pathway may decrease in�ammation and
cardiovascular risk [11, 22]. Thus, febuxostat may not su�ciently reduce intracellular UA concentrations
in macrophages or endothelial cells.

This study has a number of limitations. First, FREED was not speci�cally designed to assess hs-CRP
levels and clinical outcomes in trial participants. However, close prospective monitoring of serum UA
levels from baseline to 36 months after randomization allowed accurate assessment of clinical events.
Moreover, the randomized design of FREED ensured equal distribution of potential known and unknown
confounding factors between the treatment and non-treatment groups. Second, dose escalation was
performed, and the dose was increased up to 40 mg/day in 67.4% of the patients receiving febuxostat
treatment. In the non-febuxostat group, patients underwent lifestyle modi�cations for the management of
hyperuricemia, although 27.1% of the patients received 100 mg of allopurinol. We also compared patients
in the febuxostat group with those who underwent lifestyle modi�cations in the non-febuxostat group,
although the patients were not equally distributed between the groups in this study. Nonetheless, patient
backgrounds were generally similar. Additional prospective evaluations might extend the present �ndings
to other populations that are likely to bene�t from XOIs. A trial with uricosuric agents may also be
required to verify the effects of lowering serum UA and hs-CRP levels.

Conclusion
In this post-hoc analysis of a randomized controlled trial involving patients with asymptomatic
hyperuricemia, treatment with febuxostat did not reduce CRP levels or result in fewer cardiovascular
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events than treatment without febuxostat. These hypothesis-generating data highlight the unexpected
potential of febuxostat as an anti-in�ammatory agent for bene�cial cardiovascular outcomes in a high-
risk aged population with hyperuricemia. Further prospective con�rmatory studies are warranted to
identify populations that might bene�t from lowering speci�c pro-in�ammatory cytokine levels, leading to
a reduction in CRP levels with febuxostat treatment.
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Figures

Figure 1

Changes in serum uric acid (a) and high-sensitivity C-reactive protein levels (b) in febuxostat and non-
febuxostat groups. Closed circle, febuxostat group; open circle, non-febuxostat group. Values are
presented as the mean ± standard deviation (a) or median (25th to 75th percentile range) (b). *p< 0.05
(Holm method).

hs-CRP, high-sensitivity C-reactive protein; EP, endpoint; SUA, serum uric acid
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Figure 2

Relationship between changes in uric acid and high-sensitivity C-reactive protein levels from baseline log-
transformed after 6 months of febuxostat treatment.

hs-CRP, high-sensitivity C-reactive protein

Figure 3

The Kaplan–Meier curves for hard endpoints. Black line, febuxostat group; red line, non-febuxostat group
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Figure 4

Changes in serum uric acid (a) and high-sensitivity C-reactive protein (b) levels in patients with high-
sensitivity C-reactive protein levels of ≥0.2 mg/dL. Closed circle, febuxostat group; open circle, non-
febuxostat group. Values are presented as the mean ± standard deviation (a) or median (25th to 75th

percentile range) (b). *p<0.05 (Holm method).

hs-CRP, high-sensitivity C-reactive protein; EP, endpoint; SUA, serum uric acid

Figure 5
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Kaplan–Meier curves for hard endpoints in patients with high-sensitivity C-reactive protein levels of ≥0.2
mg/dL. Black line, febuxostat group; black dotted line, non-febuxostat group

Figure 6

Changes in serum uric acid (a) and high-sensitivity C-reactive protein (b) levels in patients treated with 40
mg febuxostat and non-xanthine oxidase inhibitors. Closed circle, febuxostat group; open circle, non-
febuxostat group. Values are presented as the mean ± standard deviation (a) or median (25th to 75th

percentile range) (b). *p< 0.05.

hs-CRP, high-sensitivity C-reactive protein; EP, endpoint; SUA, serum uric acid; XOI, xanthine oxidase
inhibitor

Figure 7

Kaplan–Meier curves for hard endpoints in patients treated with 40 mg febuxostat and non-xanthine
oxidoreductase inhibitor. Black line, patients treated with 40 mg febuxostat; black dotted line, non-
xanthine oxidoreductase inhibitor treatment.
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XOI: xanthine oxidase inhibitor
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